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Monte Carlo for Markov Chains
Setting: A Markov chain with state space X ⊆ R`, evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where the Uj are i.i.d. uniform r.v.’s over (0, 1)d . Want to estimate

µ = E[Y ] where Y =
τ∑

j=1

gj(Xj)

and τ is a stopping time w.r.t. the filtration F{(j ,Xj), j ≥ 0}.

Ordinary MC: For i = 0, . . . , n − 1, generate Xi ,j = ϕj(Xi ,j−1,Ui ,j),
j = 1, . . . , τi , where the Ui ,j ’s are i.i.d. U(0, 1)d . Estimate µ by

µ̂n =
1

n

n∑
i=1

τi∑
j=1

gj(Xi ,j) =
1

n

n∑
i=1

Yi .



2

Monte Carlo for Markov Chains
Setting: A Markov chain with state space X ⊆ R`, evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where the Uj are i.i.d. uniform r.v.’s over (0, 1)d . Want to estimate

µ = E[Y ] where Y =
τ∑

j=1

gj(Xj)

and τ is a stopping time w.r.t. the filtration F{(j ,Xj), j ≥ 0}.
Ordinary MC: For i = 0, . . . , n − 1, generate Xi ,j = ϕj(Xi ,j−1,Ui ,j),
j = 1, . . . , τi , where the Ui ,j ’s are i.i.d. U(0, 1)d . Estimate µ by

µ̂n =
1

n

n∑
i=1

τi∑
j=1

gj(Xi ,j) =
1

n

n∑
i=1

Yi .



3

Classical RQMC for Markov Chains

Put Vi = (Ui ,1,Ui ,2, . . . ). Estimate µ by

µ̂rqmc,n =
1

n

n∑
i=1

τi∑
j=1

gj(Xi ,j)

where Pn = {V0, . . . ,Vn−1} ⊂ (0, 1)s has the following properties:
(a) each point Vi has the uniform distribution over (0, 1)s ;
(b) Pn has low discrepancy.

Dimension is s = inf{s ′ : P[dτ ≤ s ′] = 1}.
For a Markov chain, the dimension s is often very large!
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Array-RQMC for Markov Chains
[Lécot, Tuffin, L’Ecuyer 2004, 2008]
Simulate n chains in parallel. At each step, use an RQMC point set Pn to
advance all the chains by one step, while inducing global negative
dependence across the chains.

Intuition: The empirical distribution of Sn,j = {X0,j , . . . ,Xn−1,j}, should
be a more accurate approximation of the theoretical distribution of Xj , for
each j , than with crude Monte Carlo. The discrepancy between these two
distributions should be as small as possible.

Then, we will have small variance for the (unbiased) estimators:

µj = E[gj(Xj)] ≈ 1

n

n−1∑
i=0

gj(Xi ,j) and µ = E[Y ] ≈ 1

n

n−1∑
i=0

Yi .

How can we preserve low-discrepancy of X0,j , . . . ,Xn−1,j when j increases?
Can we quantify the variance improvement?
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To simplify, suppose each Xj is a uniform r.v. over (0, 1)`.

Select a discrepancy measure D for the point set Sn,j = {X0,j , . . . ,Xn−1,j}
over (0, 1)`, and a corresponding measure of variation V , such that

Var[µ̂rqmc,j ,n] = E[(µ̂rqmc,j ,n − µj)2] ≤ E[D2(Sn,j)] V 2(gj).

If D is defined via a reproducing kernel Hilbert space, then, for some
random ξj (that generally depends on Sn,j),

E[D2(Sn,j)] = Var

[
1

n

n∑
i=1

ξj(Xi ,j)

]
= Var

[
1

n

n∑
i=1

(ξj ◦ ϕj)(Xi ,j−1,Ui ,j))

]
≤ E[D2

(2)(Qn)] · V 2
(2)(ξj ◦ ϕj)

for some other discrepancy D(2) over (0, 1)`+d , where
Qn = {(X0,j−1,U0,j), . . . , (Xn−1,j−1,Un−1,j)}.
Heuristic: Under appropriate conditions, we should have V(2)(ξj ◦ ϕj) <∞
and E[D2

(2)(Qn)] = O(n−α+ε) for some α ≥ 1.
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In the points (Xi ,j−1,Ui ,j) of Qn, the Ui ,j can be defined via some RQMC
scheme, but the Xi ,j−1 cannot be chosen; they are determined by the
history of the chains.

The idea is to select a low-discrepancy point set

Q̃n = {(w0,U0), . . . , (wn−1,Un−1)},

where the wi ∈ [0, 1)` are fixed and the Ui ∈ (0, 1)d are randomized, and
then define a bijection between the states Xi ,j−1 and the wi so that the
Xi ,j−1 are “close” to the wi (small discrepancy between the two sets).

Bijection defined by a permutation πj of Sn,j .

State space in R`: same algorithm essentially.
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Array-RQMC algorithm

Xi ,0 ← x0, for i = 0, . . . , n − 1;
for j = 1, 2, . . . ,maxi τi do

Randomize afresh {U0,j , . . . ,Un−1,j} in Q̃n;
Xi ,j = ϕj(Xπj (i),j−1,Ui ,j), for i = 0, . . . , n − 1;
Compute the permutation πj+1 (sort the states);

end for
Estimate µ by the average Ȳn = µ̂rqmc,n.

Theorem: The average Ȳn is an unbiased estimator of µ.

Can estimate Var[Ȳn] by the empirical variance of m indep. realizations.
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Mapping chains to points

Multivariate sort:
Sort the states (chains) by first coordinate, in n1 packets of size n/n1.

Sort each packet by second coordinate, in n2 packets of size n/n1n2.

...

At the last level, sort each packet of size n` by the last coordinate.

Choice of n1, n2, ..., n`?

Generalization:
Define a sorting function v : X → [0, 1)c and apply the multivariate sort
(in c dimensions) to the transformed points v(Xi ,j).

Choice of v : Two states mapped to nearby values of v should be
approximately equivalent.
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A (4,4) mapping
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A (16,1) mapping, sorting along first coordinate
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A (8,2) mapping
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A (2,8) mapping
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A (1,16) mapping, sorting along second coordinate
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Dynamic programming for optimal stopping times

Suppose the stopping time τ is a decision determined by a stopping policy
π = (ν0, ν1, . . . , νT−1) where νj : X → {stop now, wait}.
Suppose also that must stop at or before step T .

Dynamic programming equations:

VT (x) = gT (x),

Qj(x) = E[Vj+1(Xj+1) | Xj = x ], (continuation value)

Vj(x) = max[gj(x), Qj(x)], (optimal value)

ν∗j (x) =

{
stop now if gj(x) ≥ Qj(x)

wait otherwise,
(optimal decision)

for j = T − 1, . . . , 0 and all x ∈ X .
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Hard to solve when the state space is large and multidimensional.

Can approximate Qj with a small set of basis functions.
{ψk : X → R, 1 ≤ k ≤ m}:

Q̃j(x) =
m∑

k=1

βj ,kψk(x)

where βj = (βj ,1, . . . , βj ,m)t can be determined by least-squares regression,
using an approximation Wi ,j of Qj(xi ,j) at a set of points xi ,j .

We solve

min
βj∈Rm

n∑
i=1

(
Q̃j(xi ,j)−Wi ,j+1

)2
.

A set of representative states xi ,j at each step j can be generated by
Monte Carlo, or RQMC, or array-RQMC.
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Regression-based least-squares Monte Carlo
Tsistiklis and Van Roy (2000) (TvR);
Simulate n indep. trajectories of the chain {Xj , j = 0, . . . ,T},

and let Xi ,j be the state for trajectory i at step j ;
Wi ,T ← gT (Xi ,T ), i = 1, . . . , n;
for j = T − 1, . . . , 0 do

Compute the vector βj that minimizes

n∑
i=1

(
m∑

k=1

βj ,kψk(Xi ,j)−Wi ,j+1

)2

.

Wi ,j ← max[gj(Xi ,j), Q̃j(Xi ,j)] , i = 1, . . . , n;

end for
return Q̂0(x0) = (W1,0 + · · ·+ Wn,0)/n as an estimate of Q0(x0);

Longstaff and Schwartz (2001) (LSM): Define Wi ,j instead by

Wi ,j =

{
gj(Xi ,j) if gk(Xj ,k) ≥ Q̃j(Xi ,j);

Wi ,j+1 otherwise .
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Example: a simple put option

Asset price obeys GBM {S(t), t ≥ 0} with drift (interest rate) µ = 0.05,
volatility σ = 0.08, initial value S(0) = 100.

For American version, exercise dates are tj = j/16 for j = 1, . . . , 16.
Payoff at tj : gj(S(tj)) = e−0.05tj max(0,K − S(tj)), where K = 101.

European version: Can exercise only at t16 = 1.

One-dimensional state Xj = S(tj). Sorting for array-RQMC is simple.

Basis functions for regression-based MC:
polynomials ψk(x) = (x − 101)k−1 for k = 1, . . . , 5.

For RQMC and array-RQMC, we use Sobol’ nets with a linear scrambling
and a random digital shift, for all the results reported here.
Results are very similar for randomly-shifted lattice rule + baker’s
transformation.
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European version of put option.

log2 n
8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

array-RQMC

PCA

BB

Seq

standard MC



21

European version of put option.

log2 n
8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

array-RQMC

PCA

BB

Seq

standard MC



22

Histogram of states at step 16
States for array-RQMC with n = 214 in blue and for MC in red.
Theoretical dist.: black dots.
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Histogram after transformation to uniforms (applying the cdf).

States for array-RQMC with n = 214 in blue and for MC in red.
Theoretical dist. is uniform (black dots).
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log2 n8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]
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25American put option: estimation for a fixed policy.
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26American put option: out-of-sample value for policy obtained from
LSM.
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Example: Asian Option

Given observation times t1, t2, . . . , ts , suppose

S(tj) = S(tj−1) exp[(r − σ2/2)(tj − tj−1) + σ(tj − tj−1)1/2Φ−1(Uj)],

where Uj ∼ U[0, 1) and S(t0) = s0 is fixed.

State is Xj = (S(tj), S̄j), where S̄j = 1
j

∑j
i=1 S(ti ).

Transition:

(S(tj), S̄j) = ϕ(S(tj−1), S̄j−1,Uj) =

(
S(tj),

(j − 1)S̄j−1 + S(tj)

j

)
.

Payoff at step j is max
[
0, S̄j − K

]
.

We use the two-dimensional sort at each step; we first sort in n1 packets
based on S(tj), then sort the packets based on S̄j .
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GBM with parameters: S(0) = 100, K = 100, r = 0.05, σ = 0.15,
tj = j/52 for j = 0, . . . , s = 13.

Basis functions to approximate the continuation value: polynomials of the
form g(S , S̄) = (S − 100)k(S̄ − 100)m, for k ,m = 0, . . . , 4 and km ≤ 4.
Also broken polynomials max(0,S − 100)k for k = 1, 2, and
max(0,S − 100)(S̄ − 100).



30European version of Asian call option

log2 n
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log2Var[µ̂RQMC,n]
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European version, sorting strategies for array-RQMC.

log2 n
8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]
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n−1

array-RQMC, n1 = n2/3

array-RQMC, n1 = n1/3
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array-RQMC, sort on S
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American-style Asian option with a fixed policy.

log2 n

8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]
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Fixed policy, choices of array-RQMC sorting.

log2 n

8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-20

-15

-10

array-RQMC, n1 = n2/3
array-RQMC, n1 = n1/3

array-RQMC, split sort

array-RQMC, sort on S̄
array-RQMC, sort S



34Out-of-sample value of policy obtained from LSM.

log2 n
8 10 12 14

E[out-of-sample value]

2.17

2.19

2.22

2.24

2.27

2.29

2.32
2.3204 array-RQMC, split sort

RQMC PCA
standard MC



35

Out-of-sample value of policy obtained from TvR.

log2 n
8 10 12 14

E[out-of-sample value]

2.27

2.28

2.29

2.30
2.2997 array-RQMC, split sort

RQMC PCA
standard MC
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Call on the maximum of 5 assets

Five indep. asset prices obeys a GBM with s0 = 100, r = 0.05, σ = 0.2.
The assets pay a dividend at rate 0.10, which means that the effective
risk-free rate can be taken as r ′ = 0.05− 0.10 = −0.05.

Exercise dates are tj = j/3 for j = 1, . . . , 9.

State at tj is Xj = (Sj ,1, . . . ,Sj ,5).

Basis functions for regression: 19 polynomials in the Sj ,(`) − 100, where
Sj ,(1), . . . ,Sj ,(5) are the asset prices sorted in increasing order.

For array-RQMC, we sort on the m largest asset prices.
At each step we generate the next value first for the maximum, then for
the second largest, and so on.
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37European version

log2 n
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log2Var[µ̂RQMC,n]

-25

-20

-15

-10

-5

0

n−2

array-RQMC, split sort 3 max
RQMC PCA

RQMC bridge

RQMC sequential

standard MC



38

log2 n
8 10 12 14 16 18

log2Var[µ̂RQMC,n]
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39American version, fixed policy

log2 n
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40Fixed policy.

log2 n
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Out-of-sample value of policy obtained from LSM.

log2 n
8 10 12 14

E[out-of-sample value]

24

25

26

26.116
array-RQMC, split sort 3 max

RQMC PCA
RQMC bridge

RQMC sequential
standard MC



42Out-of-sample value of policy obtained from TvR.

log2 n
8 10 12 14

E[out-of-sample value]

25.0

25.5

26.0

26.5

26.124
array-RQMC, split sort 3 max
RQMC PCA
RQMC bridge
RQMC sequential
standard MC
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Conclusion

Empirical results are excellent for fixed number of steps.

More modest but still interesting for random stopping time.

Proving the observed convergence rates seems difficult; we need help!


