Training Deep Neural Networks

Hugo Larochelle (@hugo_larochelle)
Twitter / Université de Sherbrooke

NEURAL NETWORK ONLINE COURSE

Topics: online videos

covers many other topics:
 convolutional networks, neural
 language model, restricted
 Boltzmann machines,
 autoencoders, sparse coding, etc.

http://info.usherbrooke.ca/hlarochelle/neural_networks

Click with the mouse or tablet to draw with pen 2

RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h}$$

$$= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} - \sum_{j} b_{j} h_{j}$$

Distribution:
$$p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z_{\mathbf{x}}$$

partition function (intractable)

NEURAL NETWORK

Topics: multilayer neural network

- Could have L hidden layers:
- layer input pre-activation for k>0 ($\mathbf{h}^{(0)}(\mathbf{x})=\mathbf{x}$)

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

 \blacktriangleright hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

MACHINE LEARNING

Topics: empirical risk minimization, regularization

- Empirical risk minimization
 - framework to design learning algorithms

$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \frac{1}{T} \sum_{t} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$$

- $l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$ is a loss function
- $oldsymbol{\Omega}(oldsymbol{ heta})$ is a regularizer (penalizes certain values of $oldsymbol{ heta}$)
- Learning is cast as optimization
 - ideally, we'd optimize classification error, but it's not smooth
 - loss function is a surrogate for what we truly should optimize (e.g. upper bound)

MACHINE LEARNING

Topics: stochastic gradient descent (SGD)

- · Algorithm that performs updates after each example
 - initialize $\boldsymbol{\theta}$ ($\boldsymbol{\theta} \equiv \{\mathbf{W}^{(1)}, \mathbf{b}^{(1)}, \dots, \mathbf{W}^{(L+1)}, \mathbf{b}^{(L+1)}\}$)
 - for N iterations
 - for each training example $(\mathbf{x}^{(t)}, y^{(t)})$ $\checkmark \Delta = -\nabla_{\boldsymbol{\theta}} l(f(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) \lambda \nabla_{\boldsymbol{\theta}} \Omega(\boldsymbol{\theta})$ = $\checkmark \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \Delta$ iteration over **all** examples
- · To apply this algorithm to neural network training, we need
 - the loss function $l(\mathbf{f}(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$
 - lacktriangleright a procedure to compute the parameter gradients $abla_{m{ heta}}l(\mathbf{f}(\mathbf{x}^{(t)};m{ heta}),y^{(t)})$
 - lack the regularizer $\Omega(oldsymbol{ heta})$ (and the gradient $abla_{oldsymbol{ heta}}\Omega(oldsymbol{ heta})$)

LOSS FUNCTION

Topics: loss function for classification

- Neural network estimates $f(\mathbf{x})_c = p(y = c|\mathbf{x})$
 - ullet we could maximize the probabilities of $y^{(t)}$ given ${f x}^{(t)}$ in the training set
- To frame as minimization, we minimize the negative log-likelihood natural log (In)

$$l(\mathbf{f}(\mathbf{x}), y) = -\sum_{c} 1_{(y=c)} \log f(\mathbf{x})_{c} = -\log f(\mathbf{x})_{y}$$

- we take the log to simplify for numerical stability and math simplicity
- sometimes referred to as cross-entropy

BACKPROPAGATION

Topics: backpropagation algorithm

- This assumes a forward propagation has been made before
 - compute output gradient (before activation)

$$\nabla_{\mathbf{a}^{(L+1)}(\mathbf{x})} - \log f(\mathbf{x})_y \leftarrow -(\mathbf{e}(y) - \mathbf{f}(\mathbf{x}))$$

- for k from L+1 to 1
 - compute gradients of hidden layer parameter

$$\nabla_{\mathbf{W}^{(k)}} - \log f(\mathbf{x})_y \iff (\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y) \quad \mathbf{h}^{(k-1)}(\mathbf{x})^{\top}$$
$$\nabla_{\mathbf{b}^{(k)}} - \log f(\mathbf{x})_y \iff \nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y$$

- compute gradient of hidden layer below

$$\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \mathbf{W}^{(k)} \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y \right)$$

- compute gradient of hidden layer below (before activation)

$$\nabla_{\mathbf{a}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \left(\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \odot [\dots, g'(a^{(k-1)}(\mathbf{x})_j), \dots]$$

FLOW GRAPH

Topics: flow graph

- Forward propagation can be represented as an acyclic flow graph
- It's a nice way of implementing forward propagation in a modular way
 - each box could be an object with an fprop method,
 that computes the value of the box given its
 children
 - right order yield forward propagation

FLOW GRAPH

Topics: automatic differentiation

- · Each object also has a bprop method
 - it computes the gradient of the loss with respect to each children
 - fprop depends on the fprop of a box's children, while bprop depends the bprop of a box's parents
- By calling bprop in the reverse order, we get backpropagation
 - only need to reach the parameters

REGULARIZATION

Topics: L2 regularization

$$\Omega(\boldsymbol{\theta}) = \sum_{k} \sum_{i} \sum_{j} \left(W_{i,j}^{(k)} \right)^{2} = \sum_{k} ||\mathbf{W}^{(k)}||_{F}^{2}$$

• Gradient: $\nabla_{\mathbf{W}^{(k)}}\Omega(\boldsymbol{\theta}) = 2\mathbf{W}^{(k)}$

- · Only applied on weights, not on biases (weight decay)
- Can be interpreted as having a Gaussian prior over the weights

REGULARIZATION

Topics: LI regularization

$$\Omega(\boldsymbol{\theta}) = \sum_{k} \sum_{i} \sum_{j} |W_{i,j}^{(k)}|$$

- Gradient: $\nabla_{\mathbf{W}^{(k)}}\Omega(\boldsymbol{\theta}) = \operatorname{sign}(\mathbf{W}^{(k)})$
 - where $\operatorname{sign}(\mathbf{W}^{(k)})_{i,j} = 1_{\mathbf{W}^{(k)}_{i,j} > 0} 1_{\mathbf{W}^{(k)}_{i,j} < 0}$
- Also only applied on weights
- Unlike L2, L1 will push certain weights to be exactly 0
- Can be interpreted as having a Laplacian prior over the weights

INITIALIZATION

size of $\mathbf{h}^{(k)}(\mathbf{x})$

Topics: initialization

- For biases
 - ▶ initialize all to 0
- For weights
 - Can't initialize weights to 0 with tanh activation
 - we can show that all gradients would then be 0 (saddle point)
 - Can't initialize all weights to the same value
 - we can show that all hidden units in a layer will always behave the same
 - need to break symmetry
 - Recipe: sample $\mathbf{W}_{i,j}^{(k)}$ from $U\left[-b,b\right]$ where $b=\frac{\sqrt{6}}{\sqrt{H_k+H_{k-1}}}$
 - the idea is to sample around 0 but break symmetry
 - other values of b could work well (not an exact science) (see Glorot & Bengio, 2010)

Neural networks

Training neural networks - model selection

MACHINE LEARNING

Topics: training, validation and test sets, generalization

- ullet Training set $\mathcal{D}^{\mathrm{train}}$ serves to train a model
- ullet Validation set $\mathcal{D}^{\mathrm{valid}}$ serves to select hyper-parameters
 - ▶ hidden layer size(s), learning rate, number of iterations/epochs, etc.
- Test set $\mathcal{D}^{\mathrm{test}}$ serves to estimate the generalization performance (error)

- Generalization is the behavior of the model on unseen examples
 - ▶ this is what we care about in machine learning!

MODEL SELECTION

Topics: grid search, random search

- To search for the best configuration of the hyper-parameters:
 - you can perform a grid search
 - specify a set of values you want to test for each hyper-parameter
 - try all possible configurations of these values
 - you can perform a random search (Bergstra and Bengio, 2012)
 - specify a distribution over the values of each hyper-parameters (e.g. uniform in some range)
 - sample independently each hyper-parameter to get a configuration, and repeat as many times as wanted
- Use a validation set performance to select the best configuration
- · You can go back and refine the grid/distributions if needed

MODEL SELECTION

Topics: bayesian optimization, sequential model-based optimization

- Use machine learning to predict performance on validation set
 - model must provide a predictive mean and variance
 - ▶ alternate between suggesting hyper-parameters and train/predict valid performance

KNOWING WHENTO STOP

Topics: early stopping

• To select the number of epochs, stop training when validation set error increases (with some look ahead)

Neural networks

Training neural networks - other tricks of the trade

OTHER TRICKS OF THE TRADE

Topics: normalization of data, decaying learning rate

- Normalizing your (real-valued) data
 - \blacktriangleright for dimension x_i subtract its training set mean
 - ightharpoonup divide by dimension x_i by its training set standard deviation
 - this can speed up training (in number of epochs)
- Decaying the learning rate
 - ▶ as we get closer to the optimum, makes sense to take smaller update steps
 - (i) start with large learning rate (e.g. 0.1)
 - (ii) maintain until validation error stops improving
 - (iii) divide learning rate by 2 and go back to (ii)

OTHER TRICKS OF THE TRADE

Topics: mini-batch, momentum

- Can update based on a mini-batch of example (instead of I example):
 - the gradient is the average regularized loss for that mini-batch
 - can give a more accurate estimate of the risk gradient
 - can leverage matrix/matrix operations, which are more efficient

· Can use an exponential average of previous gradients:

$$\overline{\nabla}_{\boldsymbol{\theta}}^{(t)} = \nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) + \beta \overline{\nabla}_{\boldsymbol{\theta}}^{(t-1)}$$

can get through plateaus more quickly, by "gaining momentum"

GRADIENT CHECKING

Topics: finite difference approximation

• To debug your implementation of fprop/bprop, you can compare with a finite-difference approximation of the gradient

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+\epsilon)-f(x-\epsilon)}{2\epsilon}$$

- f(x) would be the loss
- $ightharpoonup \mathcal{X}$ would be a parameter
- $f(x+\epsilon)$ would be the loss if you add ϵ to the parameter
- $f(x-\epsilon)$ would be the loss if you subtract ϵ to the parameter

Neural networks

Deep learning - difficulty of training

NEURAL NETWORK

Topics: multilayer neural network

- Could have L hidden layers:
 - layer input activation for k>0 $(\mathbf{h}^{(0)}(\mathbf{x})=\mathbf{x})$

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

 \blacktriangleright hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$

• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

Topics: why training is hard

 First hypothesis: optimization is harder (underfitting)

- vanishing gradient problem
- saturated units block gradient propagation

 This is a well known problem in recurrent neural networks

Topics: why training is hard

- Second hypothesis: overfitting
 - we are exploring a space of complex functions
 - deep nets usually have lots of parameters
- Might be in a high variance / low bias situation

Topics: why training is hard

 Depending on the problem, one or the other situation will tend to dominate

- If first hypothesis (underfitting): better optimize
 - use better optimization methods
 - use GPUs

- If second hypothesis (overfitting): use better regularization
 - unsupervised learning
 - stochastic «dropout» training

Neural networks

Deep learning - unsupervised pre-training

UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training

- · Solution: initialize hidden layers using unsupervised learning
 - ▶ force network to represent latent structure of input distribution

encourage hidden layers to encode that structure

UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training

- · Solution: initialize hidden layers using unsupervised learning
 - this is a harder task than supervised learning (classification)

hence we expect less overfitting

AUTOENCODER

Topics: autoencoder, encoder, decoder, tied weights

• Feed-forward neural network trained to reproduce its input at the output layer

UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training

- · We will use a greedy, layer-wise procedure
 - train one layer at a time, from first to last, with unsupervised criterion
 - fix the parameters of previous hidden layers

UNSUPERVISED PRE-TRAINING

Topics: unsupervised pre-training

- · We call this procedure unsupervised pre-training
 - first layer: find hidden unit features that are more common in training inputs than in random inputs
 - > second layer: find combinations of hidden unit features that are more common than random hidden unit features
 - third layer: find combinations of combinations of ...
 - etc.
- Pre-training initializes the parameters in a region such that the near local optima overfit less the data

FINE-TUNING

Topics: fine-tuning

- Once all layers are pre-trained
 - add output layer
 - train the whole network using supervised learning
- Supervised learning is performed as in a regular feed-forward network
 - forward propagation, backpropagation and update
- We call this last phase fine-tuning
 - ▶ all parameters are "tuned" for the supervised task at hand
 - representation is adjusted to be more discriminative

Topics: pseudocode

- for l=1 to L
 - ightharpoonup build unsupervised training set (with $\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x}$):

$$\mathcal{D} = \left\{ \mathbf{h}^{(l-1)}(\mathbf{x}^{(t)}) \right\}_{t=1}^{T}$$

- ullet train "greedy module" (RBM, autoencoder) on ${\cal D}$
- lack use hidden layer weights and biases of greedy module to initialize the deep network parameters $\mathbf{W}^{(l)}$, $\mathbf{b}^{(l)}$
- Initialize $\mathbf{W}^{(L+1)}$, $\mathbf{b}^{(L+1)}$ randomly (as usual)
- Train the whole neural network using (supervised) stochastic gradient descent (with backprop)

pre-training

finetuning

Topics: impact of initialization

Why Does Unsupervised Pre-training Help Deep Learning? Erhan, Bengio, Courville, Manzagol, Vincent and Bengio, 2011

Neural networks

Deep learning - dropout

DEEP LEARNING

Topics: why training is hard

 Depending on the problem, one or the other situation will tend to dominate

- If first hypothesis (underfitting): better optimize
 - use better optimization methods
 - use GPUs

- If second hypothesis (overfitting): use better regularization
 - unsupervised learning
 - stochastic «dropout» training

Topics: dropout

- Idea: «cripple» neural network by removing hidden units stochastically
 - each hidden unit is set to 0 with probability 0.5
 - hidden units cannot co-adapt to other units
 - hidden units must be more generally useful

 Could use a different dropout probability, but 0.5 usually works well

Topics: dropout

- Use random binary masks $\mathbf{m}^{(k)}$
 - layer pre-activation for k>0 $(\mathbf{h}^{(0)}(\mathbf{x})=\mathbf{x})$

$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

 \blacktriangleright hidden layer activation (k from 1 to L):

$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x})) \odot \mathbf{m}^{(k)}$$

• output layer activation (k=L+1):

$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$

Topics: dropout backpropagation

- This assumes a forward propagation has been made before
 - compute output gradient (before activation)

$$\nabla_{\mathbf{a}^{(L+1)}(\mathbf{x})} - \log f(\mathbf{x})_y \leftarrow -(\mathbf{e}(y) - \mathbf{f}(\mathbf{x}))$$

• for k from L+1 to 1

- compute gradients of hidden layer parameter

$$\nabla_{\mathbf{W}^{(k)}} - \log f(\mathbf{x})_y \iff \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \quad \mathbf{h}^{(k-1)}(\mathbf{x})^{\top}$$
$$\nabla_{\mathbf{b}^{(k)}} - \log f(\mathbf{x})_y \iff \nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y$$

- compute gradient of hidden layer below

$$\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \mathbf{W}^{(k)} \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y \right)$$

- compute gradient of hidden layer below (before activation)

$$\nabla_{\mathbf{a}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \left(\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y\right) \odot \left[\dots, g'(a^{(k-1)}(\mathbf{x})_j), \dots\right] \odot \mathbf{m}^{(k-1)}$$

Topics: test time classification

- · At test time, we replace the masks by their expectation
 - ▶ this is simply the constant vector 0.5 if dropout probability is 0.5
 - for single hidden layer, can show this is equivalent to taking the geometric average of all neural networks, with all possible binary masks
- Can be combined with unsupervised pre-training

- Beats regular backpropagation on many datasets
 - Improving neural networks by preventing co-adaptation of feature detectors. Hinton, Srivastava, Krizhevsky, Sutskever and Salakhutdinov, 2012.

Neural networks

Deep learning - batch normalization

DEEP LEARNING

Topics: why training is hard

 Depending on the problem, one or the other situation will tend to dominate

- If first hypothesis (underfitting): better optimize
 - use better optimization methods
 - use GPUs

- If second hypothesis (overfitting): use better regularization
 - unsupervised learning
 - stochastic «dropout» training

Topics: batch normalization

- Normalizing the inputs will speed up training (Lecun et al. 1998)
 - could normalization also be useful at the level of the hidden layers?

- Batch normalization is an attempt to do that (loffe and Szegedy, 2014)
 - each unit's pre-activation is normalized (mean subtraction, stddev division)
 - b during training, mean and stddev is computed for each minibatch
 - backpropagation takes into account the normalization
 - > at test time, the global mean / stddev is used

Topics: batch normalization

Batch normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
               Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
  \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                        // mini-batch mean
   \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                        // mini-batch variance
    \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}
                                                                                      // normalize
     y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                             // scale and shift
```

Learned linear transformation to adapt to non-linear activation function $(\gamma \text{ and } \beta \text{ are trained})$

Topics: batch normalization

- Why normalize the pre-activation?
 - can help keep the pre-activation in a non-saturating regime (though the linear transform $y_i \leftarrow \gamma \hat{x}_i + \beta$ could cancel this effect)
- Why use minibatches?
 - since hidden units depend on parameters, can't compute mean/stddev once and for all
 - ▶ adds stochasticity to training, which might regularize (dropout not as useful)

Topics: batch normalization

- How to take into account the normalization in backdrop?
 - \blacktriangleright derivative wrt x_i depends on the partial derivative of the mean and stddev
 - ightharpoonup must also update γ and β

- Why use the global mean stddev at test time?
 - removes the stochasticity of the mean and stddev
 - requires a final phase where, from the first to the last hidden layer
 - 1. propagate all training data to that layer
 - 2. compute and store the global mean and stddev of each unit
 - for early stopping, could use a running average

Neural networks

Training neural networks - types of learning

SUPERVISED LEARNING

Topics: supervised learning

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$

- Test time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$

- Example
 - classification
 - regression

UNSUPERVISED LEARNING

Topics: unsupervised learning

- Training time
 - data:

$$\{\mathbf{x}^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)} \sim p(\mathbf{x})$$

- Test time
 - data:

$$\{\mathbf{x}^{(t)}\}$$

$$\mathbf{x}^{(t)} \sim p(\mathbf{x})$$

- Example
 - distribution estimation
 - dimensionality reduction

SEMI-SUPERVISED LEARNING

Topics: semi-supervised learning

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$
$$\{\mathbf{x}^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$
 $\mathbf{x}^{(t)} \sim p(\mathbf{x})$

- Test time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$

MULTITASK LEARNING

Topics: multitask learning

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, y_1^{(t)}, \dots, y_M^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)}, y_1^{(t)}, \dots, y_M^{(t)} \sim$$

$$p(\mathbf{x}, y_1, \dots, y_M)$$

- Test time
 - data:

$$\{\mathbf{x}^{(t)}, y_1^{(t)}, \dots, y_M^{(t)}\}$$

$$\mathbf{x}^{(t)}, y_1^{(t)}, \dots, y_M^{(t)} \sim$$

$$p(\mathbf{x}, y_1, \dots, y_M)$$

- Example
 - object recognition in images with multiple objects

MULTITASK LEARNING

Topics: multitask learning

TRANSFER LEARNING

Topics: transfer learning

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, y_1^{(t)}, \dots, y_M^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)}, y_1^{(t)}, \dots, y_M^{(t)} \sim$$

$$p(\mathbf{x}, y_1, \dots, y_M)$$

- Test time
 - data:

$$\{\mathbf{x}^{(t)}, y_1^{(t)}\}$$

$$\mathbf{x}^{(t)}, y_1^{(t)} \sim p(\mathbf{x}, y_1)$$

STRUCTURED OUTPUT PREDICTION

Topics: structured output prediction

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, \mathbf{y}^{(t)}\}$$

of arbitrary structure (vector, sequence, graph)

setting:

$$\mathbf{x}^{(t)}, \mathbf{y}^{(t)} \sim p(\mathbf{x}, \mathbf{y})$$

- Test time
 - data:

$$\{\mathbf{x}^{(t)},\mathbf{y}^{(t)}\}$$

$$\mathbf{x}^{(t)}, \mathbf{y}^{(t)} \sim p(\mathbf{x}, \mathbf{y})$$

- Example
 - image caption generation
 - machine translation

DOMAIN ADAPTATION

Topics: domain adaptation, covariate shift

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$
$$\{\bar{\mathbf{x}}^{(t')}\}$$

setting:

$$\mathbf{x}^{(t)} \sim p(\mathbf{x})$$
 $y^{(t)} \sim p(y|\mathbf{x}^{(t)})$
 $\mathbf{\bar{x}}^{(t)} \sim q(\mathbf{x}) \approx p(\mathbf{x})$

- Test time
 - data:

$$\{\bar{\mathbf{x}}^{(t)}, y^{(t)}\}$$

$$\bar{\mathbf{x}}^{(t)} \sim q(\mathbf{x})$$
 $y^{(t)} \sim p(y|\bar{\mathbf{x}}^{(t)})$

- Example
 - classify sentiment in reviews of different products

DOMAINADAPTATION

Topics: domain adaptation, covariate shift

- Domain-adverarial networks (Ganin et al. 2015) train hidden layer representation to be
 - I. predictive of the target class
 - 2. indiscriminate of the domain
- Trained by stochastic gradient descent
 - lacktriangleright for each random pair $\mathbf{x}^{(t)}, \mathbf{ar{x}}^{(t')}$
 - I. update W,V,b,c in opposite direction of gradient
 - 2. update \mathbf{w}, d in direction of gradient

ONE-SHOT LEARNING

Topics: one-shot learning

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$
 subject to $y^{(t)} \in \{1, \dots, C\}$

- Test time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$
 subject to $y^{(t)} \in \{C+1, \dots, C+M\}$

- ▶ additional data :
 - a single labeled example from each of the M new classes

- Example
 - recognizing a person based on a single picture of him/her

ONE-SHOT LEARNING

Topics: one-shot learning

Siamese architecture (figure taken from Salakhutdinov and Hinton, 2007)

ZERO-SHOT LEARNING

Topics: zero-shot learning, zero-data learning

- Training time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$

setting:

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$
 subject to $y^{(t)} \in \{1, \dots, C\}$

- ▶ additional data :
 - description vector \mathbf{z}_c of each of the C classes

- Test time
 - data:

$$\{\mathbf{x}^{(t)}, y^{(t)}\}$$

$$\mathbf{x}^{(t)}, y^{(t)} \sim p(\mathbf{x}, y)$$
 subject to $y^{(t)} \in \{C+1, \dots, C+M\}$

- ▶ additional data :
 - description vector \mathbf{z}_c of each of the new M classes

- Example
 - recognizing an object based on a worded description of it

ZERO-SHOT LEARNING

Topics: zero-shot learning, zero-data learning

Ba, Swersky, Fidler, Salakhutdinov arxiv 2015

NEURAL NETWORK ONLINE COURSE

Topics: online videos

covers many other topics:
 convolutional networks, neural
 language model, restricted
 Boltzmann machines,
 autoencoders, sparse coding, etc.

http://info.usherbrooke.ca/hlarochelle/neural_networks

Click with the mouse or tablet to draw with pen 2

RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h}$$

$$= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} - \sum_{j} b_{j} h_{j}$$

Distribution:
$$p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z_{\sim}$$

partition function (intractable)

MERCI!