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Simulation Challenges

Want to simulate large complex systems to study their behavior and
improve decision making.

I Trustable (valid) stochastic modeling of complex systems.
Taking account of various type of external information.

I Simulation-based optimization and control.

I Speed of execution of large simulations.

I Modeling methodology and tools for large and complex systems.
Agent-based modeling. Modeling human behavior.
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Big Data

Sometimes huge amounts of data available to build stochastic models.
How can we exploit this huge mass of data to build credible models?

How to effectively update the models in real time as new data comes in?

Strong links with data mining, machine learning, Bayesian statistics.

Generally much more complicated than selecting univariate distributions
and estimating their parameters. Model inputs are often multivariate
distributions and stochastic processes, with hard-to-model (but important)
dependence between them, and parameters that are themselves stochastic.
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Call centers (or contact centers)

Include sales by telephone, customer service, billing/recovery, public
services, 911, taxis, pizza order, emergency services, etc.
Employ around 3% of workforce in North America.
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Example: A Multiskill Call Center

Different call types. Depends on required skill, language, importance, etc.
Agent types (groups). Each has a set of skills to handle certain call types.
Service time distribution may depend on pair 〈call type, agent group〉.

λ1 λ2 . . . λK

? ? ?
- - -

-

Arrivals

Agent types

Service cdf

Abandonments
Call routing rules and queues

? ?
S1 SJ· · ·

G1,1

?

. . . GK ,1

?

G1,J

?

. . . GK ,J

?
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Examples of common performance measures

Service level: SL(τ) = fraction of calls answered within acceptable waiting
time τ . (May exclude calls that abandon before τ .)
May consider its observed value over a fixed time period (random
variable), or its expectation, or the average in the long run (infinite
horizon), or a tail probability P[SL(τ) ≥ `].

Abandonment ratio: fraction of calls that abandon.

Average waiting time for each call type.

Agent occupancy: fraction of the time where each agent is busy.
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Performance evaluation, single call type

Arrival rate λ, service rate µ, load λ/µ, s servers, waiting time W .

Assumes Poisson arrivals with constant rate (not realistic) + single type.

M/M/s queue (Erlang-C). CTMC model.
Approx. of P[W > 0], P[W > τ ], and E[W ].

Approximation under quality and efficiency driven (QED) regime:
λ→∞ and s →∞ with α = P[W > 0] ∈ (0, 1) fixed.
Halfin and Whitt (1981).
Square root safety staffing: s∗ = dλ/µ+ β

√
λ/µe.

Could make sense for some large call centers.

M/M/s + M queue (Erlang-A).

Approx. of γ = P[abandon], P[W > 0], and α = P[W > τ ].
QED(τ): Fix τ , α, and γ > 0.
Modified square root rule: s∗ = d(1− γ)λ/µ+ δ

√
(1− γ)λ/µe.
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Multiple call types, multiskill agents

Much more difficult.
Call routing rules become important and can be complicated.
Approximations for service levels are not very good.

Must rely on simulation.

In our lab, we develop ContactCenters, a Java simulation and optimization
software library for contact centers. Also some tools for model estimation
from data.
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Typical call center

Arrival process is nonstationary and much more complicated than Poisson.
Service times are not exponential and not really independent.
Abandonments (balking + reneging), retrials, returns, etc.

Skill-based routing: Rules that control in real time the call-to-agent and
agent-to-call assignments. Can be complex in general.
Static vs dynamic rules. (e.g., using weights).

Agents using fewer skills tend to work faster. Also less expensive.
Compromise between single-skill agents (specialists) vs flexible multiskill
agents (generalists).

Staffing/scheduling/routing optimization: objective function and
constraints can account for cost of agents, service-level, expected excess
waiting time, average wait, abandonment ratios, agent occupancy ratios,
fairness in service levels and in agent occupancies, etc. Various constraints
on work schedules.
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Data on call arrivals
Available observations (for each day): X = (X1, . . . ,Xp), arrival counts
over (15 or 30 minutes) successive time periods.
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Ex.: Typical realizations of X for a Monday (15-min periods).
Non-stationary. Strong dependence between the Xj ’s.
Similar behavior in many other settings: customer arrivals at stores,
incoming demands for a product, arrivals at hospital emergency, etc.
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All days, call volumes before and after T = 2 p.m.
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Modeling the arrivals

Stationary Poisson process as in Erlang formulas? No.

Poisson process with time-dependent arrival rate λ(t)?
Would imply that Var[Xj ] = E[Xj ]. Typically far from true.

True arrival rate depends on several factors that are hard to predict. We
can view it as stochastic, say

Λj = Bjλj and Xj ∼ Poisson(Λj) over period j , where

B = (B1, . . . ,Bp) = vector of random busyness factors with E[Bj ] = 1,
λ = (λ1, . . . , λp) = vector of constant base rates (scaling factors).

Var[Xj ] = E[Var[Xj |Bj ]] + Var[E[Xj |Bj ]] = λj(1 + λjVar[Bj ]).

Dispersion index (DI) and its standardized version (SDI):

DI(Xj) = Var[Xj ]/λj = 1 + λjVar[Bj ] ≥ 1,

SDI(Xj) = (DI[Xj ]− 1)/λj = Var[Bj ].
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Corr[Xj ,Xk ] =
Corr[Bj ,Bk ]

[((1 + 1/(Var[Bj ]λj))(1 + 1/(Var[Bk ]λk))]1/2
.

We expect:
DI(Xj)� 1 and Corr[Xj ,Xk ] ≈ Corr[Bj ,Bk ] for “large” λjVar[Bj ];

i.e., large periods or high traffic.
DI(Xj) ≈ 1 and Corr[Xj ,Xk ] ≈ 0 for small λjVar[Bj ].
Approximately a Poisson process when λjVar[Bj ] is small.

Do we see this in real data?

In a simulation, we want to generate the Bj ’s, then generate the arrivals
one by one conditional on the piecewise-constant rates Λj .

Another approach (less convenient) is to model and directly generate the
Xj ’s, then randomize the arrival times.

Modeling the rates is harder because they are not observed!
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Data from a public utility call center (U)
One call type, data aggregated over 40 15-minute periods per day, from
8:00 to 18:00, Monday to Friday, after removing special days.
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Call center U
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Corr[Xj ,Xk ] in call center U, for 30 min to 4 hour data aggregations.
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Data from an emergency call center (E)
Take one call type, Monday to Thursday (similar days), after removing
special days (holidays, etc.). Other days have different arrival patterns.
Day starts at 5 a.m. and is divided into 48 periods of 30 minutes.
Mean counts per period, ≈ λj :
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Emergency call center
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Corr[Xj ,Xk ] in call center E, for 30 min to 4 hour data aggregations.

 

 

10 20 30 40

5

10

15

20

25

30

35

40

45 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

10 20 30 40

5

10

15

20

25

30

35

40

45 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

10 20 30 40

5

10

15

20

25

30

35

40

45 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

10 20 30 40

5

10

15

20

25

30

35

40

45 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



D
ra

ft

20

Data from a business call center (B)
One call type, Tuesday to Friday, after removing special days.
Opening hours (8:00 to 19:00) divided into 22 periods of 30 minutes.
Monday and Saturday have different patterns. Mean counts per period:
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Call center B
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Corr[Xj ,Xk ] in call center B, for 30 min to 4 hour data aggregations.
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Rate models

Λj = Bjλj over period j .

Poisson Bj = 1 for all j .
PGsingle Bj = B for all j , where B ∼ Gamma(α, α).
PGindep Bj ’s are independent, Bj ∼ Gamma(αj , αj).

PG2 Bj = B̃jB, combines common B and independent B̃j ’s.

PG2pow Bj = B̃jB
pj/E[Bpj ].

PGnorta B has gamma marginals Bj and dependence specified by
a normal copula (we fit all Spearman correlations).

Bj = G−1
j (Φ(Zj)) where Z = (Z1, . . . ,Zp) ∼ N(0,R).

PGnortaAR1 Normal copula with Corr[Zj ,Zk ] = ρ|j−k|.

PGnortaARM Normal copula with Corr[Zj ,Zk ] = aρ|j−k| + c .
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Difficulty: We want to model the Bj ’s, but they are not observed, only the
Xj ’s are observed. This makes parameter estimation by maximum
likelihood (ML) much more challenging, because we have no closed form
expression for the likelihood.
Moment matching is often possible, but much less robust and reliable.
We use Monte Carlo-based methods for ML estimation.



D
ra

ft

25

Example: Likelihood Function for PG2 Model
B̃i ,j = busyness factor for day i , period j .
B̄i = busyness factor for day i .

p(X|B, β,α,λ) =

∫ ∞
0

. . .

∫ ∞
0

I∏
i=1

p∏
j=1

(λj B̃i,j B̄i )
Xi,j e−λj B̃i,j B̄i

Xi,j !

α
αj

j B̃
αj−1

i,j e−αj B̃i,j

Γ(αj)
dB̃i,j

=
I∏

i=1

p∏
j=1

∫ ∞
0

(λj B̃i,j B̄i )
Xi,j e−λj B̃i,j B̄i

Xi,j !

αj
αj B̃

αj−1

i,j e−αj B̃i,j

Γ(αj)
dB̃i,j

=

[
p∏

j=1

αj
Iαj

Γ(αj)I

]
I∏

i=1

p∏
j=1

Γ(αj + Xi,j)

Xi,j !

(B̄iλj)
Xi,j

(αj + B̄iλj)Xi,j+αj

p(X|β,α,λ) =

[
p∏

j=1

αj
Iαj

Γ(αj)I

][
I∏

i=1

p∏
j=1

Γ(αj + Xi,j)

Xi,j !

]

·
I∏

i=1

∫ ∞
0

[
p∏

j=1

(B̄iλj)
Xi,j

(αj + B̄iλj)Xi,j+αj

]
ββB̄β−1

i e−B̄iβ

Γ(β)
dB̄i .

Want to maximize this. No closed form expression for the last integral.
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How the models match the DI for Center U
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How the models match the correlations for Center U
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How the distribution predicted by the model fits the
data out-of-sample
For each observation i (one day), estimate the model without that day,
then for each period j (or block of successive periods) compute interval
[Li ,j ,Ui ,j ] such that P[Xi ,j ∈ [Li ,j ,Ui ,j ]] ≈ p (desired coverage) according
to model, then compute the proportion of days where Xi ,j ∈ [Li ,j ,Ui ,j ] and
compare with p via sum of squares.

RMS Deviation of out-of-sample coverage probability, for call center U.
75% target cover 90% target cover

1/4 h 1/2 h 1 h 2 h 4 h 1/4 h 1/2 h 1 h 2 h 4 h
Poisson 38.9 47.1 53.9 59.6 64.6 39.2 50.9 59.7 67.5 74.4
PGsingle 8.6 8.0 6.9 4.0 1.7 7.3 7.0 5.4 3.1 1.4
PGindep 4.5 10.5 24.6 36.5 46.3 1.8 8.4 22.3 37.8 51.2
PG2 4.4 3.4 3.8 3.3 2.2 2.0 3.0 3.5 2.5 1.7
PG2pow 4.0 2.3 2.4 2.7 2.0 1.5 1.7 1.6 1.1 1.1
PGnorta 4.4 4.1 3.9 3.4 2.7 1.8 2.2 2.4 2.3 2.4
PGnortaARM 4.4 4.0 4.2 4.0 3.2 1.8 2.3 2.5 2.7 2.2
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How the models match the DI, for Center E
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How the models match the correlations, for Center E
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RMS Deviation of out-of-sample coverage probability, for call center E:
75% target cover 90% target cover

0.5 h 1 h 2 h 4 h 8 h 0.5 h 1 h 2 h 4 h 8 h
Poisson 10.7 16.6 23.5 31.3 37.5 8.5 13.8 21.0 30.1 38.7
PGsingle 7.2 10.0 12.5 13.5 12.0 5.3 7.8 10.1 11.4 9.0
PGindep 1.3 5.3 12.7 21.4 29.9 0.8 4.1 10.2 18.7 29.1
PG2 2.1 4.9 8.7 11.4 11.6 1.6 3.8 6.8 9.4 8.8
PG2pow 1.5 2.9 4.4 5.1 5.0 1.0 2.0 3.1 3.4 3.0
PGnorta 1.3 1.7 1.7 1.7 1.3 0.8 1.1 1.2 1.3 0.8
PGnortaARM 1.3 2.4 3.4 4.3 4.5 0.9 1.5 2.2 2.7 2.8
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How the models match the DI for Center B
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How the models match the correlations for Center B
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RMS Deviation of out-of-sample coverage probability, for call center B.
75% target cover 90% target cover

0.5 h 1 h 2 h 4 h 8 h 0.5 h 1 h 2 h 4 h 8 h
Poisson 43.1 50.9 57.5 61.9 66.7 44.7 55.8 64.4 71.3 77.7
PGsingle 7.6 7.1 6.1 4.0 2.3 5.8 6.1 5.4 4.0 3.4
PGindep 3.1 13.2 27.3 39.3 48.7 2.0 12.1 26.4 41.2 51.9
PG2 4.8 4.1 5.1 4.3 2.6 3.0 2.9 3.3 2.9 2.3
PG2pow 2.5 3.3 4.1 2.0 0.8 1.7 3.3 3.7 2.8 2.7
PGnorta 3.2 3.0 2.7 1.2 1.3 2.0 2.4 2.2 1.7 2.0
PGnortaARM 3.2 3.1 2.8 1.9 0.5 2.0 2.4 2.3 2.2 2.8
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Impact of choice of arrival model

Take call center U on a week day. Single call type.
Lognormal service times with mean 206.4 and variance 23 667 (seconds).

Abandonment at rate 1/2443 per second.
Staffing in each period: (16, 24, 31, 36, 43, 48, 51, 52, 56, 60, 62, 65, 67,
67, 66, 65, 62, 61, 60, 61, 64, 64, 63, 63, 64, 64, 64, 64, 65, 65, 64, 64,
62, 60, 58, 56, 53, 49, 48, 44).
Performance measures:
average waiting time (AWT);
service level (SL) with threshold τ = 120 seconds.

We simulated 10,000 days with each arrival model.
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Evolution of the SL (left) and AWT in seconds (right) during the day for
the Quebec utility society.

SL = proportion of calls answered within 120 seconds in the long run.
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More on arrival process modeling

Modeling the arrival rates over successive days.
Dependence between the days.
Seasonal effects (day of the week, period of the year).
Special days (holidays, special events, etc.).
External effects (weather, marketing campaigns, etc.).

Dependence between call types: the arrival rate should in fact be a
multivariate process. Modeling via copulas.

Arrival bursts in emergency call center.
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Modeling the service times

In call center U, the available data for service times is the number of calls
of each type handled by each agent on each day, and the average duration
of these calls. From this, we can estimate the mean and variance of a
service times and match those to the mean and variance of a distribution
such as lognormal or gamma.

Service times are usually not exponential.

Common assumption: the distribution depends only on the call type.

But on closer examination, we find that it depends on the individual
agent, on the number of call types that the agent is handling, and may
change with time (learning effect, motivation and mood of agent, etc.).

This is an important fact to consider when making work schedules!
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Average service time per agent for one call type, in
center U (more than 1000 agents)
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Another call type
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Another call type
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Four different agents, same call type
All have handled more than 1000 calls. Daily averages:
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Same agent, 4 call types, weekly averages
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Same agent, 6 call types
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Same agent, 8 call types
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Modeling the evolution of service time averages
For given agent and call type, day i :

Mi = βdi + Γwi + εi ,

where di = type of day i , wi = week of day i , and Γw is a random effect
that may follow, e.g., an AR process:

Γw = ρΓw−1 + ψw .

The εi and ψw are residuals (noise).
Gives better predictions than just taking overall average for each agent.

For multiple call types, there can be a different Γw for each call type, or a
single Γw for all call types (does better for our data set).

There could also be common effects across agents.

Better: model the evolution of all distribution parameters.
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Performance measures and optimization

For a given staffing and routing strategy, the SL on a given day (or given
period) is a random variable. We may be interested in its distribution.

What if we pay a penalty iff the SL is below a given number today?

After solving some work-schedule optimization problem in some call
center, we re-simulated with our best feasible solution for 10000 days, and
computed the empirical distribution of the SL.
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Example of scheduling optimization problem
Suppose the routing rules are fixed.

Several call types, several agent types, several time periods.

A shift type specifies the time when the agent starts working, when he/she
finishes, and all the lunch and coffee breaks.
cs,q = cost of an agent of type s having shift type q.

The decision variables x and z are:
(i) xs,q = number of agents of type i having shift type q;
(ii) z`,s,j = number of agents of type ` that work as type-s agents in
period j , with Ss ⊂ S` (they use only part of their skills).

This determines indirectly the staffing vector y, where ys,j = num. agents
of type s in period j , and aj ,q = 1 iff shift q covers period j :

ys,j =
∑
q

aj ,qxs,q +
∑
l∈S+

s

zl ,s,j −
∑
l∈S−s

zs,l ,j for all s, j .
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Scheduling Optimization Problem
x = vector of shifts; c = their costs; y = staffing vector;
(Long-run) service level for type k in period j (depends on entire vector y):

gk,j(y) =
E[num. calls type k in period j answered within time limit]

E[num. calls type k in period j , ans., or abandon. after limit]
.

(P0) : [Scheduling problem]

min ctx =
∑I

s=1

∑Q
q=1 cs,qxs,q

subject to Ax + Bz = y,
gk,j(y) ≥ lk,j for all k , j ,
gj(y) ≥ lj for all j ,
gk(y) ≥ lk for all k,
g(y) ≥ l ,
x ≥ 0, z ≥ 0, y ≥ 0, and integer.
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Sample-path optimization via simulation

We simulate n independent operating days of the center, to estimate the
functions g .

Let ω represent the source of randomness, i.e., the sequence of
independent uniform r.v.’s underlying the entire simulation (n runs).

The empirical SL’s over the n simulation runs are:
ĝn,k,j(y, ω) for call type k in period j ;
ĝn,j(y, ω) aggregated over period j ;
ĝn,k(y, ω) aggregated for call type k ;
ĝn(y, ω) aggregated overall.

For a fixed ω, these are deterministic functions of y.

We replace the (unknown) functions g(·) by ĝ(·, ω) and optimize.

To compute them at different values of y, we use simulation with
well-synchronized common random numbers. Discuss.
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Empirical (sample) scheduling optimization problem

(SP0n) : [Sample scheduling problem]

min ctx =
∑

s

∑Q
q=1 cs,qxs,q

subject to Ax + Bz = y,
ĝn,k,j(y) ≥ lk,j for all k , j ,
ĝn,j(y) ≥ lj for all j ,
ĝn,k(y) ≥ lk for all k ,
ĝn(y) ≥ l ,
x ≥ 0, z ≥ 0, and integer.

Theorem: When n→∞, the optimal solution of SP0n converges w.p.1 to
that of P0. Moreover, if a standard large deviation principle holds for ĝ
(which is typical), the probability that the two solutions differ converges to
0 exponentially with n. [Adaptation of Vogel 1994, for example.]
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Solving the sample optimization problem

Integer programming with cutting planes.
[Atlason, Epelman, and Henderson, 2004; Cezik and L’Ecuyer 2005]
Replace the nonlinear constraints in SP0n by a set of linear constraints.
This gives an integer program (IP).

We start with a relaxation of the IP problem (fewer constraints).
Then, at each step, use simulation to compute the service levels in SP0n
for the optimal solution ȳ of the current IP.
For each SL constraint that is not satisfied, add a cut based on estimated
subgradient.
Stop when all SL constraints of SP0n are satisfied.

In practice, for large problems, we solve the IP as an LP and round the
solution (at each step, to be able to simulate). We select a rounding
threshold δ (usually around 0.5 or 0.6). Heuristic!

Phase II: run longer simulation to perform a local adjustment to the final
solution, using heuristics (add, remove, switch).
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Other objectives and constraints
(alternative formulations)

Chance constraints: Replace long-term average gk,j(y) by a tail probability
of the service level, e.g.:

P[SLk,j(τ) ≥ lk,j ] ≥ αk,j for all k , j .

Optimizing call routing rules.

Replace constraints by penalties.

Etc.
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Conclusion

Simulation and optimization can be useful only to the extent that we can
trust the model.

We can do more and more simulation runs and compute arbitrarily tight
confidence intervals on certain unknown quantities, but this can be
meaningless if the simulation model is not accurate enough.

Huge masses of data are becoming available (currently) at a rate never
seen before. Exploiting this data to build credible and valid stochastic
models of complex systems is in my opinion the biggest challenge that we
now face for simulation.
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