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NEURAL NETWORK ONLINE COURSE

Topics: online videos

» covers many other topics:
convolutional networks, neural

language model, restricted
Boltzmann machines,

autoencoders, sparse coding, etc.

http://info.usherbrooke.ca/hlarochelle/neural_networks

Click with the mouse or tablet to draw with pen 2

RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer; hidden layer, energy function
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NEURAL NETWORK

Topics: multilayer neural network
* Could have L hidden layers:

» layer input pre-activation for k>0 (h(®(x) = x)
a®)(x) = bk) £ WEhE-1)(x)

» hidden layer activation (k£ from 1 to L):
h")(x) = g(a™™ (x))

» output layer activation (k=L+1):
h(t+1(x) = o(a'"+1(x)) = f(x)




MACHINE LEARNING

Topics: empirical risk minimization, regularization
* Empirical risk minimization

» framework to design learning algorithms

1
arg min 7 > 1(f(x':0),5") + \2(6)
t

y 1(f(x):8),y™) is a loss function
» Q(H) s a regularizer (penalizes certain values of @)

* Learning Is cast as optimization

» ideally, we'd optimize classification error, but it's not smooth

» loss function Is a surrogate for what we truly should optimize (e.g. upper bound)



MACHINE LEARNING

Topics: stochastic gradient descent (SGD)

» Algorithm that performs updates after each example
y initidlize @ (0= {WWO b | WEFD pI+D1
» for N rterations

- for each training example X(t),y(t) -
s ple. | ) training epoch

¢ A= —Vel(f(xP;0),yM) — A\VeQ(0) E
o A teration over all examples
» lo apply this algorithm to neural network training, we need
» the loss function {(f(x(); 8), y(*))
» a procedure to compute the parameter gradients Vol(f(xD;0),y®)
» the regularizer (@) (and the gradient V{2(8) )



LOSS FUNCTION

Topics: loss function for classification

» Neural network estimates f(x). = p(y = ¢[x)

» we could maximize the probabillities of y(t> given x(t) in the training set

* To frame as minimization, we minimize the
negative log-likelihood natural log (In)

e i N

[(f(x),y) = — Zc 1(y=c) log f(x). = —log f(X)y

» we take the log to simplify for numerical stability and math simplicrty

» sometimes referred to as cross-entropy



BACKPROPAGATION

Topics: backpropagation algorithm

* This assumes a forward propagation has been made before

» compute output gradient (before activation)
Vaa+n () —log f(x)y <= —(e(y) —f(x))
i eElRom L1 to 1

- compute gradients of hidden layer parameter

Vwmw —log f(x), <= (va(k)(x) — log f(X)y) h(k_l)(X)T
Vi —log f(x)y <= Vam (x) — log f(x)y

- compute gradient of hidden layer below |
vh(k—l)(x) e lOg f(X)y S W(k) (va(k)(x) P log f(X)y)

- compute gradient of hidden layer below (before activation)

Vak-n(x) — 108 f(x)y = (Vne-vw) —logf(x)y) O[..,¢' (" (x);),.. ]



FLOW GRAPH

Topics: flow graph

* Forward propagation can be
represented as an acyclic
flow graph

* It's a nice way of implementing
forward propagation in a modular
way
» each box could be an object with an fprop method,

that computes the value of the box given its
children

» calling the fprop method of each box in the
right order yield forward propagation




FLOW GRAPH

Topics: automatic differentiation

» Fach object also has a bprop method

» it computes the gradient of the loss with
respect to each children

» fprop depends on the fprop of a box’s children,
while bprop depends the bprop of a box’s parents

» By calling bprop In the reverse order,
we get backpropagation

» only need to reach the parameters




REGULARIZATION

Topics: |2 regularization

00) =S 555 (W) = S WOl

» Gradient: Vywam2(0) = IW (k)

* Only applied on welights, not on biases (weight decay)

» Can be Interpreted as having a Gaussian prior over the
welghts



REGULARIZATION

Topics: L| regularization

=SB S vl

+ Gradient: Vo Q(0) = sign(W*)
» where sign(W#); ; = w50 = Lw® o
» Also only applied on vveights ’
» Unlike L2, LI will push certain weights to be exactly O

» Can be Interpreted as having a Laplacian prior over the
welghts



INITIALIZATION

Topics: initialization
* For biases

» initialize all to O

* For weights

» Can't inrtialize weights to O with tanh activation
- we can show that all gradients would then be O (saddle point)
» Can't inrtialize all weights to the same value
- we can show that all hidden units in a layer will always behave the same

size of h(F)(x)
- need to break symmetry

» Recipe: sample Wz{,kj)from U |—b,b] where b= JH \—/fH
rtHr—1

- the idea is to sample around O but break symmetry

- other values of b could work well (not an exact science) ( see Glorot & Bengio, 2010)



Neural networks

Iraining neural networks - model selection



MACHINE LEARNING

Topics: training, validation and test sets, generalization
+ Training set D31 serves to train a model

+ Validation set D34 serves to select hyper-parameters

» hidden layer size(s), learning rate, number of iterations/epochs, etc.

+ Test set DY serves to estimate the oeneralization
performance (error)

* Generalization I1s the behavior of the model on unseen
examples

» this is what we care about in machine learning!



PRI SELEC TS

Topics: grid search, random search

» o search for the best configuration of the hyper-parameters:

» you can perform a grid search
- specify a set of values you want to test for each hyper-parameter
- 1ry all possible configurations of these values
» you can perform a random search (Bergstra and Bengio, 2012)
- specify a distribution over the values of each hyper-parameters (e.g. uniform in some range)

- sample independently each hyper-parameter to get a configuration, and repeat as many
times as wanted

» Use a validation set performance to select the best
configuration

* You can go back and refine the grid/distributions if needed



PRI SELEC TS

Topics: bayesian optimization, sequential model-based optimization

» Use machine learning to predict performance on validation set

» model must provide a predictive mean and variance

» alternate between suggesting hyper-parameters and train/predict valid performance

’

pred var

pred mean = = =truth @ evaluations Y,




KNOWING WHEN TO STOP

Topics: early stopping

* o select the number of epochs, stop training when validation
set error Increases (with some look ahead)
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Neural networks

Training neural networks - other tricks of the trade



BEHIER | RICKS OF | RHE FRAEHS

Topics: normalization of data, decaying learning rate

* Normalizing your (real-valued) data

» for dimension x; subtract its training set mean
» divide by dimension x; by Its training set standard deviation

» this can speed up training (in number of epochs)

* Decaying the learning rate

» as we get closer to the optimum, makes sense to take smaller update steps
(i) start with large learning rate (e.g. O.1)
(i) maintain until validation error stops improving

(iii) divide learning rate by 2 and go back to (i)



BEHIER | RICKS OF | RHE FRAEHS

Topics: mini-batch, momentum

» Can update based on a mini-batch of example (instead of I example):

» the gradient Is the average regularized loss for that mini-batch
» can give a more accurate estimate of the risk gradient

» can leverage matrix/matrix operations, which are more efficient

» Can use an exponential average of previous gradients:

VY = Vel(f(x®),y®) + V5V

» can get through plateaus more quickly, by “gaining momentum”

20



GRADIENT CHECKING

Topics: finite difference approximation

* To debug your implementation of fprop/bprop, you can
compare with a finite-difference approximation of the gradient

0f(z) , flazte)—f(z—¢)
oOx 2€

> f(a:) would be the loss

» L would be a parameter
» (2 4+ €) would be the loss if you add € to the parameter

> f(w N 6) would be the loss If you subtract € to the parameter

2|



Neural networks
Deep learning - difficulty of training



23

NEURAL NETWORK

Topics: multilayer neural network

* Could have L hidden layers:

» layer input activation for k>0 (h9(x) = x)
a®)(x) = bk) £ WEhE-1)(x)

» hidden layer activation (k£ from 1 to L):
h")(x) = g(a™™ (x))

» output layer activation (k=L+1):
h(t+1(x) = o(a'"+1(x)) = f(x)




DEEP LEARNING

Topics: why training Is hard
* First hypothesis: optimization Is harder
(underfitting)
» vanishing gradient problem ‘

» saturated units block gradient
propagation

* This is a well known problem In
recurrent neural networks

iz



DEEP LEARNING

Topics: why training Is hard
» Second hypothesis: overfitting

» we are exploring a space of complex functions

» deep nets usually have lots of parameters

* Might be In a high variance / low bias situation

@ P
possible f

possible f

low variance/

bl good trade-off

25
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DEEP LEARNING

Topics: why training Is hard

* Depending on the problem, one or the other situation will
tend to dominate

* If first hypothesis (underfitting): better optimize

» use better optimization methods

» use GPUs

* |f second hypothesis (overfitting): use better regularization

» unsupervised learning

» stochastic «dropout» training



Neural networks

Deep learning - unsupervised pre-training



UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training

» Solution: inrtialize hidden layers using unsupervised learning

» force network to represent latent structure of input distribution

Why Is one
a character
and the other
& e

character image random Image

» encourage hidden layers to encode that structure

28



UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training

» Solution: inrtialize hidden layers using unsupervised learning

» this is a harder task than supervised learning (classification)

Why Is one
a character
and the other
& e

character image random Image

» hence we expect less overfitting

29



AU TOENCODER

Topics: autoencoder, encoder, decoder; tied welghts

* Feed-forward neural network trained to reproduce its input at
the output layer

x (O@O000) o D(A(d))
TV(‘tfe*dwe;Q;T = igg(c+w*h(x))
hx) (OGOO0) for binary inputs
Encoder
W
I h(x) = g(a(x))

sigm(b + Wx)

x (OOOOO0)




UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training

* We will use a greedy, layer-wise procedure

» train one layer at a time, from first to last, with unsupervised criterion

» fix the parameters of previous hidden layers

» previous layers viewed as feature extraction

3



UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training
- We call this procedure unsupervised pre-training

» first layer: find hidden unit features that are more common in training
INnputs than in random INputs

» second layer: find combinations of hidden unit features that are more
common than random hidden unit features

» third layer: find combinations of combinations of ...
> EHEr

* Pre-training initializes the parameters in a region such that the near
local optima overfit less the data

32



FINE-TUNING

Topics: fine-tuning

» Once all layers are pre-trained

» add output layer

» train the whole network using supervised learning

» Supervised learning is performed as In
a regular feed-forward network

» forward propagation, backpropagation and update

* We call this last phase fine-tuning

» all parameters are “tuned” for the supervised task
at hand

» representation Is adjusted to be more discriminative

33



DEEP LEARNING

Topics: pseudocode

Siemn’—1 to L \

» build unsupervised training set (with h(®) =)

D {ha—l)(X(t))}T

e |
» train “greedy module” (RBM, autoencoder) on D

» use hidden layer weights and biases of greedy module
to initialize the deep network parameters wO bl

* Initialize WEFD bE+D randomly (as usual)

pre-training

:
* [rain the whole neural network using (supervised)

stochastic gradient descent (with backprop)

y

fine-
tuning



DEEP LEARNING

Topics: impact of Initialization

- = 1-layer RBM == 2-layer DBN - = 3-layer DBN
—— 1-layer denoising AE — 2-layer SDAE | ——3-layer SDAE
i ini /M2 fo pre-traini / y
—o—1 layers w/o pre-training AYEIS WO PIE-taining —— 3 layers w/o pre-training

ANIE W

T

I
; Acts as a regularizer:

| - overfits less with large capacity
' - underfits with small capacity

Test error

R ‘——'
RS oL

ARSI I N R R 1 AR SR N 1 AR N R R S
10' 10° 10° 10' 10° 10° 10' 10° 10°
Number of hidden units Number of hidden units Number of hidden units

Why Does Unsupervised Pre-training Help Deep Learning?
Erhan, Bengio, Courville, Manzagol,Vincent and Bengio, 201 |



Neural networks

Deep learning - dropout
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DEEP LEARNING

Topics: why training Is hard

* Depending on the problem, one or the other situation will
tend to dominate

* If first hypothesis (underfitting): better optimize

» use better optimization methods

» use GPUs

* |f second hypothesis (overfitting): use better regularization

» unsupervised learning

» stochastic «dropout» training



DROPOUT

Topics: dropout
* |[dea: «cripple» neural network by
removing hidden units stochastically

» each hidden unit is set to O with
probability 0.5

» hidden units cannot co-adapt to other

unrts
w2 ’
» hidden units must be more generally

useful h() (x)

W '
» Could use a different dropout

probability, but 0.5 usually
works well

38



DROPOUT

Topics: dropout

» Use random binary masks m*)

» layer pre-activation for k>0 (h{®(x) = x)

a(k)(X) — bk Vv(lc)h(/f—l)(X

» hidden layer activation (k£ from 1 to L):

h*)(x) = g(a® (x)) om(®

» output layer activation (k=L 1):

39



DROPOUT

Topics: dropout backpropagation

* This assumes a forward propagation has been made before

» compute output gradient (before activation)

PR eoe (), —  — (e(y) —f(x)) includes the
e icon L1 to 1 mask m(+1)
- compute gradients of hidden layer parameter ¢

Vwa —log f(x), <= (Va<k>(x) — log f(X)y) h(k_l)(X)T
Vi —log f(x)y <= Vam (x) — log f(x)y

- compute gradient of hidden layer below |
vh(’f—l)(x) s lOg f(X)y S W(k) (va(k)(x) P log f(X)y)

- compute gradient of hidden layer below (before activation)

R ool (e e — (Ve Log [y O @G,

] O m(F1)

40



DROPOUT

Topics: test time classification

» At test time, we replace the masks by their expectation

» this Is simply the constant vector 0.5 if dropout probabllity is 0.5

» for single hidden layer, can show this Is equivalent to taking the geometric average
of all neural networks, with all possible binary masks

- Can be combined with unsupervised pre-training

» Beats regular backpropagation on many datasets

» Improving neural networks by preventing co-adaptation of feature detectors.
Hinton, Srivastava, Krizhevsky, Sutskever and Salakhutdinoy, 201 2.

41



Neural networks

Deep learning - batch normalization
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DEEP LEARNING

Topics: why training Is hard

* Depending on the problem, one or the other situation will
tend to dominate

* If first hypothesis (underfitting): better optimize

» use better optimization methods

» use GPUs

* |f second hypothesis (overfitting): use better regularization

» unsupervised learning

» stochastic «dropout» training



BATCH NORMALIZATION

Topics: batch normalization

* Normalizing the inputs will speed up training
EEethrevial-[578)

» could normalization also be useful at the level of the hidden layers?

* Batch normalization is an attempt to do that
(loffe and Szegedy, 2014)

» each unit's pre-activation is normalized (mean subtraction, stddev division)
» during training, mean and stddev Is computed for each minibatch
» backpropagation takes into account the normalization

» at test time, the global mean / stddev is used

44



BATCH NORMALIZATION

Topics: batch normalization

* Batch normalization Learned linear transformation
- to adapt to non-linear activation
Input: Values of x over a mini-batch: B = {x1.. . }; -~ function

Parameters to be learned: v, 3

d trained
Output: {y; = BN, 5(z;)} (y and f are trained)

RS .
UB — — E T // mini-batch'mean
m P
i=1
1 « '
0 — (z; — pug)? // mini-batch variance
i=1 '
~ i — UB _
XTi 4 - : a // normalize
_________ VORTE

Yyi < 7T + B = BN, g(x4): // scale and shift

---------------------------------------
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BATCH NORMALIZATION

Topics: batch normalization

* Why normalize the pre-activation?

» can help keep the pre-activation in a non-saturating regime
(though the linear transform y; < vx; + B could cancel this effect)

* Why use minibatches!?

» since hidden units depend on parameters, can't compute mean/stddev once and
for all

» adds stochasticity to training, which might regularize (dropout not as useful)
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BATCH NORMALIZATION

Topics: batch normalization

* How to take into account the normalization in backdrop?

» derivative wrt x; depends on the partial derivative of the mean and stddev

» must also update y and f

* Why use the global mean stddev at test time?

» removes the stochasticity of the mean and stddev

» requires a final phase where, from the first to the last hidden layer
1. propagate all training data to that layer

2. compute and store the global mean and stddev of each unit

» for early stopping, could use a running average



Neural networks

Training neural networks - types of learning



SUPERVISED LEARNING

Topics: supervised learning

* lraining time o Jlest e * Example

» data: Pt i » classification

{X(t), y(t)} {X(t), y(t)} » regression

» setting : » setting :

() ()

X(t) i p(Xa y)

s p(X7 y) X(t)7 Y

Y

49



UNSUPERVISED LEARNING

Topics: unsupervised learning

* lraining time o Jlest e * Example
» data: PGl i » distribution estimation
(t) (t) » dimensionality
{X } {X } reduction

» setting : » setting :

x(*) ~ p(x) x*) ~ p(x)

50



SEMI-SUPERVISED LEARNING

Topics: semi-supervised learning

* lraining time o Jlest e

» data: Pt i

(x®, 0} (x®, 0}
{x)

» setting : » setting :

()

1)

i e e )

o)



MULTITASK LEARNING

Topics: multitask learning

* lraining time o Jlest e
» data: » data:

() () () ()

{X(t)vyl 7'°°7yM} {X(t)7y1 7°°°7yM}

» setting : » setting :

o~ x®, 117, yad ~

p(Xay17°°°7yM) p(X7y17'°°7yM)

* Example

» object recognition In
images with multiple
objects

52
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MULTITASK LEARNING

Topics: multitask learning



TRANSFER LEARNING

Topics: transfer learning

* lraining time o Jlest e

» data: Pt i

=417,y {x®, 41"}

» setting : » setting :

X(t)7 yy)? s 7y](\t4) R X(t)v ?At) S p(X7 yl)

p(X7y17°°'7yM)

54



R UC | URED OUTPU T PREDICTHSSE.

Topics: structured output prediction

* lraining time o Jlest e * Example
» data : » data: » Image caption
e o) &) () generation
{X Y } {X Y } » machine translation

\ of arbitrary structure
(vector, sequence, graph)

» setting : » setting :

() (®) (t)

Np(X7Y)

~ p(X,y) x") y

Y
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DOMAIN ADAPTATION

Topics: domain adaptation, covariate shift

* lraining time o Jlest e * Example
» data : » data : » classify sentiment in
reviews of different

%}

» setting : » setting :
x(*) ~ p(x) %" ~ g(x)
y' ~ p(yx") y' ~ p(yx")
%" ~ q(x)~ p(x)




DOMAIN ADAPTATION

Topics: domain adaptation, covariate shift

» Domain-adverarial networks (Ganin et al. 2015)

train hidden layer representation to be £(x) C@OOO) o(h(x))

|. predictive of the target class
2. indiscriminate of the domain V T W
» Irained by stochastic gradient descent h(x) (@OOOO}
» for each random pair X(t),)_((t/)
|.update W,V ,b,c in opposite direction of gradient W T

2. update w,d In direction of gradient X (OOOOOO)

5/
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ONE-SHOT LEARNING

Topics: one-shot learning

* lraining time o Jlest e * Example
» data : » data: » recognizing a person
based on a single
{X(t), y(t)} {X(t), y(t)} picture of him/her

» setting : » setting :

) ) (¢)

i p(X, y)

t
A p(X7 y) X( )7y
eEaciony P e {1,...,C} slib Ectitor) VAe (@ oAl

' Y

» additional data :

- a single labeled example from
each of the M new classes




ONE-SHOT LEARNING

Topics: one-shot learning

Siamese architecture

(figure taken from Salakhutdinov
and Hinton, 2007)

59
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/ERO-SHOT LEARNING

Topics: zero-shot learning, zero-data learning

* lraining time o Jlest e * Example
» data: » data: » recognizing an object
based on a worded
{X(t), y(t)} {X(t), y(t)} description of It

» setting : » setting :

) ) (¢)

i p(X, y)

t
A p(X7 y) X( )7y
eEaciony P e {1,...,C} slib Ectitor) VAe (@ oAl

' Y

» additional data : » additional data :

- description vector z. of each of - description vector z. of each of
the (' classes the new M classes
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/ERO-SHOT LEARNING

Topics: zero-shot learning, zero-data learning

‘Wikipedia article
The Cardinals or Cardinalidae are a family of passerine
, | birds found in North and South America

i | The South American cardinals in the genus...

Ba, Swersky, Fidler; Salakhutdinov
arxiv 2015



NEURAL NETWORK ONLINE COURSE

Topics: online videos

» covers many other topics:
convolutional networks, neural

language model, restricted
Boltzmann machines,

autoencoders, sparse coding, etc.
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http://info.usherbrooke.ca/hlarochelle/neural_networks

Click with the mouse or tablet to draw with pen 2

RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer; hidden layer, energy function

OBOOOO) h-
el

& |
(OO0 X+ e
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distribution: p(x, h) = exp(—FE(x, h))/Z\



MERCI!
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