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Markov Chain Setting

A Markov chain with state space X evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where the Uj are i.i.d. uniform r.v.’s over (0, 1)d .

Payoff (or cost) function:

Y =
τ∑

j=1

gj(Xj)

for some fixed time horizon τ .

We may want to estimate
µ = E[Y ],

or some other functional of Y , or perhaps the entire distribution of Y .
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Ordinary Monte Carlo simulation
For i = 0, . . . , n − 1, generate Xi ,j = ϕj(Xi ,j−1,Ui ,j), j = 1, . . . , τ , where
the Ui ,j ’s are i.i.d. U(0, 1)d . Estimate µ by

µ̂n =
1

n

n−1∑
i=0

τ∑
j=1

gj(Xi ,j) =
1

n

n−1∑
i=0

Yi .

E[µ̂n] = µ and Var[µ̂n] = 1
nVar[Yi ] = O(n−1) .

The width of a confidence interval on µ converges as O(n−1/2) .
That is, for each additional digit of accuracy, one must multiply n by 100.

Can also estimate the distribution (density) of Y by the empirical
distribution of Y0, . . . ,Yn−1, or by an histogram (perhaps smoothed), or
by a kernel density estimator. The mean integrated square error (MISE)

for the density typically converges as O(n−2/3) for an histogram and

O(n−4/5) for the best density estimators.

Can we do better than those rates?
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Plenty of applications fit this setting:

Finance

Queueing systems

Inventory, distribution, logistic systems

Reliability models

MCMC in Bayesian statistics

Many many more...
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Example: An Asian Call Option (two-dim state)

Given observation times t1, t2, . . . , tτ , s0 > 0, and X0 = 0, let

X (tj) = X (tj−1) + (r − σ2/2)(tj − tj−1) + σ(tj − tj−1)1/2Zj ,

S(tj) = s0 exp[X (tj)], (geometric Brownian motion)

where Uj ∼ U[0, 1) and Zj = Φ−1(Uj) ∼ N(0, 1).

Running average: S̄j = 1
j

∑j
i=1 S(ti ).

Payoff at step j = τ is Y = gτ (Xτ ) = max
[
0, S̄τ − K

]
.

MC State: Xj = (S(tj), S̄j) .

Transition:

Xj = (S(tj), S̄j) = ϕj(S(tj−1), S̄j−1,Uj) =

(
S(tj),

(j − 1)S̄j−1 + S(tj)

j

)
.

Want to estimate E[Y ], or distribution of Y , etc.
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Take τ = 12, T = 1 (one year), tj = j/τ for j = 0, . . . , τ , K = 100,
s0 = 100, r = 0.05, σ = 0.5.

We make n = 106 independent runs. Mean: 13.1. Max = 390.8
In 53.47% of cases, the payoff is 0.

Histogram of positive values:

Payoff
0 50 100 150

Frequency (×103)

0

10

20

30
average = 13.1

Confidence interval on E[Y ] converges as O(n−1/2). Can we do better?
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Another histogram, with n = 4096 runs.

Payoff
0 25 50 75 100 125 150

Frequency

0

50

100

150

For histogram: MISE = O(n−2/3) .

For polygonal interpolation: MISE = O(n−4/5) . Same with KDE.

Can we do better?
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Randomized quasi-Monte Carlo (RQMC)

To estimate µ =
∫

(0,1)s f (u)du, RQMC Estimator:

µ̂n,rqmc =
1

n

n−1∑
i=0

f (Ui ),

with Pn = {U0, . . . ,Un−1} ⊂ (0, 1)s an RQMC point set:

(i) each point Ui has the uniform distribution over (0, 1)s ;

(ii) Pn as a whole is a low-discrepancy point set.

E[µ̂n,rqmc] = µ (unbiased),

Var[µ̂n,rqmc] =
Var[f (Ui )]

n
+

2

n2

∑
i<j

Cov[f (Ui ), f (Uj)].

We want to make the last sum as negative as possible.

Weak attempts: antithetic variates (n = 2), Latin hypercube sampling,...
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Variance estimation:

Can compute m independent realizations X1, . . . ,Xm of µ̂n,rqmc, then
estimate µ and Var[µ̂n,rqmc] by their sample mean X̄m and sample
variance S2

m. Could be used to compute a confidence interval.

Temptation: assume that X̄m has the normal distribution.
Beware: usually wrong unless m→∞.
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Stratification of the unit hypercube

Partition axis j in kj ≥ 1 equal parts, for j = 1, . . . , s.
Draw n = k1 · · · ks random points, one per box, independently.

Example, s = 2, k1 = 12, k2 = 8, n = 12× 8 = 96.

0 1

1

ui ,1

ui ,2
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Stratified estimator:

Xs,n =
1

n

n−1∑
j=0

f (Uj).

The crude MC variance with n points can be decomposed as

Var[X̄n] = Var[Xs,n] +
1

n

n−1∑
j=0

(µj − µ)2

where µj is the mean over box j .

The more the µj differ, the more the variance is reduced.

If f ′ is continuous and bounded, and all kj are equal, then

Var[Xs,n] = O(n−1−2/s).

For large s, not practical. For small s, not really better than midpoint rule
with a grid when f is smooth. But can still be applied to a few important
random variables. Gives an unbiased estimator, and variance can be
estimated by replicating m ≥ 2 times.
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Randomly-Shifted Lattice

Example: lattice with s = 2, n = 101, v1 = (1, 12)/101

0 1

1

ui ,1

ui ,2

U
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Example of a digital net in base 2:
Hammersley point set, n = 28 = 256, s = 2.

0 1

1

ui ,1

ui ,2
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Random digital shift for digital net
Equidistribution in digital boxes is lost with random shift modulo 1,
but can be kept with a random digital shift in base b.

In base 2: Generate U ∼ U(0, 1)s and XOR it bitwise with each ui .

Example for s = 2:

ui = (0.01100100..., 0.10011000...)2

U = (0.01001010..., 0.11101001...)2

ui ⊕U = (0.00101110..., 0.01110001...)2.

Each point has U(0, 1) distribution.
Preservation of the equidistribution (k1 = 3, k2 = 5):

ui = (0.***, 0.*****)

U = (0.010, 0.11101)2

ui ⊕U = (0.***, 0.*****)
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U = (0.1270111220, 0.3185275653)10

= (0. 0010 0000100000111100, 0. 0101 0001100010110000)2.

Changes the bits 3, 9, 15, 16, 17, 18 of ui ,1
and the bits 2, 4, 8, 9, 13, 15, 16 of ui ,2.

0 1

1

un+1

un 0 1

1

un+1

un

Red and green squares are permuted (k1 = k2 = 4, first 4 bits of U).
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Variance bounds
We can obtain various Cauchy-Shwartz inequalities of the form

Var[µ̂n,rqmc] ≤ V 2(f ) · D2(Pn)

for all f in some Hilbert space or Banach space H, where
V (f ) = ‖f − µ‖H is the variation of f , and D(Pn) is the discrepancy of Pn

(defined by an expectation in the RQMC case).

Lattice rules: For certain Hilbert spaces of smooth periodic functions f
with square-integrable partial derivatives of order up to α:

D(Pn) = O(n−α+ε) for arbitrary small ε.

Digital nets: “Classical” Koksma-Hlawka inequality for QMC: f must
have finite variation in the sense of Hardy and Krause (implies no
discontinuity not aligned with the axes). Popular constructions achieve

D(Pn) = O(n−1(ln n)s) = O(n−1+ε) for arbitrary small ε.
More recent constructions offer better rates for smooth functions.

Bounds are conservative and too hard to compute in practice.
Hidden constant and variation often increase fast with s.
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Classical Randomized Quasi-Monte Carlo (RQMC)
for Markov Chains

One RQMC point for each sample path.

Put Vi = (Ui ,1, . . . ,Ui ,τ ) ∈ (0, 1)s = (0, 1)dτ . Estimate µ by

µ̂rqmc,n =
1

n

n−1∑
i=0

τ∑
j=1

gj(Xi ,j)

where Pn = {V0, . . . ,Vn−1} ⊂ (0, 1)s is an RQMC point set:
(a) each point Vi has the uniform distribution over (0, 1)s ;
(b) Pn covers (0, 1)s very evenly (i.e., has low discrepancy).

The dimension s is often very large!
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Array-RQMC for Markov Chains
L., Lécot, Tuffin, et al. [2004, 2006, 2008, etc.]
Earlier deterministic versions by Lécot et al.
Simulate an “array” of n chains in “parallel.”
At each step, use an RQMC point set Pn to advance all the chains by one
step. Seek global negative dependence across the chains.

Goal: Want small discrepancy (or “distance”) between empirical
distribution of Sn,j = {X0,j , . . . ,Xn−1,j} and theoretical distribution of Xj .

If we succeed, these (unbiased) estimators will have small variance:

µj = E[gj(Xj)] ≈ µ̂arqmc,j ,n =
1

n

n−1∑
i=0

gj(Xi ,j)

Var[µ̂arqmc,j ,n] =
Var[gj(Xi ,j)]

n
+

2

n2

n−1∑
i=0

n−1∑
k=i+1

Cov[gj(Xi ,j), gj(Xk,j)] .



D
ra

ft

19Some RQMC insight: To simplify the discussion, suppose Xj ∼ U(0, 1)`.
This can be achieved (in principle) by a change of variable. We estimate

µj = E[gj(Xj)] = E[gj(ϕj(Xj−1,U))] =

∫
[0,1)`+d

gj(ϕj(x,u))dxdu

(we take a single j here) by

µ̂arqmc,j,n =
1

n

n−1∑
i=0

gj(Xi,j) =
1

n

n−1∑
i=0

gj(ϕj(Xi,j−1,Ui,j)).

This is (roughly) RQMC with the point set Qn = {(Xi,j−1,Ui,j), 0 ≤ i < n} .

We want Qn to have low discrepancy (LD) (be highly uniform) over [0, 1)`+d .

We do not choose the Xi,j−1’s in Qn: they come from the simulation.
To construct the (randomized) Ui,j , select a LD point set

Q̃n = {(w0,U0,j), . . . , (wn−1,Un−1,j)} ,

where the wi ∈ [0, 1)` are fixed and each Ui,j ∼ U(0, 1)d .
Permute the states Xi,j−1 so that Xπj (i),j−1 is “close” to wi for each i (LD
between the two sets), and compute Xi,j = ϕj(Xπj (i),j−1,Ui,j) for each i .

Example: If ` = 1, can take wi = (i + 0.5)/n and just sort the states.
For ` > 1, there are various ways to define the matching (multivariate sort).



D
ra

ft

19Some RQMC insight: To simplify the discussion, suppose Xj ∼ U(0, 1)`.
This can be achieved (in principle) by a change of variable. We estimate

µj = E[gj(Xj)] = E[gj(ϕj(Xj−1,U))] =

∫
[0,1)`+d

gj(ϕj(x,u))dxdu

(we take a single j here) by

µ̂arqmc,j,n =
1

n

n−1∑
i=0

gj(Xi,j) =
1

n

n−1∑
i=0

gj(ϕj(Xi,j−1,Ui,j)).

This is (roughly) RQMC with the point set Qn = {(Xi,j−1,Ui,j), 0 ≤ i < n} .

We want Qn to have low discrepancy (LD) (be highly uniform) over [0, 1)`+d .

We do not choose the Xi,j−1’s in Qn: they come from the simulation.
To construct the (randomized) Ui,j , select a LD point set

Q̃n = {(w0,U0,j), . . . , (wn−1,Un−1,j)} ,

where the wi ∈ [0, 1)` are fixed and each Ui,j ∼ U(0, 1)d .
Permute the states Xi,j−1 so that Xπj (i),j−1 is “close” to wi for each i (LD
between the two sets), and compute Xi,j = ϕj(Xπj (i),j−1,Ui,j) for each i .

Example: If ` = 1, can take wi = (i + 0.5)/n and just sort the states.
For ` > 1, there are various ways to define the matching (multivariate sort).



D
ra

ft

20

Array-RQMC algorithm

Xi ,0 ← x0 (or Xi ,0 ← xi ,0) for i = 0, . . . , n − 1;
for j = 1, 2, . . . , τ do

Compute the permutation πj of the states (for matching);
Randomize afresh {U0,j , . . . ,Un−1,j} in Q̃n;
Xi ,j = ϕj(Xπj (i),j−1,Ui ,j), for i = 0, . . . , n − 1;

µ̂arqmc,j ,n = Ȳn,j = 1
n

∑n−1
i=0 g(Xi ,j);

end for
Estimate µ by the average Ȳn = µ̂arqmc,n =

∑τ
j=1 µ̂arqmc,j ,n.

Proposition: (i) The average Ȳn is an unbiased estimator of µ.
(ii) The empirical variance of m independent realizations gives an unbiased
estimator of Var[Ȳn].
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Key issues:

1. How can we preserve LD of Sn,j = {X0,j , . . . ,Xn−1,j} as j increases?

2. Can we prove that Var[µ̂arqmc,j ,n] = O(n−α) for some α > 1?
How? What α?

3. How does it behave empirically for moderate n?

Intuition: Write discrepancy measure of Sn,j as the mean square
integration error (or variance) when integrating some function
ψ : [0, 1)`+d → R using Qn.
Use RQMC theory to show it is small if Qn has LD. Then use induction.
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Convergence results and applications

L., Lécot, and Tuffin [2006, 2008]: Special cases: convergence at MC rate,
one-dimensional, stratification, etc. Var in O(n−3/2).

Lécot and Tuffin [2004]: Deterministic, one-dimension, discrete state.

El Haddad, Lécot, L. [2008, 2010]: Deterministic, multidimensional.

Fakhererredine, El Haddad, Lécot [2012, 2013, 2014]: LHS, stratification,
Sudoku sampling, ...

Wächter and Keller [2008]: Applications in computer graphics.

Gerber and Chopin [2015]: Sequential QMC (particle filters), Owen nested
scrambling and Hilbert sort. Variance in o(n−1).
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Some generalizations

L., Lécot, and Tuffin [2008]: τ can be a random stopping time w.r.t. the
filtration F{(j ,Xj), j ≥ 0}.

L., Demers, and Tuffin [2006, 2007]: Combination with splitting
techniques (multilevel and without levels), combination with importance
sampling and weight windows. Covers particle filters.

L. and Sanvido [2010]: Combination with coupling from the past for exact
sampling.

Dion and L. [2010]: Combination with approximate dynamic programming
and for optimal stopping problems.

Gerber and Chopin [2015]: Sequential QMC.
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Mapping chains to points when ` > 2

1. Multivariate batch sort:
Sort the states (chains) by first coordinate, in n1 packets of size n/n1.

Sort each packet by second coordinate, in n2 packets of size n/n1n2.

· · ·
At the last level, sort each packet of size n` by the last coordinate.

Choice of n1, n2, ..., n`?
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A (4,4) mapping
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A (4,4) mapping
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A (4,4) mapping
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Mapping chains to points when ` > 2

2. Multivariate split sort:
n1 = n2 = · · · = 2.

Sort by first coordinate in 2 packets.

Sort each packet by second coordinate in 2 packets.

etc.
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Mapping by split sort
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Mapping by split sort
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Mapping by split sort
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Mapping by split sort
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Mapping by split sort
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Mapping by batch sort and split sort
One advantage: The state space does not have to be [0, 1)d :

States of the chains
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Mapping by batch sort and split sort
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Mapping by batch sort and split sort
One advantage: The state space does not have to be [0, 1)d :
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Mapping by batch sort and split sort
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Mapping by batch sort and split sort
One advantage: The state space does not have to be [0, 1)d :
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Lowering the state dimension

For ` > 1: Define a transformation h : X → [0, 1)c for c < `.
Sort the transformed points h(Xi ,j) in c dimensions.
Now we only need c + d dimensions for the RQMC point sets;
c for the mapping and d to advance the chain.

Choice of h: states mapped to nearby values should be nearly equivalent.

For c = 1, X is mapped to [0, 1), which leads to a one-dim sort.

The mapping h with c = 1 can be based on a space-filling curve:
Wächter and Keller [2008] use a Lebesgue Z-curve and mention others;
Gerber and Chopin [2015] use a Hilbert curve and prove o(n−1)
convergence for the variance when used with digital nets and Owen nested
scrambling. A Peano curve would also work in base 3.

Reality check: We only need a good pairing between states and RQMC
points. Any good way of doing this is welcome!
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Sorting by a Hilbert curve

Suppose the state space is X = [0, 1)`.
Partition this cube into 2m` subcubes of equal size.
When a subcube contains more than one point (a collision), we could split
it again in 2`. But in practice, we rather fix m and neglect collisions.

The Hilbert curve defines a way to enumerate (order) the subcubes so
that successive subcubes are always adjacent. This gives a way to sort the
points. Colliding points are ordered arbitrarily. We precompute and store
the map from point coordinates (first m bits) to its position in the list.

Then we can map states to points as if the state had one dimension.
We use RQMC points in 1 + d dimensions, ordered by first coordinate,
which is used to match the states, and d (randomized) coordinates are
used to advance the chains.
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Hilbert curve sort
Map the state to [0, 1], then sort.
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Hilbert curve sort
Map the state to [0, 1], then sort.
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Hilbert curve sort
Map the state to [0, 1], then sort.
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Hilbert curve sort
Map the state to [0, 1], then sort.
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What if state space is not [0, 1)`?

Ex.: For the Asian option, X = [0,∞)2.

Then one must define a transformation ψ : X → [0, 1)` so that the
transformed state is approximately uniformly distributed over [0, 1)`.

Not easy to find a good ψ in general!
Gerber and Chopin [2015] propose using a logistic transformation for each
coordinate, combined with trial and error.

A lousy choice could possibly damage efficiency.
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Hilbert curve batch sort

Perform a multivariate batch sort, or a split sort, and then enumerate the
boxes as in the Hilbert curve sort.
Advantage: the state space can be R`.

−∞−∞ ∞

∞

s
s

s
s

ss
s s

s
s

ss

ss

s
s



D
ra

ft

37

Convergence results and proofs

For ` = 1, O(n−3/2) variance has been proved under some conditions.

For ` > 1, worst-case error of O(n−1/(`+1)) has been proved in
deterministic settings under strong conditions on ϕj , using a batch sort
(El Haddad, Lécot, L’Ecuyer 2008, 2010).

Gerber and Chopin (2015) proved o(n−1) variance, for Hilbert sort and
digital net with nested scrambling.
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Proved convergence results
L., Lécot, Tuffin [2008] + some extensions.
Simple case: suppose ` = d = 1, X = [0, 1], and Xj ∼ U(0, 1). Define

∆j = sup
x∈X
|F̂j(x)− Fj(x)| (star discrepancy of states)

V∞(gj) =

∫ 1

0

∣∣∣∣dgj(x)

dx

∣∣∣∣ dx (corresponding variation of gj)

D2
j =

∫ 1

0
(F̂j(x)− Fj(x))2dx =

1

12n2
+

1

n

n−1∑
i=0

((i + 0.5/n)− Fj(X(i),j))2, (square L2 discrepancy),

V 2
2 (gj) =

∫ 1

0

∣∣∣∣dgj(x)

dx

∣∣∣∣2 dx (corresp. square variation of gj).

We have ∣∣Ȳn,j − E[gj(Xj)]
∣∣ ≤ ∆jV∞(gj),

Var[Ȳn,j ] = E[(Ȳn,j − E[gj(Xj)])2] ≤ E[D2
j ]V 2

2 (gj).
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Convergence results and proofs, ` = 1

Assumption 1. ϕj(x , u) non-decreasing in u. Also n = k2 for some
integer k and that each square of the k × k grid contains exactly one
RQMC point.

Let Λj = sup0≤z≤1 V (Fj(z | · )).

Proposition. (Worst-case error.) Under Assumption 1,

∆j ≤ n−1/2
j∑

k=1

(Λk + 1)

j∏
i=k+1

Λi .

Corollary. If Λj ≤ ρ < 1 for all j , then

∆j ≤
1 + ρ

1− ρ
n−1/2.
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Convergence results and proofs, ` = 1
Assumption 2. (Stratification) Assumption 1 holds, ϕj also
non-decreasing in x , and randomized parts of the points are uniformly
distributed in the cubes and pairwise independent (or negatively
dependent) conditional on the cubes in which they lie.

Proposition. (Variance bound.) Under Assumption 2,

E[D2
j ] ≤

(
1

4

j∑
`=1

(Λ` + 1)

j∏
i=`+1

Λ2
i

)
n−3/2

Corollary. If Λj ≤ ρ < 1 for all j , then

E[D2
j ] ≤ 1 + ρ

4(1− ρ2)
n−3/2 =

1

4(1− ρ)
n−3/2,

Var[Ȳn,j ] ≤
1

4(1− ρ)
V 2

2 (gj)n
−3/2.

These bounds are uniform in j .
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Convergence results and proofs, ` > 1

Worst-case error of O(n−1/(`+1)) has been proved in a deterministic
setting for a discrete state space in X ⊆ Z`, and for a continuous state
space X ⊆ R` under strong conditions on ϕj , using a batch sort
(El Haddad, Lécot, L’Ecuyer 2008, 2010).

Gerber and Chopin (2015) proved o(n−1) for the variance, for Hilbert sort
and digital net with nested scrambling.
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Example: Asian Call Option

S(0) = 100, K = 100, r = 0.05, σ = 0.15, tj = j/52, j = 0, . . . , τ = 13.
RQMC: Sobol’ points with linear scrambling + random digital shift.
Similar results for randomly-shifted lattice + baker’s transform.

log2 n
8 10 12 14 16 18 20

log2 Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

array-RQMC, split sort

RQMC sequential

crude MC
n−1
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Example: Asian Call Option
S(0) = 100, K = 100, r = ln(1.09), σ = 0.2,
tj = (230 + j)/365, for j = 1, . . . , τ = 10.

Sort RQMC points
log2 Var[Ȳn,j ]

log2 n
VRF CPU (sec)

Split sort SS -1.38 2.0× 102 3093
Sobol -2.04 4.0× 106 1116

Sobol+NUS -2.03 2.6× 106 1402
Korobov+baker -2.00 2.2× 106 903

Batch sort SS -1.38 2.0× 102 744
(n1 = n2) Sobol -2.03 4.2× 106 532

Sobol+NUS -2.03 2.8× 106 1035
Korobov+baker -2.04 4.4× 106 482

Hilbert sort SS -1.55 2.4× 103 840
(logistic map) Sobol -2.03 2.6× 106 534

Sobol+NUS -2.02 2.8× 106 724
Korobov+baker -2.01 3.3× 106 567

VRF for n = 220. CPU time for m = 100 replications.
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A small example with a one-dimensional state

Let θ ∈ [0, 1) and let Gθ be the cdf of Y = θU + (1− θ)V , where U,V
are indep. U(0, 1). We define a Markov chain by

X0 = U0 ∼ U(0, 1);

Xj = ϕj(Xj−1,Uj) = Gθ(θXj−1 + (1− θ)Uj), j ≥ 1

where Uj ∼ U(0, 1). Then, Xj ∼ U(0, 1) for all j .

We consider various functions gj : gj(x) = x − 1/2, gj(x) = x2 − 1/3,
gj(x) = sin(2πx), gj(x) = ex − e + 1 (all smooth),
gj(x) = (x − 1/2)+ − 1/8 (kink), gj(x) = I[x ≤ 1/3]− 1/3 (step).
They all have E[gj(Xj)] = 0. We pretend we do not know this and want to
see how well we can estimate these expectations by simulation.

We also want to see how well we can estimate the exact distribution of Xj

(uniform) by the empirical distribution of X0,j , . . . ,Xn−1,j .
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One-dimensional example
We take ρ = 0.3 and j = 5.
For array-RQMC, we take Xi ,0 = wi = (i − 1/2)/n.

We tried different array-RQMC variants, for n = 29 to n = 221.
We did m = 200 independent replications for each n.
We fitted a linear regression of log2 Var[Ȳn,j ] vs log2 n, for various gj

We also looked at uniformity measures of the set of n states at step j . For
example, the Kolmogorov-Smirnov (KS) and Cramer von Mises (CvM)
test statistics, denoted KSj and Dj . With ordinary MC, E[KSj] and E[Dj ]
converge as O(n−1) for any j .

For stratification, we have a proof that

E[D2
j ] ≤ n−3/2

4(1− ρ)
=

1− θ
4(1− 2θ)

n−3/2.
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Some MC and RQMC point sets:
MC: Crude Monte Carlo
LHS: Latin hypercube sampling
SS: Stratified sampling
SSA: Stratified sampling with antithetic variates in each stratum
Sobol: Sobol’ points, left matrix scrambling + digital random shift
Sobol+baker: Add baker transformation
Sobol+NUS: Sobol’ points with Owen’s nested uniform scrambling
Korobov: Korobov lattice in 2 dim. with a random shift modulo 1
Korobov+baker: Add a baker transformation
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slope vs log2 n log2 Var[Ȳn,j ]
Xj − 1

2 X 2
j − 1

3 (Xj − 1
2 )+ − 1

8 I[Xj ≤ 1
3 ]− 1

3

MC -1.02 -1.01 -1.00 -1.02
LHS -0.99 -1.00 -1.00 -1.00

SS -1.98 -2.00 -2.00 -1.49
SSA -2.65 -2.56 -2.50 -1.50

Sobol -3.22 -3.14 -2.52 -1.49
Sobol+baker -3.41 -3.36 -2.54 -1.50
Sobol+NUS -2.95 -2.95 -2.54 -1.52

Korobov -2.00 -1.98 -1.98 -1.85
Korobov+baker -2.01 -2.02 -2.01 -1.90

− log10 Var[Ȳn,j ] for n = 221 CPU time (sec)
X 2
j − 1

3 (Xj − 1
2 )+ − 1

8 I[Xj ≤ 1
3 ]− 1

3

MC 7.35 7.86 6.98 270
LHS 8.82 8.93 7.61 992

SS 13.73 14.10 10.20 2334
SSA 18.12 17.41 10.38 1576

Sobol 19.86 17.51 10.36 443
Korobov 13.55 14.03 11.98 359
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slope vs log2 n log2 E[KS2j ] log2 E[D2
j ] MISE hist. 64

MC -1.00 -1.00 -1.00
SS -1.42 -1.50 -1.47

Sobol -1.46 -1.46 -1.48
Sobol+baker -1.50 -1.57 -1.58

Korobov -1.83 -1.93 -1.90
Korobov+baker -1.55 -1.54 -1.52
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Conclusion

We have convergence proofs for special cases, but not yet for the rates we
observe in examples.

Many other sorting strategies remain to be explored.

Other examples and applications. Higher dimension.

Array-RQMC is good not only to estimate the mean more accurately, but
also to estimate the entire distribution of the state.
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