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Monte Carlo for Markov Chains
Setting: A Markov chain with state space X ⊆ R`, evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where the Uj are i.i.d. uniform r.v.’s over (0, 1)d . Want to estimate

µ = E[Y ] where Y =
τ∑

j=1

gj(Xj)

for some fixed time horizon τ .

Ordinary MC: For i = 0, . . . , n − 1, generate Xi ,j = ϕj(Xi ,j−1,Ui ,j),
j = 1, . . . , τ , where the Ui ,j ’s are i.i.d. U(0, 1)d . Estimate µ by

µ̂n =
1

n

n∑
i=1

τ∑
j=1

gj(Xi ,j) =
1

n

n∑
i=1

Yi .
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Example: Asian Call Option

Given observation times t1, t2, . . . , tτ suppose

S(tj) = S(tj−1) exp[(r − σ2/2)(tj − tj−1) + σ(tj − tj−1)1/2Φ−1(Uj)],

where Uj ∼ U[0, 1) and S(t0) = s0 is fixed.

Running average: S̄j = 1
j

∑j
i=1 S(ti ).

State: Xj = (S(tj), S̄j) .

Transition:

Xj = (S(tj), S̄j) = ϕj(S(tj−1), S̄j−1,Uj) =

(
S(tj),

(j − 1)S̄j−1 + S(tj)

j

)
.

Payoff at step j = τ is Y = gτ (Xτ ) = max
[
0, S̄τ − K

]
.
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Plenty of other applications:

Finance

Queueing systems

Inventory, distribution, logistic systems

Reliability models

MCMC in Bayesian statistics

Etc.
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Classical RQMC for Markov Chains

Put Vi = (Ui ,1, . . . ,Ui ,τ ) ∈ (0, 1)s = (0, 1)dτ . Estimate µ by

µ̂rqmc,n =
1

n

n∑
i=1

τ∑
j=1

gj(Xi ,j)

where Pn = {V0, . . . ,Vn−1} ⊂ (0, 1)s satisfies:
(a) each point Vi has the uniform distribution over (0, 1)s ;
(b) Pn covers (0, 1)s very evenly (i.e., has low discrepancy).

The dimension s is often very large!
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Array-RQMC for Markov Chains

L., Lécot, Tuffin, et al. [2004, 2006, 2008, etc.]
Simulate an “array” of n chains in “parallel.”
At each step, use an RQMC point set Pn to advance all the chains by one
step, while inducing global negative dependence across the chains.

Goal: Want a small discrepancy (or “distance”) between the empirical
distribution of Sn,j = {X0,j , . . . ,Xn−1,j} and the theoretical distribution of
Xj , for each j .

If we succeed, these (unbiased) estimators will have small variance:

µj = E[gj(Xj)] ≈ 1

n

n−1∑
i=0

gj(Xi ,j) and µ = E[Y ] ≈ 1

n

n−1∑
i=0

Yi .

How can we preserve low-discrepancy of Sn,j as j increases?
Can we quantify the variance improvement? Convergence rate in n?
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Some generalizations

L., Lécot, and Tuffin [2008]: τ can be a random stopping time w.r.t. the
filtration F{(j ,Xj), j ≥ 0}.

L., Demers, and Tuffin [2006, 2007]: Combination with splitting
techniques (multilevel and without levels), combination with importance
sampling and weight windows. Covers particle filters.

L. and Sanvido [2010]: Combination with coupling from the past for exact
sampling.

Dion and L. [2010]: Combination with approximate dynamic programming
and for optimal stopping problems.

Gerber and Chopin [2014]: Sequential QMC (yesterday’s talk).
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Convergence results and applications

L., Lécot, and Tuffin [2006, 2008]: Special cases: convergence at MC rate,
one-dimensional, stratification, etc.

Lécot and Tuffin [2004]: Deterministic, one-dimension, discrete state.

El Haddad, Lécot, L. [2008, 2010]: Deterministic, multidimensional.

Fakhererredine, El Haddad, Lécot [2012, 2013, 2014]: LHS, stratification,
Sudoku sampling, ...

Wächter and Keller [2008]: Applications in computer graphics.
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Other QMC methods for Markov chains

Interested in steady-state distribution. Introduce dependence between the
steps j ; a single chain visit the state space very uniformly.

Owen, Tribble, Chen, Dick, Matsumoto, Nishimura, .... [2004–2010]:
Markov chain quasi-Monte Carlo.

Propp [2012] and earlier: Rotor-router sampling.
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To simplify, suppose each Xj is a uniform r.v. over (0, 1)`.

Select a discrepancy measure D for the point set Sn,j = {X0,j , . . . ,Xn−1,j}
over (0, 1)`, and a corresponding measure of variation V , such that

Var[µ̂rqmc,j ,n] = E[(µ̂rqmc,j ,n − µj)2] ≤ E[D2(Sn,j)] V 2(gj).

If D is defined via a reproducing kernel Hilbert space, then, for some
random ξj (that generally depends on Sn,j),

E[D2(Sn,j)] = Var

[
1

n

n∑
i=1

ξj(Xi ,j)

]
= Var

[
1

n

n∑
i=1

(ξj ◦ ϕj)(Xi ,j−1,Ui ,j))

]
≤ E[D2

(2)(Qn)] · V 2
(2)(ξj ◦ ϕj)

for some other discrepancy D(2) over (0, 1)`+d , where
Qn = {(X0,j−1,U0,j), . . . , (Xn−1,j−1,Un−1,j)}.
Goal: Under appropriate conditions, to obtain V(2)(ξj ◦ ϕj) <∞ and
E[D2

(2)(Qn)] = O(n−α+ε) for some α ≥ 1.
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Discrepancy bounds by induction?

Let ` = d = 1, X = [0, 1], and Xj ∼ U(0, 1). L2-star discrepancy:

D2(x0, . . . , xn−1) =
1

12n2
+

1

n

n−1∑
i=0

(wi − xi )
2

where wi = (i + 1/2)/n and 0 ≤ x0 ≤ x1 ≤ · · · ≤ xn−1. We have

ξj(x) = −1

n

n−1∑
i=1

[µ(Yi ) + B2((x − Yi ) mod 1) + B1(x)B1(Yi )] ,

where B1(x) = x − 1/2 and B2(x) = x2 − x + 1/6.

Problem: the 2-dim function ξj ◦ ϕj has mixed derivative that is not
square integrable, so it has infinite variation, it seems. Otherwise, we
would have a proof that E[D2(Sn,j)] = O(n−2). Help!
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In the points (Xi ,j−1,Ui ,j) of Qn, the Ui ,j can be defined via some RQMC
scheme, but the Xi ,j−1 cannot be chosen; they are determined by the
history of the chains.

The idea is to select a low-discrepancy point set

Q̃n = {(w0,U0), . . . , (wn−1,Un−1)},

where the wi ∈ [0, 1)` are fixed and the Ui ∈ (0, 1)d are randomized, and
then define a bijection between the states Xi ,j−1 and the wi so that the
Xi ,j−1 are “close” to the wi (small discrepancy between the two sets).

Example: If ` = 1, can take wi = (i + 0.5)/n.

Bijection defined by a permutation πj of Sn,j .

For state space in R`: same algorithm essentially.
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Array-RQMC algorithm

Xi ,0 ← x0, for i = 0, . . . , n − 1;
for j = 1, 2, . . . , τ do

Randomize afresh {U0,j , . . . ,Un−1,j} in Q̃n;
Xi ,j = ϕj(Xπj (i),j−1,Ui ,j), for i = 0, . . . , n − 1;
Compute the permutation πj+1 (sort the states);

end for
Estimate µ by the average Ȳn = µ̂rqmc,n.

Theorem: The average Ȳn is an unbiased estimator of µ.

Can estimate Var[Ȳn] by the empirical variance of m indep. realizations.
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Example: Asian Call Option
S(0) = 100, K = 100, r = 0.05, σ = 0.15, tj = j/52, j = 0, . . . , τ = 13.
RQMC points: Sobol’ nets with a linear scrambling + random digital shift,
for all the results reported here.
Similar results for randomly-shifted lattice + baker’s transform.

log2 n
8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

array-RQMC, split sort

RQMC sequential

crude MC
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Mapping chains to points

One possibility: Multivariate sort:
Sort the states (chains) by first coordinate, in n1 packets of size n/n1.

Sort each packet by second coordinate, in n2 packets of size n/n1n2.

· · ·
At the last level, sort each packet of size n` by the last coordinate.

Choice of n1, n2, ..., n`?

For large `: Define a transformation v : X → [0, 1)c and do a
multivariate sort (in c < ` dimensions) of the points v(Xi ,j).

Choice of v : states mapped to nearby values of v should be nearly
equivalent.

For c = 1, X is mapped to [0, 1), which leads to a one-dim sort.
The mapping v can be based on a space-filling curve: Z-curve, Hilbert
curve, etc. See Wächter and Keller [2008], Gerber and Chopin [2014].
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A (4,4) mapping

States of the chains
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A (16,1) mapping, sorting along first coordinate
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A (8,2) mapping

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s

s

s

s

s s

s

s

s

s

s
s

s

s

s

s

s

s

s

s

s
s

s
s

s

s

s

s

s

s

s

s



D
ra

ft

21

A (4,4) mapping

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

s

s s

s

s
s

s
s

s

s

s

s

s
s

s
s

s
ss

s
s

s

s
s

ss

s
s



D
ra

ft

22

A (2,8) mapping

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s s
s

s s
s

ss

s
s

ss
s s

s
s

s s
ss s

s
s

s

sss
s

ss
ss



D
ra

ft

23

A (1,16) mapping, sorting along second coordinate
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Sorting strategies for array-RQMC.
State-point mapping via two-dimensional sort: sort in n1 packets based on S(tj),

then sort the packets based on S̄j . Split sort: n1 = n2.

log2 n
8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

n−1

array-RQMC, n1 = n2/3

array-RQMC, n1 = n1/3

array-RQMC, split sort

array-RQMC, sort on S̄
array-RQMC, sort on S
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Artificial one-dim example: a simple put option
GBM {S(t), t ≥ 0} with drift µ = 0.05, volatility σ = 0.08, S(0) = 100.
Generate Xj = S(tj) for tj = j/16, j = 1, . . . , τ = 16, sequentially.
Payoff at t16 = 1: Y = gτ (S(1)) = e−0.05 max(0, 101− S(1)).

log2 n
8 10 12 14 16 18 20

log2Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

array-RQMC

Sequential RQMC

crude MC
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Histogram of states at step 16
States for array-RQMC with n = 214 in red and for MC in blue.
Theoretical dist.: black dots.
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Histogram after transformation to uniforms (applying the cdf).

States for array-RQMC with n = 214 in red and for MC in blue.
Theoretical dist. is uniform (black dots).
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Example

Let Y = θU + (1− θ)V , where U,V indep. U(0, 1) and θ ∈ [0, 1).
This Y has cdf Gθ.

Markov chain is defined by

X0 = U0; Xj = ϕj(Xj−1,Uj) = Gθ(θXj−1 + (1− θ)Uj), j ≥ 1

where Uj ∼ U(0, 1). Then, Xj ∼ (0, 1).

Define gj(Xj) = Xj
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logDj as a function of j, for n = 4093 ≈ 212

j
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log2Var[µ̂rqmc,j ,n] as a function of log2 n

log2(n)
10 12.5 15 17.5
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-45
θ = 0.5, 20 steps

θ = 0.9, 20 steps
θ = 0.9, 100 steps
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Convergence results and proofs

L., Lécot, Tuffin [2008] + some extensions.

Simple case: suppose ` = d = 1, X = [0, 1], and Xj ∼ U(0, 1). Define

∆j = sup
x∈X
|F̂j(x)− Fj(x)| (discrepancy of states)

V (gj) =

∫ 1

0
|dgj(x)| (variation of gj)

Theorem.
∣∣Ȳn,j − E [gj(Xj)]

∣∣ ≤ ∆jV (gj).
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Convergence results and proofs
Assumption 1. ϕj(x , u) non-decreasing in u. That is, we use inversion to
generate next state from cdf Fj(z | · ) = P[Xj ≤ z | Xj−1 = · ].

Let Λj = sup
0≤z≤1

V (Fj(z | · ]).

Assumption 2. Each square of
√
n ×
√
n grid has one RQMC point.

Proposition. (Worst-case error.) Under Assumptions 1 and 2,

∆j ≤ n−1/2
j∑

k=1

(Λk + 1)

j∏
i=k+1

Λi .

Corollary. If Λj ≤ ρ < 1 for all j , then

∆j ≤
1 + ρ

1− ρ
n−1/2.
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generate next state from cdf Fj(z | · ) = P[Xj ≤ z | Xj−1 = · ].

Let Λj = sup
0≤z≤1

V (Fj(z | · ]).

Assumption 2. Each square of
√
n ×
√
n grid has one RQMC point.

Proposition. (Worst-case error.) Under Assumptions 1 and 2,

∆j ≤ n−1/2
j∑

k=1

(Λk + 1)

j∏
i=k+1

Λi .

Corollary. If Λj ≤ ρ < 1 for all j , then

∆j ≤
1 + ρ

1− ρ
n−1/2.
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Let ϕj(x , u) non-decreasing in x and u. Fix z .

0 1

1

U = u

Xj−1 = x

V (Fj(z | · ) = Λj = ρ

Fj(z | x)

(ϕj(x , u) = z)

←− states Xj−1,i

←− points wi = (i + 0.5)/n

Fj(z) = P[Xj ≤ z ] = size of blue area.

F̃j(z) = P[Xj ≤ z | Xj−1 ∼ F̂j−1] = area of histogram.

F̂j(z) = fraction of the points that fall in histogram.

∆j = sup0≤z≤1 |F̂j(z)− Fj(z)|.
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0 1

1

U = u

Xj−1 = x

2
√
n − 1 diagonal strings of squares.

The boundary crosses at most one square in each string.
At most 2

√
n − 1 squares out of n may contribute to |F̂j(z)− F̃j(z)|.
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0 1

1

U = u

Xj−1 = x

√
n ×
√
n squares: 2

√
n − 1 diagonal strings of squares.

The boundary crosses at most one square in each string.
So at most 2

√
n− 1 squares may contribute to the error (or variance), and

Var[F̂j(z)− F̃j(z)] ≤ (2
√
n − 1)

4n2
≤ n−3/2

2
.
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Variance bound for stratified sampling
Assumption 3. Assump. 2 (one point per square) + second coordinate of
each point is uniformly dist. in square, and these are independent or have
negative covariance.

Proposition. Under Assump. 3,

Var[Ȳn,j ] ≤

(
1

4

j∑
k=1

(Λk + 1)

j∏
i=k+1

Λ2
i

)
V 2(gj)n

−3/2.

Corollary. If all Λj ≤ ρ < 1, then

Var[Ȳn,j ] ≤
1 + ρ

4(1− ρ2)
V 2(gj)n

−3/2.

Works also with RQMC if we can show that for any pair of small squares,
the indicators that the two RQMC point of those squares are in the
histogram do not have a positive covariance.
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In ` = 1 and d > 1

RQMC points are now in d + 1 dimensions. Unit cube partitioned in
n = kd+1 subcubes.

Assumption 4. Assump. 2 (one point per square) + the randomized
parts of the points are pairwise independent in their squares.

Proposition. Under Assump. 4, if ϕj is monotone non-decreasing,

Var[Ȳn,j ] = O(n−1−1/(d+1)).

Consider diagonal string of squares from (0, ..., 0) to (1, ..., 1) and all
parallel diagonal strings. There are less than (d + 1)kd of those, and the
histogram boundary can cross at most one square in each. Then

Var[F̂j(z)− F̃j(z)] <
(d + 1)kd

4n2
=

d + 1

4
n−1−1/(d+1).
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Conclusion

Empirically, the variance converges as O(n−2) for some examples, even for
a large number of steps.

We have convergence proofs for special cases, but not yet O(n−2).


