
1

Array-RQMC for Markov Chains

with Random Stopping Times

Pierre L’Ecuyer
Maxime Dion

Adam L’Archevêque-Gaudet

Informatique et Recherche Opérationnelle, Université de Montréal

1. Markov chain setting, Monte Carlo, classical RQMC.

2. Array-RQMC: preserving the low discrepancy of the chain’s states.

3. Least-squares Monte Carlo for optimal stopping times.

4. Examples.



2

Monte Carlo for Markov Chains
Setting: A Markov chain with state space X ⊆ R`, evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where the Uj are i.i.d. uniform r.v.’s over (0, 1)d . Want to estimate

µ = E[Y ] where Y =
τ∑

j=1

gj(Xj)

and τ is a stopping time w.r.t. the filtration F{(j ,Xj), j ≥ 0}.

Ordinary MC: For i = 0, . . . , n − 1, generate Xi ,j = ϕj(Xi ,j−1,Ui ,j),
j = 1, . . . , τi , where the Ui ,j ’s are i.i.d. U(0, 1)d . Estimate µ by

µ̂n =
1

n

n∑
i=1

τi∑
j=1

gj(Xi ,j) =
1

n

n∑
i=1

Yi .



2

Monte Carlo for Markov Chains
Setting: A Markov chain with state space X ⊆ R`, evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where the Uj are i.i.d. uniform r.v.’s over (0, 1)d . Want to estimate

µ = E[Y ] where Y =
τ∑

j=1

gj(Xj)

and τ is a stopping time w.r.t. the filtration F{(j ,Xj), j ≥ 0}.
Ordinary MC: For i = 0, . . . , n − 1, generate Xi ,j = ϕj(Xi ,j−1,Ui ,j),
j = 1, . . . , τi , where the Ui ,j ’s are i.i.d. U(0, 1)d . Estimate µ by

µ̂n =
1

n

n∑
i=1

τi∑
j=1

gj(Xi ,j) =
1

n

n∑
i=1

Yi .



3

Classical RQMC for Markov Chains

Put Vi = (Ui ,1,Ui ,2, . . . ). Estimate µ by

µ̂rqmc,n =
1

n

n∑
i=1

τi∑
j=1

gj(Xi ,j)

where Pn = {V0, . . . ,Vn−1} ⊂ (0, 1)s has the following properties:
(a) each point Vi has the uniform distribution over (0, 1)s ;
(b) Pn has low discrepancy.

Dimension is s = inf{s ′ : P[dτ ≤ s ′] = 1}.
For a Markov chain, the dimension s is often very large!



4

Array-RQMC for Markov Chains
[Lécot, Tuffin, L’Ecuyer 2004, 2008]
Simulate n chains in parallel. At each step, use an RQMC point set Pn to
advance all the chains by one step, while inducing global negative
dependence across the chains.

Intuition: The empirical distribution of Sn,j = {X0,j , . . . ,Xn−1,j}, should
be a more accurate approximation of the theoretical distribution of Xj , for
each j , than with crude Monte Carlo. The discrepancy between these two
distributions should be as small as possible.

Then, we will have small variance for the (unbiased) estimators:

µj = E[gj(Xj)] ≈ 1

n

n−1∑
i=0

gj(Xi ,j) and µ = E[Y ] ≈ 1

n

n−1∑
i=0

Yi .

How can we preserve low-discrepancy of X0,j , . . . ,Xn−1,j when j increases?
Can we quantify the variance improvement?



4

Array-RQMC for Markov Chains
[Lécot, Tuffin, L’Ecuyer 2004, 2008]
Simulate n chains in parallel. At each step, use an RQMC point set Pn to
advance all the chains by one step, while inducing global negative
dependence across the chains.

Intuition: The empirical distribution of Sn,j = {X0,j , . . . ,Xn−1,j}, should
be a more accurate approximation of the theoretical distribution of Xj , for
each j , than with crude Monte Carlo. The discrepancy between these two
distributions should be as small as possible.

Then, we will have small variance for the (unbiased) estimators:

µj = E[gj(Xj)] ≈ 1

n

n−1∑
i=0

gj(Xi ,j) and µ = E[Y ] ≈ 1

n

n−1∑
i=0

Yi .

How can we preserve low-discrepancy of X0,j , . . . ,Xn−1,j when j increases?
Can we quantify the variance improvement?



4

Array-RQMC for Markov Chains
[Lécot, Tuffin, L’Ecuyer 2004, 2008]
Simulate n chains in parallel. At each step, use an RQMC point set Pn to
advance all the chains by one step, while inducing global negative
dependence across the chains.

Intuition: The empirical distribution of Sn,j = {X0,j , . . . ,Xn−1,j}, should
be a more accurate approximation of the theoretical distribution of Xj , for
each j , than with crude Monte Carlo. The discrepancy between these two
distributions should be as small as possible.

Then, we will have small variance for the (unbiased) estimators:

µj = E[gj(Xj)] ≈ 1

n

n−1∑
i=0

gj(Xi ,j) and µ = E[Y ] ≈ 1

n

n−1∑
i=0

Yi .

How can we preserve low-discrepancy of X0,j , . . . ,Xn−1,j when j increases?
Can we quantify the variance improvement?



5

To simplify, suppose each Xj is a uniform r.v. over (0, 1)`.

Select a discrepancy measure D for the point set Sn,j = {X0,j , . . . ,Xn−1,j}
over (0, 1)`, and a corresponding measure of variation V , such that

Var[µ̂rqmc,j ,n] = E[(µ̂rqmc,j ,n − µj)2] ≤ E[D2(Sn,j)] V 2(gj).

If D is defined via a reproducing kernel Hilbert space, then, for some
random ξj (that generally depends on Sn,j),

E[D2(Sn,j)] = Var

[
1

n

n∑
i=1

ξj(Xi ,j)

]
= Var

[
1

n

n∑
i=1

(ξj ◦ ϕj)(Xi ,j−1,Ui ,j))

]
≤ E[D2

(2)(Qn)] · V 2
(2)(ξj ◦ ϕj)

for some other discrepancy D(2) over (0, 1)`+d , where
Qn = {(X0,j−1,U0,j), . . . , (Xn−1,j−1,Un−1,j)}.
Heuristic: Under appropriate conditions, we should have V(2)(ξj ◦ ϕj) <∞
and E[D2

(2)(Qn)] = O(n−α+ε) for some α ≥ 1.



5

To simplify, suppose each Xj is a uniform r.v. over (0, 1)`.

Select a discrepancy measure D for the point set Sn,j = {X0,j , . . . ,Xn−1,j}
over (0, 1)`, and a corresponding measure of variation V , such that

Var[µ̂rqmc,j ,n] = E[(µ̂rqmc,j ,n − µj)2] ≤ E[D2(Sn,j)] V 2(gj).

If D is defined via a reproducing kernel Hilbert space, then, for some
random ξj (that generally depends on Sn,j),

E[D2(Sn,j)] = Var

[
1

n

n∑
i=1

ξj(Xi ,j)

]
= Var

[
1

n

n∑
i=1

(ξj ◦ ϕj)(Xi ,j−1,Ui ,j))

]
≤ E[D2

(2)(Qn)] · V 2
(2)(ξj ◦ ϕj)

for some other discrepancy D(2) over (0, 1)`+d , where
Qn = {(X0,j−1,U0,j), . . . , (Xn−1,j−1,Un−1,j)}.
Heuristic: Under appropriate conditions, we should have V(2)(ξj ◦ ϕj) <∞
and E[D2

(2)(Qn)] = O(n−α+ε) for some α ≥ 1.



6

In the points (Xi ,j−1,Ui ,j) of Qn, the Ui ,j can be defined via some RQMC
scheme, but the Xi ,j−1 cannot be chosen; they are determined by the
history of the chains.

The idea is to select a low-discrepancy point set

Q̃n = {(w0,U0), . . . , (wn−1,Un−1)},

where the wi ∈ [0, 1)` are fixed and the Ui ∈ (0, 1)d are randomized, and
then define a bijection between the states Xi ,j−1 and the wi so that the
Xi ,j−1 are “close” to the wi (small discrepancy between the two sets).

Bijection defined by a permutation πj of Sn,j .

State space in R`: same algorithm essentially.



6

In the points (Xi ,j−1,Ui ,j) of Qn, the Ui ,j can be defined via some RQMC
scheme, but the Xi ,j−1 cannot be chosen; they are determined by the
history of the chains.

The idea is to select a low-discrepancy point set

Q̃n = {(w0,U0), . . . , (wn−1,Un−1)},

where the wi ∈ [0, 1)` are fixed and the Ui ∈ (0, 1)d are randomized, and
then define a bijection between the states Xi ,j−1 and the wi so that the
Xi ,j−1 are “close” to the wi (small discrepancy between the two sets).

Bijection defined by a permutation πj of Sn,j .

State space in R`: same algorithm essentially.



7

Array-RQMC algorithm

Xi ,0 ← x0, for i = 0, . . . , n − 1;
for j = 1, 2, . . . ,maxi τi do

Randomize afresh {U0,j , . . . ,Un−1,j} in Q̃n;
Xi ,j = ϕj(Xπj (i),j−1,Ui ,j), for i = 0, . . . , n − 1;
Compute the permutation πj+1 (sort the states);

end for
Estimate µ by the average Ȳn = µ̂rqmc,n.

Theorem: The average Ȳn is an unbiased estimator of µ.

Can estimate Var[Ȳn] by the empirical variance of m indep. realizations.



7

Array-RQMC algorithm

Xi ,0 ← x0, for i = 0, . . . , n − 1;
for j = 1, 2, . . . ,maxi τi do

Randomize afresh {U0,j , . . . ,Un−1,j} in Q̃n;
Xi ,j = ϕj(Xπj (i),j−1,Ui ,j), for i = 0, . . . , n − 1;
Compute the permutation πj+1 (sort the states);

end for
Estimate µ by the average Ȳn = µ̂rqmc,n.

Theorem: The average Ȳn is an unbiased estimator of µ.

Can estimate Var[Ȳn] by the empirical variance of m indep. realizations.



8

Mapping chains to points

Multivariate sort:
Sort the states (chains) by first coordinate, in n1 packets of size n/n1.

Sort each packet by second coordinate, in n2 packets of size n/n1n2.

...

At the last level, sort each packet of size n` by the last coordinate.

Choice of n1, n2, ..., n`?

Generalization:
Define a sorting function v : X → [0, 1)c and apply the multivariate sort
(in c dimensions) to the transformed points v(Xi ,j).

Choice of v : Two states mapped to nearby values of v should be
approximately equivalent.



8

Mapping chains to points

Multivariate sort:
Sort the states (chains) by first coordinate, in n1 packets of size n/n1.

Sort each packet by second coordinate, in n2 packets of size n/n1n2.

...

At the last level, sort each packet of size n` by the last coordinate.

Choice of n1, n2, ..., n`?

Generalization:
Define a sorting function v : X → [0, 1)c and apply the multivariate sort
(in c dimensions) to the transformed points v(Xi ,j).

Choice of v : Two states mapped to nearby values of v should be
approximately equivalent.



9

A (4,4) mapping

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

s

s

s sss ss

s s
s

s

Sobol’ net in 2 dimensions with
digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0 s

s
s

s

s

s

s

s
s

s

s

s

s

s
s

s



10

A (4,4) mapping

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

ss
s s

s
s

ss

ss

s
s

Sobol’ net in 2 dimensions with
digital shift

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

s
s s

s

s
s

s
s

s
s
s

s



11

A (4,4) mapping

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

s

s s

s

s
s

s
s

s

s

s

s

s
s

s
s

s
ss

s
s

s

s
s

ss

s
s



12

A (16,1) mapping, sorting along first coordinate

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s

s
s

s

s s

s

s s

s
s

s

s

s

s

s

s

s
s

s
s

s

s
s

s

s
s

s s

s
s

s



13

A (8,2) mapping

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s

s

s

s

s s

s

s

s

s

s
s

s

s

s

s

s

s

s

s

s
s

s
s

s

s

s

s

s

s

s

s



14

A (4,4) mapping

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

s

s s

s

s
s

s
s

s

s

s

s

s
s

s
s

s
ss

s
s

s

s
s

ss

s
s



15

A (2,8) mapping

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s s
s

s s
s

ss

s
s

ss
s s

s
s

s s
ss s

s
s

s

sss
s

ss
ss



16

A (1,16) mapping, sorting along second coordinate

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

ss s ss sss s s ss sss s

s s sssss s
s s

s
ss s
ss



17

Dynamic programming for optimal stopping times

Suppose the stopping time τ is a decision determined by a stopping policy
π = (ν0, ν1, . . . , νT−1) where νj : X → {stop now, wait}.
Suppose also that must stop at or before step T .

Dynamic programming equations:

VT (x) = gT (x),

Qj(x) = E[Vj+1(Xj+1) | Xj = x ], (continuation value)

Vj(x) = max[gj(x), Qj(x)], (optimal value)

ν∗j (x) =

{
stop now if gj(x) ≥ Qj(x)

wait otherwise,
(optimal decision)

for j = T − 1, . . . , 0 and all x ∈ X .



17

Dynamic programming for optimal stopping times

Suppose the stopping time τ is a decision determined by a stopping policy
π = (ν0, ν1, . . . , νT−1) where νj : X → {stop now, wait}.
Suppose also that must stop at or before step T .

Dynamic programming equations:

VT (x) = gT (x),

Qj(x) = E[Vj+1(Xj+1) | Xj = x ], (continuation value)

Vj(x) = max[gj(x), Qj(x)], (optimal value)

ν∗j (x) =

{
stop now if gj(x) ≥ Qj(x)

wait otherwise,
(optimal decision)

for j = T − 1, . . . , 0 and all x ∈ X .



18

Hard to solve when the state space is large and multidimensional.

Can approximate Qj with a small set of basis functions.
{ψk : X → R, 1 ≤ k ≤ m}:

Q̃j(x) =
m∑

k=1

βj ,kψk(x)

where βj = (βj ,1, . . . , βj ,m)t can be determined by least-squares regression,
using an approximation Wi ,j of Qj(xi ,j) at a set of points xi ,j .

We solve

min
βj∈Rm

n∑
i=1

(
Q̃j(xi ,j)−Wi ,j+1

)2
.

A set of representative states xi ,j at each step j can be generated by
Monte Carlo, or RQMC, or array-RQMC.



19

Regression-based least-squares Monte Carlo
Tsistiklis and Van Roy (2000) (TvR);
Simulate n indep. trajectories of the chain {Xj , j = 0, . . . ,T},

and let Xi ,j be the state for trajectory i at step j ;
Wi ,T ← gT (Xi ,T ), i = 1, . . . , n;
for j = T − 1, . . . , 0 do

Compute the vector βj that minimizes

n∑
i=1

(
m∑

k=1

βj ,kψk(Xi ,j)−Wi ,j+1

)2

.

Wi ,j ← max[gj(Xi ,j), Q̃j(Xi ,j)] , i = 1, . . . , n;

end for
return Q̂0(x0) = (W1,0 + · · ·+ Wn,0)/n as an estimate of Q0(x0);

Longstaff and Schwartz (2001) (LSM): Define Wi ,j instead by

Wi ,j =

{
gj(Xi ,j) if gk(Xj ,k) ≥ Q̃j(Xi ,j);

Wi ,j+1 otherwise .



19

Regression-based least-squares Monte Carlo
Tsistiklis and Van Roy (2000) (TvR);
Simulate n indep. trajectories of the chain {Xj , j = 0, . . . ,T},

and let Xi ,j be the state for trajectory i at step j ;
Wi ,T ← gT (Xi ,T ), i = 1, . . . , n;
for j = T − 1, . . . , 0 do

Compute the vector βj that minimizes

n∑
i=1

(
m∑

k=1

βj ,kψk(Xi ,j)−Wi ,j+1

)2

.

Wi ,j ← max[gj(Xi ,j), Q̃j(Xi ,j)] , i = 1, . . . , n;

end for
return Q̂0(x0) = (W1,0 + · · ·+ Wn,0)/n as an estimate of Q0(x0);

Longstaff and Schwartz (2001) (LSM): Define Wi ,j instead by

Wi ,j =

{
gj(Xi ,j) if gk(Xj ,k) ≥ Q̃j(Xi ,j);

Wi ,j+1 otherwise .



20

Example: a simple put option

Asset price obeys GBM {S(t), t ≥ 0} with drift (interest rate) µ = 0.05,
volatility σ = 0.08, initial value S(0) = 100.

For American version, exercise dates are tj = j/16 for j = 1, . . . , 16.
Payoff at tj : gj(S(tj)) = e−0.05tj max(0,K − S(tj)), where K = 101.

European version: Can exercise only at t16 = 1.

One-dimensional state Xj = S(tj). Sorting for array-RQMC is simple.

Basis functions for regression-based MC:
polynomials ψk(x) = (x − 101)k−1 for k = 1, . . . , 5.

For RQMC and array-RQMC, we use Sobol’ nets with a linear scrambling
and a random digital shift, for all the results reported here.
Results are very similar for randomly-shifted lattice rule + baker’s
transformation.



20

Example: a simple put option

Asset price obeys GBM {S(t), t ≥ 0} with drift (interest rate) µ = 0.05,
volatility σ = 0.08, initial value S(0) = 100.

For American version, exercise dates are tj = j/16 for j = 1, . . . , 16.
Payoff at tj : gj(S(tj)) = e−0.05tj max(0,K − S(tj)), where K = 101.

European version: Can exercise only at t16 = 1.

One-dimensional state Xj = S(tj). Sorting for array-RQMC is simple.

Basis functions for regression-based MC:
polynomials ψk(x) = (x − 101)k−1 for k = 1, . . . , 5.

For RQMC and array-RQMC, we use Sobol’ nets with a linear scrambling
and a random digital shift, for all the results reported here.
Results are very similar for randomly-shifted lattice rule + baker’s
transformation.



20

Example: a simple put option

Asset price obeys GBM {S(t), t ≥ 0} with drift (interest rate) µ = 0.05,
volatility σ = 0.08, initial value S(0) = 100.

For American version, exercise dates are tj = j/16 for j = 1, . . . , 16.
Payoff at tj : gj(S(tj)) = e−0.05tj max(0,K − S(tj)), where K = 101.

European version: Can exercise only at t16 = 1.

One-dimensional state Xj = S(tj). Sorting for array-RQMC is simple.

Basis functions for regression-based MC:
polynomials ψk(x) = (x − 101)k−1 for k = 1, . . . , 5.

For RQMC and array-RQMC, we use Sobol’ nets with a linear scrambling
and a random digital shift, for all the results reported here.
Results are very similar for randomly-shifted lattice rule + baker’s
transformation.



21

European version of put option.

log2 n
8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

array-RQMC

PCA

BB

Seq

standard MC



21

European version of put option.

log2 n
8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

array-RQMC

PCA

BB

Seq

standard MC



22

Histogram of states at step 16
States for array-RQMC with n = 214 in blue and for MC in red.
Theoretical dist.: black dots.

S16
90 100 110 120

frequency

0

200

400

600



23

Histogram after transformation to uniforms (applying the cdf).

States for array-RQMC with n = 214 in blue and for MC in red.
Theoretical dist. is uniform (black dots).

0 0.5 1

frequency

0

200

400

600



24

log2 n8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-25

-20

-15

-10

-5

n−1

TvR, array-RQMC
TvR, RQMC bridge

TvR, standard MC
LSM, array-RQMC
LSM, RQMC bridge

LSM, standard MC



25American put option: estimation for a fixed policy.

log2 n8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-20

-15

-10

-5

array-RQMC

RQMC PCA
RQMC bridge

RQMC sequential

standard MC



26American put option: out-of-sample value for policy obtained from
LSM.

log2 n
6 8 10 12 14

E[out-of-sample value]

1.95

2.00

2.05

2.10

2.15

2.1690 array-RQMC
RQMC PCA
standard MC



27American put option: out-of-sample value for policy obtained from
TvR.

log2 n
6 8 10 12 14

E[out-of-sample value]

2.05

2.10

2.15
2.1514 array-RQMC

RQMC PCA
standard MC



28

Example: Asian Option

Given observation times t1, t2, . . . , ts , suppose

S(tj) = S(tj−1) exp[(r − σ2/2)(tj − tj−1) + σ(tj − tj−1)1/2Φ−1(Uj)],

where Uj ∼ U[0, 1) and S(t0) = s0 is fixed.

State is Xj = (S(tj), S̄j), where S̄j = 1
j

∑j
i=1 S(ti ).

Transition:

(S(tj), S̄j) = ϕ(S(tj−1), S̄j−1,Uj) =

(
S(tj),

(j − 1)S̄j−1 + S(tj)

j

)
.

Payoff at step j is max
[
0, S̄j − K

]
.

We use the two-dimensional sort at each step; we first sort in n1 packets
based on S(tj), then sort the packets based on S̄j .



29

GBM with parameters: S(0) = 100, K = 100, r = 0.05, σ = 0.15,
tj = j/52 for j = 0, . . . , s = 13.

Basis functions to approximate the continuation value: polynomials of the
form g(S , S̄) = (S − 100)k(S̄ − 100)m, for k ,m = 0, . . . , 4 and km ≤ 4.
Also broken polynomials max(0,S − 100)k for k = 1, 2, and
max(0,S − 100)(S̄ − 100).



30European version of Asian call option

log2 n
8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

array-RQMC, split sort
RQMC PCA

RQMC bridge

RQMC sequential

standard MC



31

European version, sorting strategies for array-RQMC.

log2 n
8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

n−1

array-RQMC, n1 = n2/3

array-RQMC, n1 = n1/3

array-RQMC, split sort

array-RQMC, sort on S̄
array-RQMC, sort on S



32

American-style Asian option with a fixed policy.

log2 n

8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-25

-20

-15

-10

-5

array-RQMC, split sort

RQMC PCA
RQMC bridge

RQMC sequential

standard MC



33

Fixed policy, choices of array-RQMC sorting.

log2 n

8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-20

-15

-10

array-RQMC, n1 = n2/3
array-RQMC, n1 = n1/3

array-RQMC, split sort

array-RQMC, sort on S̄
array-RQMC, sort S



34Out-of-sample value of policy obtained from LSM.

log2 n
8 10 12 14

E[out-of-sample value]

2.17

2.19

2.22

2.24

2.27

2.29

2.32
2.3204 array-RQMC, split sort

RQMC PCA
standard MC



35

Out-of-sample value of policy obtained from TvR.

log2 n
8 10 12 14

E[out-of-sample value]

2.27

2.28

2.29

2.30
2.2997 array-RQMC, split sort

RQMC PCA
standard MC



36

Call on the maximum of 5 assets

Five indep. asset prices obeys a GBM with s0 = 100, r = 0.05, σ = 0.2.
The assets pay a dividend at rate 0.10, which means that the effective
risk-free rate can be taken as r ′ = 0.05− 0.10 = −0.05.

Exercise dates are tj = j/3 for j = 1, . . . , 9.

State at tj is Xj = (Sj ,1, . . . ,Sj ,5).

Basis functions for regression: 19 polynomials in the Sj ,(`) − 100, where
Sj ,(1), . . . ,Sj ,(5) are the asset prices sorted in increasing order.

For array-RQMC, we sort on the m largest asset prices.
At each step we generate the next value first for the maximum, then for
the second largest, and so on.



36

Call on the maximum of 5 assets

Five indep. asset prices obeys a GBM with s0 = 100, r = 0.05, σ = 0.2.
The assets pay a dividend at rate 0.10, which means that the effective
risk-free rate can be taken as r ′ = 0.05− 0.10 = −0.05.

Exercise dates are tj = j/3 for j = 1, . . . , 9.

State at tj is Xj = (Sj ,1, . . . ,Sj ,5).

Basis functions for regression: 19 polynomials in the Sj ,(`) − 100, where
Sj ,(1), . . . ,Sj ,(5) are the asset prices sorted in increasing order.

For array-RQMC, we sort on the m largest asset prices.
At each step we generate the next value first for the maximum, then for
the second largest, and so on.



37European version

log2 n
8 10 12 14 16 18

log2Var[µ̂RQMC,n]

-25

-20

-15

-10

-5

0

n−2

array-RQMC, split sort 3 max
RQMC PCA

RQMC bridge

RQMC sequential

standard MC



38

log2 n
8 10 12 14 16 18

log2Var[µ̂RQMC,n]

-25

-20

-15

-10

-5

0

n−2

n−1

array-RQMC, split sort 5 max
array-RQMC, split sort 4 max
array-RQMC, split sort 3 max

array-RQMC, split sort 2 max
array-RQMC, sort 1 max



39American version, fixed policy

log2 n

8 10 12 14 16 18

log2Var[µ̂RQMC,n]

-10

-5

0

array-RQMC, split sort 3 max
RQMC PCA
RQMC bridge
RQMC sequential

standard MC



40Fixed policy.

log2 n

8 10 12 14 16 18

log2Var[µ̂RQMC,n]

-12.5

-10

-7.5

-5

-2.5

array-RQMC, split sort 5 max
array-RQMC, split sort 4 max

array-RQMC, split sort 3 max

array-RQMC split, sort 2 max
array-RQMC, sort 1 max



41

Out-of-sample value of policy obtained from LSM.

log2 n
8 10 12 14

E[out-of-sample value]

24

25

26

26.116
array-RQMC, split sort 3 max

RQMC PCA
RQMC bridge

RQMC sequential
standard MC



42Out-of-sample value of policy obtained from TvR.

log2 n
8 10 12 14

E[out-of-sample value]

25.0

25.5

26.0

26.5

26.124
array-RQMC, split sort 3 max
RQMC PCA
RQMC bridge
RQMC sequential
standard MC



43

Conclusion

Empirical results are excellent for fixed number of steps.

More modest but still interesting for random stopping time.

Proving the observed convergence rates seems difficult; we need help!


