Array-RQMC for Markov Chains with Random Stopping Times

Pierre L'Ecuyer
Maxime Dion
Adam L'Archevêque-Gaudet

Informatique et Recherche Opérationnelle, Université de Montréal

1. Markov chain setting, Monte Carlo, classical RQMC.
2. Array-RQMC: preserving the low discrepancy of the chain's states.
3. Least-squares Monte Carlo for optimal stopping times.
4. Examples.

Monte Carlo for Markov Chains

Setting: A Markov chain with state space $\mathcal{X} \subseteq \mathbb{R}^{\ell}$, evolves as

$$
X_{0}=x_{0}, \quad X_{j}=\varphi_{j}\left(X_{j-1}, \mathbf{U}_{j}\right), j \geq 1
$$

where the \mathbf{U}_{j} are i.i.d. uniform r.v.'s over $(0,1)^{d}$. Want to estimate

$$
\mu=\mathbb{E}[Y] \quad \text { where } \quad Y=\sum_{j=1}^{\tau} g_{j}\left(X_{j}\right)
$$

and τ is a stopping time w.r.t. the filtration $\mathcal{F}\left\{\left(j, X_{j}\right), j \geq 0\right\}$.

Monte Carlo for Markov Chains

Setting: A Markov chain with state space $\mathcal{X} \subseteq \mathbb{R}^{\ell}$, evolves as

$$
X_{0}=x_{0}, \quad X_{j}=\varphi_{j}\left(X_{j-1}, \mathbf{U}_{j}\right), j \geq 1,
$$

where the \mathbf{U}_{j} are i.i.d. uniform r.v.'s over $(0,1)^{d}$. Want to estimate

$$
\mu=\mathbb{E}[Y] \quad \text { where } \quad Y=\sum_{j=1}^{\tau} g_{j}\left(X_{j}\right)
$$

and τ is a stopping time w.r.t. the filtration $\mathcal{F}\left\{\left(j, X_{j}\right), j \geq 0\right\}$.
Ordinary MC: For $i=0, \ldots, n-1$, generate $X_{i, j}=\varphi_{j}\left(X_{i, j-1}, \mathbf{U}_{i, j}\right)$, $j=1, \ldots, \tau_{i}$, where the $\mathbf{U}_{i, j}$'s are i.i.d. $\mathrm{U}(0,1)^{d}$. Estimate μ by

$$
\hat{\mu}_{n}=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{\tau_{i}} g_{j}\left(X_{i, j}\right)=\frac{1}{n} \sum_{i=1}^{n} Y_{i} .
$$

Classical RQMC for Markov Chains

Put $\mathbf{V}_{i}=\left(\mathbf{U}_{i, 1}, \mathbf{U}_{i, 2}, \ldots\right)$. Estimate μ by

$$
\hat{\mu}_{\mathrm{rqmc}, n}=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{\tau_{i}} g_{j}\left(X_{i, j}\right)
$$

where $P_{n}=\left\{\mathbf{V}_{0}, \ldots, \mathbf{V}_{n-1}\right\} \subset(0,1)^{s}$ has the following properties:
(a) each point \mathbf{V}_{i} has the uniform distribution over $(0,1)^{s}$;
(b) P_{n} has low discrepancy.

Dimension is $s=\inf \left\{s^{\prime}: \mathbb{P}\left[d \tau \leq s^{\prime}\right]=1\right\}$.
For a Markov chain, the dimension s is often very large!

Array-RQMC for Markov Chains

[Lécot, Tuffin, L'Ecuyer 2004, 2008]
Simulate n chains in parallel. At each step, use an RQMC point set P_{n} to advance all the chains by one step, while inducing global negative dependence across the chains.

Intuition: The empirical distribution of $S_{n, j}=\left\{X_{0, j}, \ldots, X_{n-1, j}\right\}$, should be a more accurate approximation of the theoretical distribution of X_{j}, for each j, than with crude Monte Carlo. The discrepancy between these two distributions should be as small as possible.

Array-RQMC for Markov Chains

[Lécot, Tuffin, L'Ecuyer 2004, 2008]
Simulate n chains in parallel. At each step, use an RQMC point set P_{n} to advance all the chains by one step, while inducing global negative dependence across the chains.

Intuition: The empirical distribution of $S_{n, j}=\left\{X_{0, j}, \ldots, X_{n-1, j}\right\}$, should be a more accurate approximation of the theoretical distribution of X_{j}, for each j, than with crude Monte Carlo. The discrepancy between these two distributions should be as small as possible.
Then, we will have small variance for the (unbiased) estimators:

$$
\mu_{j}=\mathbb{E}\left[g_{j}\left(X_{j}\right)\right] \approx \frac{1}{n} \sum_{i=0}^{n-1} g_{j}\left(X_{i, j}\right) \quad \text { and } \quad \mu=\mathbb{E}[Y] \approx \frac{1}{n} \sum_{i=0}^{n-1} Y_{i} .
$$

Array-RQMC for Markov Chains

[Lécot, Tuffin, L'Ecuyer 2004, 2008]
Simulate n chains in parallel. At each step, use an RQMC point set P_{n} to advance all the chains by one step, while inducing global negative dependence across the chains.

Intuition: The empirical distribution of $S_{n, j}=\left\{X_{0, j}, \ldots, X_{n-1, j}\right\}$, should be a more accurate approximation of the theoretical distribution of X_{j}, for each j, than with crude Monte Carlo. The discrepancy between these two distributions should be as small as possible.
Then, we will have small variance for the (unbiased) estimators:

$$
\mu_{j}=\mathbb{E}\left[g_{j}\left(X_{j}\right)\right] \approx \frac{1}{n} \sum_{i=0}^{n-1} g_{j}\left(X_{i, j}\right) \quad \text { and } \quad \mu=\mathbb{E}[Y] \approx \frac{1}{n} \sum_{i=0}^{n-1} Y_{i} .
$$

How can we preserve low-discrepancy of $X_{0, j}, \ldots, X_{n-1, j}$ when j increases?
Can we quantify the variance improvement?

To simplify, suppose each X_{j} is a uniform r.v. over $(0,1)^{\ell}$.
Select a discrepancy measure D for the point set $S_{n, j}=\left\{X_{0, j}, \ldots, X_{n-1, j}\right\}$ over $(0,1)^{\ell}$, and a corresponding measure of variation V, such that

$$
\operatorname{Var}\left[\hat{\mu}_{\mathrm{rqmc}, j, n}\right]=\mathbb{E}\left[\left(\hat{\mu}_{\mathrm{rqmc}, j, n}-\mu_{j}\right)^{2}\right] \leq \mathbb{E}\left[D^{2}\left(S_{n, j}\right)\right] V^{2}\left(g_{j}\right)
$$

To simplify, suppose each X_{j} is a uniform r.v. over $(0,1)^{\ell}$.
Select a discrepancy measure D for the point set $S_{n, j}=\left\{X_{0, j}, \ldots, X_{n-1, j}\right\}$ over $(0,1)^{\ell}$, and a corresponding measure of variation V, such that

$$
\operatorname{Var}\left[\hat{\mu}_{\mathrm{rqmc}, j, n}\right]=\mathbb{E}\left[\left(\hat{\mu}_{\mathrm{rqmc}, j, n}-\mu_{j}\right)^{2}\right] \leq \mathbb{E}\left[D^{2}\left(S_{n, j}\right)\right] V^{2}\left(g_{j}\right)
$$

If D is defined via a reproducing kernel Hilbert space, then, for some random ξ_{j} (that generally depends on $S_{n, j}$),

$$
\begin{aligned}
\mathbb{E}\left[D^{2}\left(S_{n, j}\right)\right] & \left.=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} \xi_{j}\left(X_{i, j}\right)\right]=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\xi_{j} \circ \varphi_{j}\right)\left(X_{i, j-1}, \mathbf{U}_{i, j}\right)\right)\right] \\
& \leq \mathbb{E}\left[D_{(2)}^{2}\left(Q_{n}\right)\right] \cdot V_{(2)}^{2}\left(\xi_{j} \circ \varphi_{j}\right)
\end{aligned}
$$

for some other discrepancy $D_{(2)}$ over $(0,1)^{\ell+d}$, where $Q_{n}=\left\{\left(X_{0, j-1}, \mathbf{U}_{0, j}\right), \ldots,\left(X_{n-1, j-1}, \mathbf{U}_{n-1, j}\right)\right\}$.
Heuristic: Under appropriate conditions, we should have $V_{(2)}\left(\xi_{j} \circ \varphi_{j}\right)<\infty$ and $\mathbb{E}\left[D_{(2)}^{2}\left(Q_{n}\right)\right]=O\left(n^{-\alpha+\epsilon}\right)$ for some $\alpha \geq 1$.

In the points $\left(X_{i, j-1}, \mathbf{U}_{i, j}\right)$ of Q_{n}, the $\mathbf{U}_{i, j}$ can be defined via some RQMC scheme, but the $X_{i, j-1}$ cannot be chosen; they are determined by the history of the chains.

The idea is to select a low-discrepancy point set

$$
\tilde{Q}_{n}=\left\{\left(\mathbf{w}_{0}, \mathbf{U}_{0}\right), \ldots,\left(\mathbf{w}_{n-1}, \mathbf{U}_{n-1}\right)\right\},
$$

where the $\mathbf{w}_{i} \in[0,1)^{\ell}$ are fixed and the $\mathbf{U}_{i} \in(0,1)^{d}$ are randomized, and then define a bijection between the states $X_{i, j-1}$ and the \mathbf{w}_{i} so that the $X_{i, j-1}$ are "close" to the \mathbf{w}_{i} (small discrepancy between the two sets).
Bijection defined by a permutation π_{j} of $S_{n, j}$.

In the points $\left(X_{i, j-1}, \mathbf{U}_{i, j}\right)$ of Q_{n}, the $\mathbf{U}_{i, j}$ can be defined via some RQMC scheme, but the $X_{i, j-1}$ cannot be chosen; they are determined by the history of the chains.

The idea is to select a low-discrepancy point set

$$
\tilde{Q}_{n}=\left\{\left(\mathbf{w}_{0}, \mathbf{U}_{0}\right), \ldots,\left(\mathbf{w}_{n-1}, \mathbf{U}_{n-1}\right)\right\},
$$

where the $\mathbf{w}_{i} \in[0,1)^{\ell}$ are fixed and the $\mathbf{U}_{i} \in(0,1)^{d}$ are randomized, and then define a bijection between the states $X_{i, j-1}$ and the \mathbf{w}_{i} so that the $X_{i, j-1}$ are "close" to the \mathbf{w}_{i} (small discrepancy between the two sets).
Bijection defined by a permutation π_{j} of $S_{n, j}$.
State space in \mathbb{R}^{ℓ} : same algorithm essentially.

Array-RQMC algorithm

$X_{i, 0} \leftarrow x_{0}$, for $i=0, \ldots, n-1 ;$
for $j=1,2, \ldots, \max _{i} \tau_{i}$ do
Randomize afresh $\left\{\mathbf{U}_{0, j}, \ldots, \mathbf{U}_{n-1, j}\right\}$ in \tilde{Q}_{n};
$X_{i, j}=\varphi_{j}\left(X_{\pi_{j}(i), j-1}, \mathbf{U}_{i, j}\right)$, for $i=0, \ldots, n-1$;
Compute the permutation π_{j+1} (sort the states); end for
Estimate μ by the average $\bar{Y}_{n}=\hat{\mu}_{\text {rqmc }, n}$.

Array-RQMC algorithm

$X_{i, 0} \leftarrow x_{0}$, for $i=0, \ldots, n-1 ;$
for $j=1,2, \ldots, \max _{i} \tau_{i}$ do
Randomize afresh $\left\{\mathbf{U}_{0, j}, \ldots, \mathbf{U}_{n-1, j}\right\}$ in \tilde{Q}_{n};
$X_{i, j}=\varphi_{j}\left(X_{\pi_{j}(i), j-1}, \mathbf{U}_{i, j}\right)$, for $i=0, \ldots, n-1$;
Compute the permutation π_{j+1} (sort the states);
end for
Estimate μ by the average $\bar{Y}_{n}=\hat{\mu}_{\text {rqme }, n}$.
Theorem: The average \bar{Y}_{n} is an unbiased estimator of μ.
Can estimate $\operatorname{Var}\left[\bar{Y}_{n}\right]$ by the empirical variance of m indep. realizations.

Mapping chains to points

Multivariate sort:
Sort the states (chains) by first coordinate, in n_{1} packets of size n / n_{1}. Sort each packet by second coordinate, in n_{2} packets of size $n / n_{1} n_{2}$.

At the last level, sort each packet of size n_{ℓ} by the last coordinate.
Choice of $n_{1}, n_{2}, \ldots, n_{\ell}$?

Mapping chains to points

Multivariate sort:
Sort the states (chains) by first coordinate, in n_{1} packets of size n / n_{1}. Sort each packet by second coordinate, in n_{2} packets of size $n / n_{1} n_{2}$.

At the last level, sort each packet of size n_{ℓ} by the last coordinate.
Choice of $n_{1}, n_{2}, \ldots, n_{\ell}$?

Generalization:
Define a sorting function $v: \mathcal{X} \rightarrow[0,1)^{c}$ and apply the multivariate sort (in c dimensions) to the transformed points $v\left(X_{i, j}\right)$.
Choice of v : Two states mapped to nearby values of v should be approximately equivalent.

A $(4,4)$ mapping

States of the chains

 digital shift

A $(4,4)$ mapping

Sobol' net in 2 dimensions with digital shift

A $(4,4)$ mapping

A $(16,1)$ mapping, sorting along first coordinate

A $(8,2)$ mapping

A $(4,4)$ mapping

A $(2,8)$ mapping

A $(1,16)$ mapping, sorting along second coordinate

Dynamic programming for optimal stopping times

Suppose the stopping time τ is a decision determined by a stopping policy $\pi=\left(\nu_{0}, \nu_{1}, \ldots, \nu_{T-1}\right)$ where $\nu_{j}: \mathcal{X} \rightarrow\{$ stop now, wait $\}$. Suppose also that must stop at or before step T.

Dynamic programming for optimal stopping times

Suppose the stopping time τ is a decision determined by a stopping policy $\pi=\left(\nu_{0}, \nu_{1}, \ldots, \nu_{T-1}\right)$ where $\nu_{j}: \mathcal{X} \rightarrow\{$ stop now, wait $\}$. Suppose also that must stop at or before step T.
Dynamic programming equations:

$$
\begin{array}{rlr}
V_{T}(x) & =g_{T}(x), \\
Q_{j}(x) & =\mathbb{E}\left[V_{j+1}\left(X_{j+1}\right) \mid X_{j}=x\right], & \text { (continuation value) } \\
V_{j}(x) & =\max \left[g_{j}(x), Q_{j}(x)\right], & \text { (optimal value) } \\
\nu_{j}^{*}(x) & = \begin{cases}\text { stop now } & \text { if } g_{j}(x) \geq Q_{j}(x) \\
\text { wait } & \text { otherwise, },\end{cases} & \text { (optimal decision) }
\end{array}
$$

for $j=T-1, \ldots, 0$ and all $x \in X$.

Hard to solve when the state space is large and multidimensional.
Can approximate Q_{j} with a small set of basis functions. $\left\{\psi_{k}: \mathcal{X} \rightarrow \mathbb{R}, 1 \leq k \leq m\right\}:$

$$
\tilde{Q}_{j}(x)=\sum_{k=1}^{m} \beta_{j, k} \psi_{k}(x)
$$

where $\boldsymbol{\beta}_{j}=\left(\beta_{j, 1}, \ldots, \beta_{j, m}\right)^{\mathrm{t}}$ can be determined by least-squares regression, using an approximation $W_{i, j}$ of $Q_{j}\left(x_{i, j}\right)$ at a set of points $x_{i, j}$.
We solve

$$
\min _{\boldsymbol{\beta}_{j} \in \mathbb{R}^{m}} \sum_{i=1}^{n}\left(\tilde{Q}_{j}\left(x_{i, j}\right)-W_{i, j+1}\right)^{2} .
$$

A set of representative states $x_{i, j}$ at each step j can be generated by Monte Carlo, or RQMC, or array-RQMC.

Regression-based least-squares Monte Carlo

Simulate n indep. trajectories of the chain $\left\{X_{j}, j=0, \ldots, T\right\}$,
and let $X_{i, j}$ be the state for trajectory i at step j;
$W_{i, T} \leftarrow g_{T}\left(X_{i, T}\right), \quad i=1, \ldots, n ;$
for $j=T-1, \ldots, 0$ do
Compute the vector $\boldsymbol{\beta}_{\boldsymbol{j}}$ that minimizes

$$
\begin{gathered}
\sum_{i=1}^{n}\left(\sum_{k=1}^{m} \beta_{j, k} \psi_{k}\left(X_{i, j}\right)-W_{i, j+1}\right)^{2} . \\
W_{i, j} \leftarrow \max \left[g_{j}\left(X_{i, j}\right), \tilde{Q}_{j}\left(X_{i, j}\right)\right], \quad i=1, \ldots, n ;
\end{gathered}
$$

end for
return $\hat{Q}_{0}\left(\mathbf{x}_{0}\right)=\left(W_{1,0}+\cdots+W_{n, 0}\right) / n$ as an estimate of $Q_{0}\left(\mathbf{x}_{0}\right)$;

Regression-based least-squares Monte Carlo

 Tsistiklis and Van Roy (2000) (TvR);Simulate n indep. trajectories of the chain $\left\{X_{j}, j=0, \ldots, T\right\}$,
and let $X_{i, j}$ be the state for trajectory i at step j;
$W_{i, T} \leftarrow g_{T}\left(X_{i, T}\right), \quad i=1, \ldots, n$;
for $j=T-1, \ldots, 0$ do
Compute the vector $\boldsymbol{\beta}_{j}$ that minimizes

$$
\begin{gathered}
\sum_{i=1}^{n}\left(\sum_{k=1}^{m} \beta_{j, k} \psi_{k}\left(X_{i, j}\right)-W_{i, j+1}\right)^{2} . \\
W_{i, j} \leftarrow \max \left[g_{j}\left(X_{i, j}\right), \tilde{Q}_{j}\left(X_{i, j}\right)\right], \quad i=1, \ldots, n
\end{gathered}
$$

end for
return $\hat{Q}_{0}\left(\mathbf{x}_{0}\right)=\left(W_{1,0}+\cdots+W_{n, 0}\right) / n$ as an estimate of $Q_{0}\left(\mathbf{x}_{0}\right)$;
Longstaff and Schwartz (2001) (LSM): Define $W_{i, j}$ instead by

$$
W_{i, j}= \begin{cases}g_{j}\left(X_{i, j}\right) & \text { if } g_{k}\left(X_{j, k}\right) \geq \tilde{Q}_{j}\left(X_{i, j}\right) \\ W_{i, j+1} & \text { otherwise }\end{cases}
$$

Example: a simple put option

Asset price obeys GBM $\{S(t), t \geq 0\}$ with drift (interest rate) $\mu=0.05$, volatility $\sigma=0.08$, initial value $S(0)=100$.
For American version, exercise dates are $t_{j}=j / 16$ for $j=1, \ldots, 16$. Payoff at $t_{j}: g_{j}\left(S\left(t_{j}\right)\right)=e^{-0.05 t_{j}} \max \left(0, K-S\left(t_{j}\right)\right)$, where $K=101$.
European version: Can exercise only at $t_{16}=1$.

Example: a simple put option

Asset price obeys GBM $\{S(t), t \geq 0\}$ with drift (interest rate) $\mu=0.05$, volatility $\sigma=0.08$, initial value $S(0)=100$.
For American version, exercise dates are $t_{j}=j / 16$ for $j=1, \ldots, 16$. Payoff at $t_{j}: g_{j}\left(S\left(t_{j}\right)\right)=e^{-0.05 t_{j}} \max \left(0, K-S\left(t_{j}\right)\right)$, where $K=101$.
European version: Can exercise only at $t_{16}=1$.

One-dimensional state $X_{j}=S\left(t_{j}\right)$. Sorting for array-RQMC is simple.

Basis functions for regression-based MC:
polynomials $\psi_{k}(x)=(x-101)^{k-1}$ for $k=1, \ldots, 5$.

Example: a simple put option

Asset price obeys GBM $\{S(t), t \geq 0\}$ with drift (interest rate) $\mu=0.05$, volatility $\sigma=0.08$, initial value $S(0)=100$.
For American version, exercise dates are $t_{j}=j / 16$ for $j=1, \ldots, 16$. Payoff at $t_{j}: g_{j}\left(S\left(t_{j}\right)\right)=e^{-0.05 t_{j}} \max \left(0, K-S\left(t_{j}\right)\right)$, where $K=101$.
European version: Can exercise only at $t_{16}=1$.

One-dimensional state $X_{j}=S\left(t_{j}\right)$. Sorting for array-RQMC is simple.

Basis functions for regression-based MC:
polynomials $\psi_{k}(x)=(x-101)^{k-1}$ for $k=1, \ldots, 5$.
For RQMC and array-RQMC, we use Sobol' nets with a linear scrambling and a random digital shift, for all the results reported here.
Results are very similar for randomly-shifted lattice rule + baker's transformation.

European version of put option.

European version of put option.

Histogram of states at step 16
States for array-RQMC with $n=2^{14}$ in blue and for MC in red.
Theoretical dist.: black dots.
frequency

Histogram after transformation to uniforms (applying the cdf). States for array-RQMC with $n=2^{14}$ in blue and for MC in red. Theoretical dist. is uniform (black dots).

American put option: estimation for a fixed policy.

American put option: out-of-sample value for policy obtained from ${ }^{26}$ LSM.
\mathbb{E} [out-of-sample value]

American put option: out-of-sample value for policy obtained fromr TvR.
\mathbb{E} [out-of-sample value]

Example: Asian Option

Given observation times $t_{1}, t_{2}, \ldots, t_{s}$, suppose

$$
S\left(t_{j}\right)=S\left(t_{j-1}\right) \exp \left[\left(r-\sigma^{2} / 2\right)\left(t_{j}-t_{j-1}\right)+\sigma\left(t_{j}-t_{j-1}\right)^{1 / 2} \Phi^{-1}\left(U_{j}\right)\right]
$$

where $U_{j} \sim U[0,1)$ and $S\left(t_{0}\right)=s_{0}$ is fixed.
State is $X_{j}=\left(S\left(t_{j}\right), \bar{S}_{j}\right)$, where $\bar{S}_{j}=\frac{1}{j} \sum_{i=1}^{j} S\left(t_{i}\right)$.

Transition:

$$
\left(S\left(t_{j}\right), \bar{S}_{j}\right)=\varphi\left(S\left(t_{j-1}\right), \bar{S}_{j-1}, U_{j}\right)=\left(S\left(t_{j}\right), \frac{(j-1) \bar{S}_{j-1}+S\left(t_{j}\right)}{j}\right)
$$

Payoff at step j is $\max \left[0, \bar{S}_{j}-K\right]$.
We use the two-dimensional sort at each step; we first sort in n_{1} packets based on $S\left(t_{j}\right)$, then sort the packets based on \bar{S}_{j}.

GBM with parameters: $S(0)=100, K=100, r=0.05, \sigma=0.15$, $t_{j}=j / 52$ for $j=0, \ldots, s=13$.

Basis functions to approximate the continuation value: polynomials of the form $g(S, \bar{S})=(S-100)^{k}(\bar{S}-100)^{m}$, for $k, m=0, \ldots, 4$ and $k m \leq 4$.
Also broken polynomials $\max (0, S-100)^{k}$ for $k=1,2$, and $\max (0, S-100)(\bar{S}-100)$.

European version of Asian call option

European version, sorting strategies for array-RQMC.

American-style Asian option with a fixed policy.

Fixed policy, choices of array-RQMC sorting.

$\log _{2} n$

Out-of-sample value of policy obtained from LSM.

Out-of-sample value of policy obtained from TvR.

Call on the maximum of 5 assets

Five indep. asset prices obeys a GBM with $s_{0}=100, r=0.05, \sigma=0.2$. The assets pay a dividend at rate 0.10 , which means that the effective risk-free rate can be taken as $r^{\prime}=0.05-0.10=-0.05$.

Exercise dates are $t_{j}=j / 3$ for $j=1, \ldots, 9$.
State at t_{j} is $X_{j}=\left(S_{j, 1}, \ldots, S_{j, 5}\right)$.

Call on the maximum of 5 assets

Five indep. asset prices obeys a GBM with $s_{0}=100, r=0.05, \sigma=0.2$. The assets pay a dividend at rate 0.10 , which means that the effective risk-free rate can be taken as $r^{\prime}=0.05-0.10=-0.05$.

Exercise dates are $t_{j}=j / 3$ for $j=1, \ldots, 9$.
State at t_{j} is $X_{j}=\left(S_{j, 1}, \ldots, S_{j, 5}\right)$.
Basis functions for regression: 19 polynomials in the $S_{j,(\ell)}-100$, where $S_{j,(1)}, \ldots, S_{j,(5)}$ are the asset prices sorted in increasing order.
For array-RQMC, we sort on the m largest asset prices.
At each step we generate the next value first for the maximum, then for the second largest, and so on.

American version, fixed policy
$\log _{2} \operatorname{Var}\left[\hat{\mu}_{\mathrm{RQMC}, n}\right]$

Fixed policy.
$\log _{2} \operatorname{Var}\left[\hat{\mu}_{\mathrm{RQMC}, n}\right]$

$\log _{2} n$

Out-of-sample value of policy obtained from LSM.

E[out-of-sample value]

Out-of-sample value of policy obtained from TvR.

E[out-of-sample value]

Conclusion

Empirical results are excellent for fixed number of steps.
More modest but still interesting for random stopping time.
Proving the observed convergence rates seems difficult; we need help!

