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What this talk is about

Quasi-Monte Carlo (QMC) and randomized QMC (RQMC) methods have been studied
extensively for estimating an integral, E[X ].

Can they be useful for estimating the entire distribution of X?
E.g., estimating a density, a cdf, some quantiles, etc.

When hours or days of computing time are required to perform simulation runs, reporting
only a confidence interval on the mean is a waste of information!

People routinely look at empirical distributions via histograms, for example.
More refined methods: kernel density estimators (KDEs).
Can RQMC improve such density estimators, and by how much?
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Setting

Classical density estimation was developed in the context where independent observations
X1, . . . ,Xn are given and one wishes to estimate the density f from which they come.

Here we assume that X1, . . . ,Xn are generated by simulation from a stochastic model.
We can choose n and we have some freedom on how the simulation is performed.

The Xi ’s are realizations of a random variable X = g(U) ∈ R with density f , where
U = (U1, . . . ,Us) ∼ U(0, 1)s and g(u) can be computed easily for any u ∈ (0, 1)s .

Can we obtain a better estimate of f with RQMC instead of MC? How much better?
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Density Estimation

Suppose we estimate the density f over a finite interval (a, b).

Let f̂n(x) denote the density estimator at x , with sample size n.

We use the following measures of error:

MISE = mean integrated squared error =

∫ b

a
E[f̂n(x)− f (x)]2dx

= IV + ISB

IV = integrated variance =

∫ b

a
Var[f̂n(x)]dx

ISB = integrated squared bias =

∫ b

a
(E[f̂n(x)]− f (x))2dx



D
ra

ft

5

Density Estimation

Simple histogram: Partition [a, b] in m intervals of size h = (b − a)/m and define

f̂n(x) =
nj
nh

for x ∈ Ij = [a + (j − 1)h, a + jh), j = 1, ...,m

where nj is the number of observations Xi that fall in interval j .

Kernel Density Estimator (KDE) : Select kernel k (unimodal symmetric density centered at
0) and bandwidth h > 0 (serves as horizontal stretching factor for the kernel). The KDE is
defined by

f̂n(x) =
1

nh

n∑
i=1

k

(
x − Xi

h

)
.
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Asymptotic convergence with Monte Carlo for smooth f

For g : R→ R, define

R(g) =

∫ b

a
(g(x))2dx ,

µr (g) =

∫ ∞
−∞

x rg(x)dx , for r = 0, 1, 2, . . .

For histograms and KDEs, when n→∞ and h→ 0:

AMISE = AIV + AISB ∼ C

nh
+ Bhα .

C B α

Histogram 1 R(f ′) /12 2

KDE µ0(k2) (µ2(k))2 R(f ′′) /4 4
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The asymptotically optimal h is

h∗ =

(
C

Bαn

)1/(α+1)

and it gives AMISE = Kn−α/(1+α).

C B α h∗ AMISE

Histogram 1
R(f ′)

12
2 (nR(f ′)/6)−1/3 O(n−2/3)

KDE µ0(k2)
(µ2(k))2 R(f ′′)

4
4

(
µ0(k2)

(µ2(k))2R(f ′′)n

)1/5

O(n−4/5)

To estimate h∗, one can estimate R(f ′) and R(f ′′) via KDE (plugin).
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Asymptotic convergence with RQMC for smooth f
Idea: Replace U1, . . . ,Un by RQMC points.

RQMC does not change the bias.

For a KDE with smooth k , one could hope (perhaps) to get

AIV = C ′n−βh−1 for β > 1, instead of Cn−1h−1.

If the IV is reduced, the optimal h can be taken smaller to reduce the ISB as well
(re-balance) and then reduce the MISE.

Unfortunately, things are not so simple.

Roughly, decreasing h increases the variation of the function in the estimator. So we may
have something like

AIV = C ′n−βh−δ

or IV ≈ C ′n−βh−δ in some bounded region.
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Elementary QMC Bounds (Recall)

Integration error for g : [0, 1)s → R with point set Pn = {u0, . . . ,un−1} ⊂ [0, 1)s :

En =
1

n

n−1∑
i=0

g(ui )−
∫
[0,1)s

g(u)du.

Koksma-Hlawka inequality: |En| ≤ VHK(g)D∗(Pn) where

VHK(g) =
∑
∅6=v⊆S

∫
[0,1)s

∣∣∣∣∣∂|v|g∂v

∣∣∣∣∣ du, (Hardy-Krause (HK) variation)

D∗(Pn) = sup
u∈[0,1)s

∣∣∣∣vol[0,u)− |Pn ∩ [0,u)|
n

∣∣∣∣ (star-discrepancy).

There are explicit point sets for which D∗(Pn) = O((log n)s−1/n) = O(n−1+ε).
Explicit RQMC constructions for which E[En] = 0 and Var[En] = O(n−2+ε).
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Also
|En| ≤ V2(g)D2(Pn)

where

V 2
2 (g) =

∑
∅6=v⊆S

∫
[0,1)s

∣∣∣∣∣∂|v|g∂v

∣∣∣∣∣
2

du, (square L2 variation),

D2
2 (Pn) =

∫
u∈[0,1)s

∣∣∣∣vol[0,u)− |Pn ∩ [0,u)|
n

∣∣∣∣2 du (square L2-star-discrepancy).

Explicit constructions for which D2(Pn) = O(n−1+ε).

Moreover, if Pn is a digital net randomized by a nested uniform scramble (NUS) and
V2(g) <∞, then E[En] = 0 and Var[En] = O(V 2

2 (g)n−3+ε) for all ε > 0.
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Bounding the AIV under RQMC for a KDE

KDE density estimator at a single point x :

f̂n(x) =
1

n

n∑
i=1

1

h
k

(
x − g(Ui )

h

)
=

1

n

n∑
i=1

g̃(Ui ).

With RQMC points Ui , this is an RQMC estimator of E[g̃(U)] =
∫
[0,1)s g̃(u)du = E[fn(x)].

RQMC does not change the bias, but may reduce Var[f̂n(x)], and then the IV.

To get RQMC variance bounds, we need bounds on the variation of g̃ .

The partial derivatives are:

∂|v|

∂uv
g̃(u) =

1

h

∂|v|

∂uv
k

(
x − g(u)

h

)
.

We assume they exist and are uniformly bounded. E.g., Gaussian kernel k .
By expanding via the chain rule, we obtain terms in h−j for j = 2, . . . , |v|+ 1.
One of the term for v = S grows as h−s−1k(s) ((g(u)− x)/h)

∏s
j=1 gj(u) = O(h−s−1) when

h→ 0, so this AIV bound grows as h−2s−2. Not so good!
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Improvement by a Change of Variable, in One Dimension
Suppose g : [0, 1]→ R is monotone. Change of variable w = (x − g(u))/h.

In one dimension (s = 1), we have dw/du = −g ′(u)/h, so

VHK(g̃) =
1

h

∫ 1

0

k ′
(
x − g(u)

h

)(
−g ′(u)

h

)
du =

1

h

∫ ∞
−∞

k ′(w)dw = O(h−1).

Then, if k and g are continuously differentiable, with RQMC points having D∗(Pn) = O(n−1+ε), we
obtain AIV = O(n−2+εh−2).

With h = Θ(n−1/3), this gives AMISE = O(n−4/3).

A similar argument gives

V 2
2 (g̃) =

1

h2

∫ 1

0

(
k ′
(
x − g(u)

h

)(
−g ′(u)

h

))2

du =
1

h3
Lg

∫ ∞
−∞

(k ′(w))2dw = O(h−3)

if |g ′| ≤ Lg , and then with NUS: AIV = O(n−3+εh−3).

With h = Θ(n−3/7), this gives AMISE = O(n−12/7).



D
ra

ft

13

Higher Dimensions
Let s = 2 and v = {1, 2}. With the change of variable (u1, u2)→ (w , u2), the Jacobian is
|dw/du1| = |g1(u1, u2)/h|, where gj = ∂g/∂uj . If |g2| and |g12/g1| are bounded by a constant L,∫

[0,1)2

∣∣∣∣∂|v|g̃∂uv

∣∣∣∣ du =
1

h

∫
[0,1)2

∣∣∣∣ ∂2

∂u1∂u2
k

(
x − g(u)

h

)∣∣∣∣du1du2
=

1

h

∫
[0,1)2

∣∣∣∣k ′′(x − g(u)

h

)
g1(u)

h

g2(u)

h
+ k ′

(
x − g(u)

h

)
g12(u)

h

∣∣∣∣du1du2
=

1

h

∫ 1

0

∫ ∞
−∞

∣∣∣∣k ′′(w)
g2(u)

h
+ k ′(w)

g12(u)

g1(u)

∣∣∣∣ dw du2

=
L

h
[µ0(k ′′)/h + µ0(k ′)] = O(h−2).

This provides a bound of O(h−2) for VHK(g̃), then AIV = O(n−2+εh−4).

Generalizing to s ≥ 2 gives VHK(g̃) = O(h−s), AIV = O(n−2+εh−2s), MISE = O(n−4/(2+s)) .

Beats MC for s < 3, same rate for s = 3. Not very satisfactory.



D
ra

ft

14

Empirical Evaluation with Linear Model in a limited region
Regardless of the asymptotic bounds, the true IV may behave better than for MC for pairs
(n, h) of interest. We consider the model

MISE = IV + ISB ≈ Cn−βh−δ + Bhα .

This model is only for a limited region of interest, not for everywhere, not necessarily
asymptotic. The optimal h for this model satisfies

hα+δ =
Cδ

Bα
n−β.

and it gives MISE ≈ Kn−αβ/(α+δ).

We can take the asymptotic α (known) and B (estimated as for MC).

To estimate C , β, and δ, estimate the IV over a grid of values of (n, h), and fit a linear
regression model:

log IV ≈ logC − β log n − δ log h.
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For each (n, h), we estimate the IV by making nr indep. replications of the RQMC density
estimator, compute the variance at ne evaluation points (stratified) over [a, b], and multiply
by (b − a)/n. We use logs in base 2, since n is a power of 2.

After estimating model parameters, can test out-of-sample with independent simulation
experiments at pairs (n, h) with h = ĥ∗(n).

For test cases in which density is known, can compute a MISE estimate at each point, and
obtain new parameter estimates K̃ and ν̃ of model MISE ≈ Kn−ν . Not useful to estimate an
unknown density, but useful to assess what RQMC could achieve.
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Numerical illustrations

For each example, we first estimate model parameters by regression using a grid of pairs
(n, h) with n = 214, 215, . . . , 219 and (for KDE) h = h0, . . . , h5 with hj = h02j/2 = 2−`0+j/2.
For histograms, m = (b − a)/h must be an integer.

For each n and each RQMC method, we make nr = 100 independent replications and take
ne = 64 evaluation points over bounded interval [a, b]. Also tried larger ne .

RQMC Point sets:

I Independent points (Crude Monte Carlo),

I Stratification: stratified unit cube,

I Sobol+LMS: Sobol’ points with left matrix scrambling (LMS) + digital random shift,

I Sobol+NUS: Sobol’ points with NUS.



D
ra

ft

17

Simple test example with standard normal density

Let Z1, . . . ,Zs i.i.d. standard normal generated by inversion, and X = (Z1 + · · ·+ Zs)/
√
s.

Then X ∼ N (0, 1).

Here we can estimate IV, ISB, and MISE accurately.
We can compute

∫ b
a f ′′(x)dx exactly.

Take (a, b) = (−2, 2). We have B = 0.04754 with α = 4 for KDE.
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Estimates of model parameters for KDE

IV ≈ Cn−βh−δ, MISE ≈ κn−ν

method MC NUS

s 1 1 2 3 5 20

R2 0.999 0.999 1.000 0.995 0.979 0.993
β 1.017 2.787 2.110 1.788 1.288 1.026
δ 1.144 2.997 3.195 3.356 2.293 1.450
α 3.758 3.798 3.846 3.860 3.782 3.870

ν̃ 0.770 1.600 1.172 0.981 0.827 0.730
LGM 16.96 34.05 24.37 20.80 17.91 17.07

LGM = − log2(MISE) for n = 219.
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Convergence of the MISE in log-log scale, for the one-dimensional example
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log2(n)
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Convergence of the MISE, for s = 2, for histograms (left) and KDE (right).
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LGM (n = 219) for histogram (left) and KDE (right) for estimation over (−2, 2).
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Estimated parameters with histogram (left) and KDE (right) over (−2, 2).
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KDE Estimate over (−4, 4)

method MC NUS

s 1 1 2 3 5 20

β 1.020 2.434 1.999 1.728 1.272 1.006
δ 1.138 2.432 2.972 3.168 2.256 1.464

ν̃ 0.772 1.514 1.138 0.980 0.817 0.767
LGM 16.89 30.07 23.68 20.52 17.72 16.95



D
ra

ft

20

KDE Estimate in the tail

KDE (blue) vs true density (red) with RQMC point sets with n = 219:
lattice + shift, Sobol + digital shift, Sobol + LMS-19bits + shift, Sobol + LMS-31bits + shift
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Displacement of a cantilevel beam

Displacement D of a cantilever beam with horizontal and vertical loads:

D =
4L3

Ewt

√
Y 2

t4
+

X 2

w4

where L = 100, w = 4, t = 2 (in inches), X , Y , and E are independent and normally
distributed with means and standard deviations:

Description Symbol Mean St. dev.

Young’s modulus E 2.9× 107 1.45× 106

Horizontal load X 500 100
Vertical load Y 1000 100

We want to estimate the density of D over (a, b) = (0.336, 1.561) (about 99.5% of density).
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Parameter estimates of the linear regression model for IV and MISE:

IV ≈ Cn−βh−δ, MISE ≈ κn−ν

Point set Ĉ β̂ δ̂ ν̂

Histogram, α = 2

Independent 0.888 1.001 1.021 0.797
Sobol+LMS 0.134 1.196 1.641 0.848
Sobol+NUS 0.136 1.194 1.633 0.848

KDE with Gaussian kernel, α = 4

Independent 0.210 0.993 1.037 0.789
Sobol+LMS 5.28E-4 1.619 2.949 0.932
Sobol+NUS 5.24E-4 1.621 2.955 0.932

Good fit: we have R2 > 0.99 in all cases.
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log2(IV) vs log2 n for cantilever with KDE.
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A weighted sum of lognormals

X =
s∑

j=1

wj exp(Yj)

where Y = (Y1, . . . ,Ys)t ∼ N (µ,C).

Let C = AAt. To generate Y, generate Z ∼ N (0, I) and put Y = µ + AZ.

We will use principal component decomposition (PCA).

This has several applications. In one of them, with wj = s0(s − j + 1)/s, e−ρ max(X − K , 0)
is the payoff of a financial option based on an average price at s observation times, under a
GBM process. Want to estimate density of positive payoffs.

Numerical experiment: Take s = 12, ρ = 0.037, s0 = 100, K = 101, and C defined
indirectly via: Yj = Yj−1(µ− σ2)j/s + σB(j/s) where Y0 = 0, σ = 0.12136, µ = 0.1, and B
a standard Brownian motion.

We will estimate the density of e−ρ(X − K ) over (a, b) = (0, 50).
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Histogram of positive values from n = 106 independent simulation runs:

Payoff
0 50 100 15013.1

Frequency (×103)

0

10

20

30



D
ra

ft

25IV as a function of n for KDE.

14 15 16 17 18 19 20

−40

−30

−20

log2(n)

lo
g
2
(I

V
)

Independent, h = 2−3,5

Sobol+NUS, h = 2−3,5

Independent, h = 2−1,5

Sobol+NUS, h = 2−1,5

Independent, h = 20,5

Sobol+NUS, h = 20,5



D
ra

ft

25

Example: A stochastic activity network
Gives precedence relations between activities. Activity k has random duration Yk (also length
of arc k) with known cumulative distribution function (cdf) Fk(y) := P[Yk ≤ y ].

Project duration T = (random) length of longest path from source to sink.

May want to estimate E[T ], P[T > x ], a quantile, density of T , etc.

0source 1
Y0

2

Y1
Y2

3
Y3

4

Y7

5

Y9

Y4

Y5

6
Y6

7

Y11

Y8

8 sink

Y12

Y10
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Simulation

Algorithm: to generate T :

for k = 0, . . . , 12 do
Generate Uk ∼ U(0, 1) and let Yk = F−1k (Uk)

Compute X = T = h(Y0, . . . ,Y12) = f (U0, . . . ,U12)

Monte Carlo: Repeat n times independently to obtain n realizations X1, . . . ,Xn of T .
Estimate E[T ] =

∫
(0,1)s f (u)du by X̄n = 1

n

∑n−1
i=0 Xi .

To estimate P(T > x), take X = I[T > x ] instead.

RQMC: Replace the n independent points by an RQMC point set of size n.

Numerical illustration from Elmaghraby (1977):
Yk ∼ N(µk , σ

2
k) for k = 0, 1, 3, 10, 11, and Vk ∼ Expon(1/µk) otherwise.

µ0, . . . , µ12: 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.
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Naive idea: replace each Yk by its expectation. Gives T = 48.2.

Results of an experiment with n = 100 000.
Histogram of values of T is a density estimator that gives more information than a
confidence interval on E[T ] or P[T > x ].

T
0 25 50 75 100 125 150 175 200

Frequency

0

5000

10000
T = x = 90

T = 48.2

mean = 64.2

ξ̂0.99 = 131.8



D
ra

ft

28

log2(IV) with KDE, Sobol+NUS, for the SAN
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Results for SAN Network
Parameter estimates of the regression models for the SAN network, n = 219.

Point set C β δ γ̂∗ ν̂∗

Histogram, α = 2

Independent 0.892 0.999 1.005 0.333 0.665
Stratif. 0.897 1.001 1.006 0.333 0.666
Lattice+shift 0.841 0.988 0.988 0.331 0.662
Sobol+LMS 0.894 1.006 1.024 0.333 0.665
Sobol+NUS 0.888 1.005 1.026 0.332 0.665

KDE with Gaussian kernel, α = 4

Independent 0.254 1.001 1.004 0.199 0.799
Stratif. 0.248 1.001 1.012 0.199 0.799
Lattice+shift 0.222 0.969 0.947 0.196 0.784
Sobol+LMS 0.242 1.021 1.089 0.201 0.803
Sobol+NUS 0.246 1.023 1.087 0.201 0.804
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The SAN example, Sobol+NUS vs Independent points, summary for n = 219 = 524288.

Density
Independent points Sobol+NUS

m or h log2IV IV rate log2IV IV rate

Histogram

64 -19.32 -1.003 -19.78 -1.039
256 -17.28 -0.999 -17.40 -1.011

1024 -15.27 -1.001 -15.30 -1.003
4096 -13.27 -0.998 -13.27 -1.000

Kernel

0.10 -16.64 -0.999 -16.71 -1.006
0.13 -17.31 -0.999 -17.42 -1.007
0.18 -17.96 -0.999 -18.18 -1.015
0.24 -18.64 -0.999 -18.92 -1.029
0.32 -19.33 -0.998 -19.79 -1.035
0.43 -19.99 -0.998 -20.71 -1.064
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Conditional Monte Carlo for Derivative Estimation
The density is f (x) = F ′(x), so could we just take the derivative of a cdf estimator?
The derivative of the empirical cdf F̂n(x) is zero almost everywhere, ... does not work!
We need a smooth cdf estimator.

Let X = X (θ, ω) with parameter θ ∈ R. Want to estimate g ′(θ) = d
dθE[X (θ, ω)].

When X (·, ω) is not continuous in θ (+ other conditions), we cannot interchange the
derivative and expectation, and cannot take d

dθX (θ, ω) as an estimator of g ′(θ).

Often possible to replace X by a conditional expectation Xe = E[X | G] where G contains
partial information, not enough to reveal X , but enough to compute Xe.

If Xe is smooth enough in θ, we may have

g ′(θ) = E
[
d

dθ
Xe(θ, ω)

]
= E[X ′e].

This is gradient estimation by IPA + CMC. L’Ecuyer and Perron (1994), Asmussen (2017).

Then, we can simulate X ′e with RQMC instead of MC.
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Application to the SAN Example

We want a smooth estimate of P[T ≤ t], whose sample derivative will be an unbiased
estimate of the density at t.

Naive estimator: Generate T and compute X = I[T ≤ t].
Repeat n times and average.

0source 1
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Conditional Monte Carlo estimator of P[T ≤ t]. Generate the Yj ’s only for the 8 arcs
that do not belong to the cut L = {4, 5, 6, 8, 9}, and replace I[T ≤ t] by its conditional
expectation given those Yj ’s,

Xe = P[T ≤ t | {Yj , j 6∈ L}].

This makes the integrand continuous in the Uj ’s and in t.

To compute Xe: for each l ∈ L, say from al to bl , compute the length αl of the longest path
from 1 to al , and the length βl of the longest path from bl to the destination.

The longest path that passes through link l does not exceed t iff αl + Yl + βl ≤ t, which
occurs with probability P[Yl ≤ t − αl − βl ] = Fl [t − αl − βl ].
Since the Yl are independent, we obtain

Xe =
∏
l∈L

Fl [t − αl − βl ].
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To estimate the density of T , just take the derivative w.r.t. t:

X ′e =
d

dt
Xe(t, ω)

w.p.1
=
∑
j∈L

fj [t − αj − βj ]
∏

l∈L, l 6=j

Fl [t − αl − βl ].

One can prove that

E[X ′e] =
d

dt
E[Xe] =

d

dt
P[T ≤ t] = fT (t)

via the dominated convergence theorem. See L’Ecuyer (1990).

Here, with MC, the IV converges as O(1/n) and there is no bias, so MISE = IV.

Now, we can apply RQMC to simulate X ′e. It is a smooth function of the uniforms if each
inverse cdf F−1j and density fj are smooth.

Then we can get a convergence rate near O(n−2) for the IV and the MISE.
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Conclusion

I We saw that RQMC can improve the convergence rate of the IV and MISE when
estimating a density.

I With histograms and KDEs, the convergence rates observed in small examples are much
better than those that we have proved based on standard QMC theory. There are
opportunities for QMC theoreticians here.

I This also applies in the context of Array-RQMC for Markov chains.

I The combination of CMC with QMC for density estimation is very promising!
Lots of potential applications! We are working on this.
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