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Abstract

In algorithmic music composition, a simple technique involves selecting notes sequentially according to a
transition table that specifies the probability of the next note as a function of the previous context. I
describe an extension of this transition table approach using a recurrent autopredictive connectionist net-
work called CONCERT. CONCERT is trained on a set of pieces with the aim of extracting stylistic regulari-
ties. CONCERT can then be used to compose new pieces. A central ingredient of CONCERT is the incor-
poration of psychologically-grounded representations of pitch, duration, and harmonic structure. CON-

CERT was tested on sets of examples artificially generated according to simple rules and was shown to
learn the underlying structure, even where other approaches failed. In larger experiments, CONCERT was
trained on sets of J. S. Bach pieces and traditional European folk melodies and was then allowed to com-
pose novel melodies. Although the compositions are occasionally pleasant, and are preferred over com-
positions generated by a third-order transition table, the compositions suffer from a lack of global coher-
ence. To overcome this limitation, several methods are explored to permit CONCERT to induce structure
at both fine and coarse scales. In experiments with a training set of waltzes, these methods yielded lim-
ited success, but the overall results cast doubt on the promise of note-by-note prediction for composition.
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In creating music, composers bring to bear a wealth of knowledge of musical conventions. Some of this
knowledge is based on the experience of the individual, some is culture specific, and perhaps some is
universal. No matter what the source, this knowledge acts to constrain the composition process, specify-
ing, for example, the musical pitches that form a scale, the pitch or chord progressions that are agreeable,
and stylistic conventions like the division of a symphony into movements and the AABB form of a
gavotte. If we hope to build automatic composition systems that create agreeable tunes, it will be neces-
sary to incorporate knowledge of musical conventions into the systems. The difficulty is in deriving this
knowledge in an explicit form: even human composers are unaware of many of the constraints under
which they operate (Loy, 1991).

In this article, a connectionist network that composes melodies with harmonic accompaniment is
described. The network is called CONCERT, an acronym for con

�����

nectionist c
�

omposer of er
���

udite t
�

unes.
(The "er" may also be read as er

���

ratic or er
���

satz, depending on what the listener thinks of its creations.)
Musical knowledge is incorporated into CONCERT via two routes. First, CONCERT is trained on a set of
sample melodies from which it extracts regularities of note and phrase progressions; these are melodic
and stylistic constraints. Second, representations of pitch, duration, and harmonic structure that are based
on psychological studies of human perception have been built into CONCERT. These representations, and
an associated theory of generalization proposed by Shepard (1987), provide CONCERT with a basis for
judging the similarity among notes, for selecting a response, and for restricting the set of alternatives that
can be considered at any time. The representations thus provide CONCERT with psychoacoustic con-
straints.

The experiments reported here are with single-voice melodies, some with harmonic accompaniment in
the form of chord progressions. The melodies range from 10 note sequences to complete pieces contain-
ing roughly 150 notes. A complete composition system should describe each note by a variety of
properties—pitch, duration, phrasing, accent—along with more global properties such as tempo and
dynamics. In the experiments reported here, the problem has been stripped down somewhat, with each
melody described simply as a sequence of pitch-duration-chord triples. The burden of the present work
has been to determine the extent to which CONCERT can discover the structure in a set of training exam-
ples.

Before turning to the details of CONCERT, I begin by describing a traditional approach to algorithmic
music composition using Markov transition tables, the limitations of this approach, and how these limita-
tions may be overcome in principle using connectionist learning techniques.

Transition table approaches to algorithmic music composition

A simple but interesting technique in algorithmic music composition is to select notes sequentially
according to a transition table that specifies the probability of the next note as a function of the current
note (Dodge & Jerse, 1985; Jones, 1981; Lorrain, 1980). For example, the transition probabilities dep-
icted in Table 1 constrain the next pitch to be one step up or down the C major scale from the current
pitch. Generating a sequence according to this probability distribution therefore results in a musical ran-
dom walk. Transition tables may be hand-constructed according to certain criteria, as in Table 1, or they
may be set up to embody a particular musical style. In the latter case, statistics are collected over a set of
examples (hereafter, the training set) and the transition table entries are defined to be the transition proba-
bilities in these examples.
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The transition table is a statistical description of the training set. In most cases, the transition table will
lose information about the training set. To illustrate, consider the two sequences A B C and E F G.
The transition table constructed from these examples will indicate that A goes to B with probability 1,
B to C with probability 1, and so forth. Consequently, given the first note of each sequence, the table can
be used to recover the complete sequence. However, with two sequences like B A C and D A E, the
transition table can only say that following an A either an E or a C occurs, each with a 50% likelihood.
Thus, the table cannot be used to unambiguously reconstruct the examples.

Clearly, in melodies of any complexity, musical structure cannot be fully described by the pairwise statis-
tics. To capture additional structure, the transition table can be generalized from a two-dimensional array
to n dimensions. In the n -dimensional table, often referred to as a table of order n −1, the probability of
the next note is indicated as a function of the previous n −1 notes. By increasing the number of previous
notes taken into consideration, the table becomes more context sensitive, and therefore serves as a more
faithful representation of the training set. 1 Unfortunately, extending the transition table in this manner
gives rise to two problems. First, the size of the table explodes exponentially with the amount of context
and rapidly becomes unmanageable. With, say, 50 alternative pitches, 10 alternative durations, and a
third-order transition table—modest sizes on all counts—7.5 billion entries are required. Second, a table
representing the high-order structure masks the tremendous amount of low-order structure present. To
elaborate, consider the sequence

A F G B F G C F G D F G# E F G .

One would need to construct a third-order table to faithfully represent this sequence. Such a table would
indicate that, for example, the sequence G B F is always followed by G. However, there are first-order
regularities in the sequence that a third-order table does not make explicit, namely the fact that an F is
almost always followed by a G. The third-order table is thus unable to predict what will follow, say,
A A F, although a first-order table would sensibly predict G. There is a tradeoff between the ability to
faithfully represent the training set, which usually requires a high-order table, and the ability to generalize
in novel contexts, which profits from a low-order table. What one would really like is a scheme by which
only the relevant high-order structure is represented (Lewis, 1991).

Kohonen (1989; Kohonen, Laine, Tiits, & Torkkola, 1991) has proposed exactly such a scheme. The
scheme is a symbolic algorithm that, given a training set of examples, produces a collection of rules—a
context-sensitive grammar—sufficient for reproducing most or all of the structure inherent in the set.
These rules are of the form context →next_note , where context is a string of one or more notes, and

Table 1: Transition probability from current pitch to the next

� �������������������������������������������������������������������������
next current pitch
pitch C D E F G A B�������������������������������������������������������������

C 0 .5 0 0 0 0 .5
D .5 0 .5 0 0 0 0
E 0 .5 0 .5 0 0 0
F 0 0 .5 0 .5 0 0
G 0 0 0 .5 0 .5 0
A 0 0 0 0 .5 0 .5
B .5 0 0 0 0 .5 0� �������������������������������������������������������������������������
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1 Following Smolensky (1988), I use the phrase faithful representation to mean that the represented items can be accurately
reconstructed from the representation. A faithful transition-table representation of a set of examples would be one that, given the
first few notes of any example, could unambiguously determine the remainder of the example.
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next_note is the next note implied by the context. Because the context length can vary from one rule to
the next, the algorithm allows for varying amounts of generality and specificity in the rules. The algo-
rithm attempts to produce deterministic rules—rules that always apply in the given context. Thus, the
algorithm will not discover the regularity F → G in the above sequence because it is not absolute. One
could conceivably extend the algorithm to generate simple rules like F → G along with exceptions (e.g.,
D F → G#), but the symbolic nature of the algorithm still leaves it poorly equipped to deal with statisti-
cal properties of the data. Such an ability is not critical if the algorithm’s goal is to construct a set of
rules from which the training set can be exactly reconstructed. However, if one views music composition
as an intrinsically random process, it is inappropriate to model every detail of the training set. Instead,
the goal ought to be to capture the most important—i.e., statistically regular—structural properties of the
training set.

Both the transition table approach and Kohonen’s musical grammar suffer from two further drawbacks.
First, both algorithms are designed so that a particular note, n , cannot be used to predict note n +i unless
all intervening notes, n +1 . . . n +i −1, are also considered. In general, one would expect that the most use-
ful predictor of a note is the immediately preceding note, but cases exist where notes n . . . n +k are more
useful predictors of note n +i than notes n +k +1 . . . n +i −1 (e.g., a melody in which high pitch and low
pitch phrases alternate such as the solo violin partitas of J. S. Bach). The second, and perhaps more seri-
ous, drawback is that a symbolic representation of notes does not facilitate generalization from one musi-
cal context to perceptually similar contexts. For instance, the congruity of octaves is not encoded, nor is
the abstract notion of intervals such as a ’minor third’.

Connectionist learning algorithms offer the potential of overcoming the various limitations of transition
table approaches and Kohonen musical grammars. Connectionist algorithms are able to discover relevant
structure and statistical regularities in sequences (e.g., Elman, 1990; Mozer, 1989). Indeed, connectionist
algorithms can be viewed as an extension of the transition table approach, a point also noted by Dolson
(1989). Just as the transition table approach uses a training set to calculate the probability of the next
note in a sequence as a function of the previous notes, so does the network I’ll describe, CONCERT. The
connectionist approach, however, is far more flexible in principle: The form of the transition function
can permit the consideration of varying amounts of context, the consideration of noncontiguous context,
and the combination of low-order and high-order regularities.

The connectionist approach also promises better generalization through the use of distributed representa-
tions (Hinton, McClelland, & Rumelhart, 1986). In a local representation, where each note is represented
by a discrete symbol, the sort of statistical contingencies that can be discovered are among notes. How-
ever, in a distributed representation, where each note is represented by a set of continuous feature values,
the sort of contingencies that can be discovered are among features. To the extent that two notes share
features, featural regularities discovered for one note may transfer to the other note.

Note-by-note composition

The Markov transition table and the Kohonen algorithm both use a note-by-note technique in which notes
are produced sequentially and linearly, from the start of a piece to the end, each note depending on the
preceding context. Todd (1989; Bharucha and Todd, 1989) first explored this technique in a connection-
ist framework. Since then, it has been adopted by many other connectionist researchers (e.g., Stevens and
Wiles, 1993). CONCERT also uses the note-by-note technique; it differs from earlier work primarily in that
it uses an assortment of state-of-the-art connectionist tricks to achieve a sophisticated implementation of
the technique (e.g., back propagation through time, probabilistic interpretation of the network outputs, a
maximum likelihood training criterion, representational considerations) and tests the technique on a
variety of relatively large-scale problems. By using a powerful architecture and learning algorithm, the
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goal of the research is to see how far the note-by-note technique can be pushed. Previous research has
been fairly uncritical in accepting and examining a network’s performance; the simple fact that a network
creates novel output tends to be interpreted as success. In this work, I evaluate CONCERT’s performance
on simple, well-structured sequences according to an objective criterion, and on complex musical exam-
ples according to the ears of experienced human listeners.

Despite the research effort expended on note-by-note composition, it might seem an unlikely technique to
succeed. Music has a rich, hierarchical structure, from the level of notes within a theme, to themes within
a phrase, to phrases within a movement, to movements within a symphony. One might well be skeptical
that a sequential, linear composer could keep track of multiple levels of structure. In principle, however,
the connectionist approach can; the present work is a test of whether it can do so in practice.

This type of linear technique has shown surprising and interesting results for natural language processing.
Elman (1990, 1993) has trained sequential networks on strings of letters or words and has found that the
networks could infer grammatical and semantic structure, even recursive structure. However, this work
has focused primarily on the sentence level; one can hardly imagine that it would scale up to handle, say,
semantic structure of paragraphs or short stories. Fortunately, music is unlike natural language in several
simplifying respects: the set of atomic elements is finite, relatively small and unambiguous, and
psychoacoustic and stylistic regularities abound. Consequently, constraints among elements are stronger.
Thus, it seems a priori plausible that at least several levels of structure might be inferrable by a linear
technique for music.

The CONCERT architecture

CONCERT is a recurrent network architecture that learns to behave as an autopredictor (Elman, 1990). A
melody is presented to it, one note at a time, and its task at each point in time is to predict the next note in
the melody. Using a training procedure described below, CONCERT’s connection strengths are adjusted so
that it can perform this task correctly for a set of training examples. Each example consists of a sequence
of notes. The current note in the sequence is represented in the input layer of CONCERT, and the predic-
tion of the next note is represented in the output layer. The input and output layers both represent three
aspects of a note: its pitch, its duration, and its harmonic chord accompaniment. As Figure 1 indicates,
the next note is encoded in two different ways: The next-note-distributed (or NND) layer contains
CONCERT’s internal representation of the note—divided into three pools of units, forming distributed
representations of pitch, duration, and harmony—while the next-note-local (or NNL) layer contains one
unit for each alternative pitch, duration, and chord. The representation of a note in the NND layer, as
well as in the input layer, is based on a psychophysical studies, described further below. For now, it
should suffice to say that this representation is distributed, i.e., a note is indicated by a pattern of activity
across the units. Because such patterns of activity can be quite difficult to interpret, the NNL layer pro-
vides an alternative, explicit representation of the possibilities.

The context layer can represent relevant aspects of the input history, that is, the temporal context in which
a prediction is made. When a new note is presented in the input layer, the activity pattern currently in the
context layer is integrated with the new note to form a new context representation. In general terms,

c(n ) = f (c(n −1), x(n )) ,

where x(n ) is a vector representing the n th note in the input sequence, c(n ) is the context activity pattern
following processing of input note n —which I refer to as step n —and f is a member of the class of func-
tions that can be implemented by the connectionist hardware. At the start of each sequence the context
layer is cleared, i.e., c(0) = 0.
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Figure 1. The CONCERT architecture. Rectangles indicate a layer of units, directed lines indicate full connectivity from one layer
to another. The selection process is external to CONCERT and is used to choose among the alternatives proposed by the network
during composition.

CONCERT could readily be wired up to behave as a k -th order transition table. In this case, the function f
is defined to implement a k element stack in the context layer. This stack would hold on to notes n −k +1
through n . The connections from the context layer to the output layer would then have to be set up to
realize a look-up table in which each combination of previous notes maps to the appropriate probability
distribution over the next note. However, the architecture is more general than a transition table because
f is not limited to implementing a stack and the mapping from the context layer to the output need not be
an arbitrary look-up table. From myriad possibilities, the training procedure attempts to find a set of con-
nections that are adequate for performing the next-note prediction task. This involves determining which
aspects of the input sequence are relevant for making future predictions and constructing the function f
appropriately. Subsequently, the context layer will retain only task-relevant information. This contrasts
with Todd’s (1989) work on connectionist composition in which the recurrent context connections are
prewired and fixed, which makes the nature of the information Todd’s model retains independent of the
examples on which it is trained.
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Once CONCERT has been trained, it can be run in composition mode to create new pieces. This involves
first seeding CONCERT with a short sequence of notes, perhaps the initial notes of one of the training
examples. From this point on, the output of CONCERT can be fed back to the input, allowing CONCERT to
continue generating notes without further external input. Generally, the output of CONCERT does not
specify a single note with absolute certainty; instead, the output is a probability distribution over the set
of candidates. It is thus necessary to select a particular note in accordance with this distribution. This is
the role of the selection process depicted in Figure 1.

Unit activation rules

The activation rule for the context units is

(1)ci (n ) = s

��
�

j
Σwi j xj (n ) +

j
Σvi j cj (n −1)

���
� ,

where ci (n ) is the activity of context unit i at step n , xj (n ) is the activity of input unit j at step n , wi j is
the connection strength from unit j of the input to unit i of the context layer, and vi j is the connection
strength from unit j to unit i within the context layer, and s is the standard logistic activation function
rescaled to the range (-1,1). Units in the NND layer follow a similar rule:

nndi (n ) = s

��
�

j
Σui j cj (n )

���
� ,

where nndi (n ) is the activity of NND unit i at step n and ui j is the strength of connection from context
unit j to NND unit i .

The NND and NNL representations can be broken into three component vectors, corresponding to pitch,
duration, and chord representations. I describe here the transformation from the NND pitch representa-
tion to the NNL pitch representation; the transformation for the duration and chord representations is
similar. The pitch transformation is achieved by first computing the distance between the NND pitch
representation, nndp(n ), and the target (distributed) representation of each pitch i , ρρi :

di = | | nndp(n ) − ρρi | | ,

where | | . | | denotes the L2 vector norm. This distance is an indication of how well the NND representa-
tion matches a particular pitch. The activation of the NNL unit corresponding to pitch i , nnlpi , increases
as the distance decreases:

nnlpi (n ) =

j
Σe−dj

e−di� ��������� .

This normalized exponential transform was first proposed by Bridle (1990) and Rumelhart (in press). It
produces an activity pattern over the NNL units in which each unit has activity in the range (0,1) and the
activity of all units sums to 1. Consequently, the NNL activity pattern can be interpreted as a probability
distribution—in this case, the probability that the next note has a particular pitch. An analogous transfor-
mation is performed to determine the activity of NNL units that represent note duration and accompany-
ing chord. The distance measure and the exponential function have their basis in psychological theory
(Shepard, 1987), a point I elaborate on shortly.
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Training procedure

CONCERT is trained using a variation of the back propagation algorithm (Rumelhart, Hinton, & Williams,
1986) which adjusts the connection strengths within CONCERT so that the network can perform the next-
note prediction task for a set of training examples. The algorithm requires first defining a measure of the
network’s performance—of how good a job the network does at predicting each note in each of the train-
ing examples. Commonly, a squared difference measure of error is used:

Elms =
q, n, j
Σ (nnlpj (n, q ) − δ(j, P (n, q )))2+

q, n, j
Σ (nnldj (n, q ) − δ(j, D (n, q )))2

+
q, n, j
Σ (nnlcj (n, q ) − δ(j, C (n, q )))2 ,

where q is an index over pieces in the training set, n an index over notes within a piece, and j an index
over pitch, duration, or chord units in the NNL layer; P (n, q ), D (n, q ), C (n, q ) are the indices of the target
pitch, duration, and chord for note n of piece q ; δ(a, b ) = 1 if a = b or 0 otherwise. This measure is
minimized when the outputs of the units corresponding to the correct predictions are 1 and the outputs of
all other units are 0.

Another performance measure is sensible in the context of output units that have a probabilistic interpre-
tation (Bridle, 1990; Rumelhart, in press). Because each NNL unit’s output represents the probabilistic
expectation of a pitch, performance depends on predicting the appropriate notes with high probability.
This suggests the likelihood performance measure

L =
q, n
Π nnlpP (n, q )(n, q ) nnldD (n, q )(n, q ) nnlcC (n, q )(n, q ) ,

which is the joint probability of making the correct prediction for all notes of all pieces.2 A log likelihood
criterion,

E = −log L = −
q, n
Σ log nnlpP (n, q )(n, q ) + log nnldD (n, q )(n, q ) + log nnlcC (n, q )(n, q ) ,

is used instead because it is easier to work with, and has the same extrema as L .

Back propagation specifies how the weights in the network should be changed to reduce E . This involves
computing the gradient of E with respect to the weights in the network: ∂E /∂W, ∂E /∂V, and ∂E /∂U. The
first step in this process is computing the gradient with respect to the activity of units in the NND layer,
and then propagating this gradient back to the weights in layers below. For the NND pitch units,

∂nndp(n, q )
∂E� ������������������� =

��
� dP (n, q )

nndp(n, q ) − ρρP (n, q )� ��������������������������������� −
i
Σnnlpi (n, q )

di

nndp(n, q ) − ρρi� �������������������������
���
� .

Back propagation still cannot be used to train CONCERT directly, because CONCERT contains recurrent
connections and the algorithm applies only to feedforward networks. Several variations of the algorithm

�������������������������������

2 Of course, this interpretation assumes independence of the predictions, which is certainly not true in CONCERT. However, Bridle
(1990) provides another justification, somewhat less intuitive, for this performance measure in terms of an information theoretic
criterion.
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have been proposed for dealing with recurrent networks (Williams & Zipser, in press). I’ve used the
"back propagation through time" (BPTT) procedure of Rumelhart et al. (1986), which transforms a
recurrent network into an equivalent feedforward network. 3 This training procedure computes the true
gradient of the objective function with respect to the various network weights. This means that if an input
note at step l has any predictive utility at some later time n , then in principle the algorithm should adjust
the connections so that note l is maintain in the network’s memory. Contingencies over time should be
discovered when they exist. There is a weaker version of BPTT that passes error back only a fixed
number of steps (e.g., the training procedure used by Elman, 1990), which in principle makes contingen-
cies across longer time spans more difficult to maintain and discover. CONCERT has been furnished with
the most powerful connectionist recurrent-network learning procedure in order to endow it with the best
possible chance of success.

Representing musical elements

Having described CONCERT’s architecture, dynamics, and training procedure, I turn to the issue of
representing a musical piece. A piece is defined as a sequence of elements, each of which is character-
ized by a melody pitch, a melody duration, and a harmonic chord accompaniment. The pitch and dura-
tion specify the notes of the melody, each of which is accompanied by a chord (or silence). This encod-
ing synchronizes the melody and the harmony. Although chord changes generally occur at a slower rate
than changes in the melody line, this is encoded simply by repeating chords for each note of the melody
until the chord changes. The three elements—pitch, duration, and chord representation—are discussed in
turn.

Pitch representation

To accommodate a variety of music, CONCERT needs the ability to represent a range of about four
octaves. Using standard musical notation, these pitches are labeled as follows: C1, D1, ..., B1, C2,
D2, ... B2, C3, ... C5, where C1 is the lowest pitch and C5 the highest. Sharps and flats are denoted
with # and b, respectively, e.g., C#3 and Gb2. Within an octave, there are twelve chromatic steps; the
range C1−C5 thus includes 49 pitches.

Perhaps the simplest representation of pitch is to have one unit for each possibility. The pitch C1 would
be represented by the activity vector [1 0 0 . . . ]T, C#1 by the vector [0 1 0 . . . ]T, and so forth. An alter-
native would be to represent pitch by a single unit whose activity was proportional to the frequency of the
pitch. One might argue that the choice of a pitch representation is not critical because back propagation
can, in principle, discover an alternative representation well suited to the task (Hinton, 1987). In practice,
however, researchers have found that the choice of external representation is a critical determinant of the
network’s ultimate performance (e.g., Denker et al., 1987; Mozer, 1987). Quite simply, the more task-
appropriate information that is built into the network, the easier the job the learning algorithm has.

Laden and Keefe (1989) advocate the approach of including as much information as possible from
psychoacoustics into the design of networks for music perception and cognition. They have developed a
model of chord classification that categorizes triads as major, minor, or diminished chords. Classification
performance is superior with the use of a representation that explicitly encodes harmonics of the funda-
mental pitches.

�������������������������������

3 An unforgivable pun: Rob Goldstone suggested calling CONCERT’s training procedure Bach propagation.
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In accord with this approach, and because CONCERT is being asked to make predictions about melodies
that people have composed or to generate melodies that people perceive as pleasant, CONCERT has been
furnished with a psychologically-motivated representation of pitch. By this, I mean that notes that people
judge to be similar should have similar representations in the network, indicating that the representation
in the head matches the representation in the network. The local representation scheme proposed earlier
clearly does not meet this criterion. In the local representation, every pair of pitches is equally similar
(using either the distance or angle between vectors as a measure of similarity), yet people perceive pairs
of notes like C1 and C#1 to be more similar than, say, C1 and A4. Other obvious representations of
pitch do not meet the criterion either. For example, a direct encoding of frequency does not capture the
similarity that people hear between octaves.

Shepard (1982) has studied the similarity of pitches by asking people to judge the perceived similarity of
pairs of pitches. He has proposed a theory of generalization (Shepard, 1987) in which the perceived simi-
larity of two items decreases exponentially with the distance between them in an internal or "psychologi-
cal" representational space. 4 For the internal representation of pitch, Shepard has proposed a five-
dimensional space, depicted in Figure 2. In this space, each pitch specifies a point along the pitch height
(or PH) dimension, an (x ,y ) coordinate on the chroma circle (or CC), and an (x ,y ) coordinate on the cir-
cle of fifths (or CF). I will refer to this representation as PHCCCF, after its three components. The pitch
height component specifies the logarithm of the frequency of a pitch; this logarithmic transform places
tonal half-steps at equal spacing from one another along the pitch height axis. In the chroma circle,

C1
C#1
D1
D#1

B2
C3
C#3
D3
D#3
E3
F3
F#3
G3
G#3
A3
A#3
B3
C4
C#4

C5
B4
A#4

A4

A

B C

D

E
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A#

C#
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C

C#

D

D#
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F#

G

G#
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A#

B

Pitch Height Chroma Circle Circle of Fifths

Figure 2. Shepard’s (1982) pitch representation.

4 This is one justification for the exponential function in the NNL layer.
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neighboring pitches are a tonal half-step apart. In the circle of fifths, the perfect fifth of a pitch is the next
pitch immediately counterclockwise. 5 The proximity of two pitches in the five-dimensional PHCCCF
space can be determined simply by computing the Euclidean distance between their representations.

Shepard presents detailed arguments for the psychological validity of the PHCCCF representation. I
briefly point out some of its benefits. Consider first the PH and CC components. In this three-
dimensional subspace, pitches form a helix in which the winding of the helix is due to the chroma circle
and the height is due to the pitch height. As pitches proceed up the chromatic scale, they wind up the
helix. Pitches exactly one octave apart are directly above one another on the helix; that is, they have the
same locus on the chroma circle but different values of pitch height. For this reason, octaves have similar
representations. Depending on how the PH component is scaled relative to the CC (i.e., how elongated
the helix is), pitches like C1 and C2 may even be closer in the representational space than pitches like
C1 and B1, even though C1 is closer to B1 in frequency.

The circle of fifths endows the representation with other desirable properties. First, the circle localizes
the tones in a musical key. Any seven adjacent tones correspond to a particular key. For instance, the
tones of the C major and A minor diatonic scales—C, D, E, F, G, A, and B—are grouped together on
the circle of fifths. The most common pentatonic keys are similarly localized. Second, and perhaps more
critical, the circle of fifths can explain the subjective equality of the intervals of the diatonic scale. To
elaborate, Shepard points out that people tend to hear the successive steps of the major scale as
equivalent, although with respect to log frequency, some of the intervals are only half as large as others.
For example, in C major, the E-F and B-C steps are half tones apart (minor seconds) while all others are
a whole tone apart (major seconds). The combination of the pitch height and circle of fifths permits a
representation in which the distance between all major and minor seconds is the same. This is achieved
by using a scale ratio of approximately 3:1 for the chroma circle relative to the circle of fifths.

One desirable property of the overall PHCCCF representation is that distances between pitches are invari-
ant under transposition. Consider any two pitches, say, D2 and G#4. Transposing the pitches preserves
the distance between them in the PHCCCF representation. Thus, the distance from D2 to G#4 is the
same as from E2 to A#4, from D1 to G#3, and so forth. See Bharucha (1991) for a further discussion
of the psychological issues involved in the representation of musical pitch.

The relative importance of the PH, CC, and CF components can be varied by adjusting the diameters of
the chroma circle and circle of fifths. For example, if the two circles have the same diameter, then, in
terms of the CC and CF components, the distance between C and G is the same as the distance between
C and B. This is because B is one notch from the C on the chroma circle and five notches on the circle
of fifths, while the G is five notches away on the chroma circle and one on the circle of fifths. However,
if the diameter of the chroma circle is increased, then C is closer to B than to G (based on the distance
in the four-dimensional CC and CF subspace); if the diameter is decreased, C is closer to G than to B.
If the diameters of both circles are decreased relative to the pitch height scale, then pitch frequency
becomes the most important determinant of similarity. Shepard argues that the weighting of the various
components depends on the particular musical task and the listener’s expertise. Based on Shepard’s evi-
dence, a reasonable representation for expert musicians is to weigh the CF and CC components equally,
and to set the diameter of the CC and CF components equal to the distance of one octave in PH. This is
the scale shown in Figure 2.

�������������������������������

5 The perfect fifth is a musically significant interval. The frequency ratio of a note to its perfect fifth is 2:3, just as the frequency
ratio of a note to its octave is 1:2.
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The final issue to discuss is how the PHCCCF representation translates into an activity vector over a set
of connectionist units. A straightforward scheme is to use five units, one for pitch height and two pairs to
encode the (x ,y ) coordinates of the pitch on the two circles.6

One problem with this scheme is that, if the units have the usual sigmoidal activation function, equal
spacing of tones in pitch height or on the circles in unit activity space is not preserved in unit net input
space. This means that context units attempting to activate NND units do not reap the full benefit of the
representation (e.g., transposition invariance). A second problem with the simple five-unit scheme is that
each unit encodes a coordinate value directly; there are 7 discrete values for the x- and y-coordinates of
the circles, 49 for the pitch height. Consequently, minor perturbations of the activity vector could lead to
misinterpretations.

Due to these problems, an alternative representation of the CC and CF components has been adopted.
The representation involves 6 binary-valued units to represent a tone on each circle; the representation for
chroma circle tones is shown in Table 2. This representation preserves the essential distance relationships
among tones on the chroma circle: the distance between two tones is monotonically related to the angle
between the tones. Because each unit has to encode only two distinct values, the representation is less
sensitive to noise than is one in which each unit encodes a coordinate of the circle.

Unfortunately, there is no similar scheme that can be used to encode pitch height in a boolean space of
reasonably low dimensionality that preserves intrinsic distance relationships. Consequently, I have used a
single linear unit for pitch height. Although this means that the pitch height unit can take on 49 distinct
values, it is not critical that the unit represent a value with great accuracy. The pitch height unit essen-
tially conveys information about the octave; information about the pitch within an octave can be gleaned
from the values on the other dimensions. Consequently, a precise response of the pitch height unit is not
crucial. Its activity is scaled to range from −9.798 for C1 to +9.798 for C5. This scaling achieves the
desired property previously described that the distance in the CC or CF component between pitches on
opposite sides of the circle equals the distance between pitches one octave apart in the PH component.7

Table 2: Representation of tones on chroma circle

� �����������������������������������������������������������������������
tone representation� �����������������������������������������������������������������������
C −1 −1 −1 −1 −1 −1
C# −1 −1 −1 −1 −1 +1
D −1 −1 −1 −1 +1 +1
D# −1 −1 −1 +1 +1 +1
E −1 −1 +1 +1 +1 +1
F −1 +1 +1 +1 +1 +1
F# +1 +1 +1 +1 +1 +1
G +1 +1 +1 +1 +1 −1
G# +1 +1 +1 +1 −1 −1
A +1 +1 +1 −1 −1 −1
A# +1 +1 −1 −1 −1 −1
B +1 −1 −1 −1 −1 −1� �����������������������������������������������������������������������
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6 The reader may wonder why points on a circle need to be represented in a two-dimensional space. After all, the points lie on a
1D continuum, albeit embedded in a 2D space. Without such an embedding, however, distance relationships between points can-
not be preserved. If the circle is cut and flattened into a 1D continuum, formerly adjacent points on opposite sides of the cut will
end up far apart.

7 Although a PH scale factor of 9.798 was used for the target NND representation, ρρi , a PH scale factor of 1.0 was used for the
input representation. This was based on empirical studies of what scale factors yielded the best performance. The primary rea-
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The PHCCCF representation consists of 13 units altogether. Sample activity patterns for some pitches
are shown in Table 3. Rests (silence) are assigned a unique code, listed in the last row of the Table, that
is maximally different from all pitches. The end of a piece is coded by a series of rests.

As with any distributed representation, there are limitations as to how many and which pitches can be
represented simultaneously. The issue arises because the NND layer needs to be able to encode a set of
alternatives, not just a single pitch. If, say, A1, D2, and E2 are equally likely as the next note, the
NND layer must indicate all three possibilities. To do so, it must produce an activity vector that is nearer
to ρρA1, ρρD2, and ρρE2 than to other possibilities. The point in PHCCCF space that is simultaneously closest
to the three pitches is simply the average vector, (ρρA1+ρρD2+ρρE2)/3. Table 4 shows the pitches nearest to the
average vector. As hoped for, A1, D2, and E2 are the nearest three. This is not always the case,
though. Table 5 shows the pitches nearest to the average vector which represents the set {A1, D2,
D#2}. This illustrates the fact that certain clusters of pitches are more compact in the PHCCCF space
than others. The PHCCCF representation not only introduces a similarity structure over the pitches, but
also a limit on the combinations of pitches that can be considered simultaneously. Arbitrary limitations
are a bad thing in general, but here, the limitations are theoretically motivated.

Table 3: PHCCCF representation for selected pitches

� �������������������������������������������������������������������������������������������������������������������������������������������������������
pitch PH CC CF� �������������������������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������
C1 −9.798 +1 +1 +1 −1 −1 −1 −1 −1 −1 +1 +1 +1
F#1 −7.349 −1 −1 −1 +1 +1 +1 +1 +1 +1 −1 −1 −1
G2 −2.041 −1 −1 −1 −1 +1 +1 −1 −1 −1 −1 +1 +1
C3 0 +1 +1 +1 −1 −1 −1 −1 −1 −1 +1 +1 +1
D#3 1.225 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
E3 1.633 −1 +1 +1 +1 +1 +1 +1 −1 −1 −1 −1 −1
A4 8.573 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
C5 9.798 +1 +1 +1 −1 −1 −1 −1 −1 −1 +1 +1 +1
rest 0 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1� �������������������������������������������������������������������������������������������������������������������������������������������������������
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Table 4: Distance from representation of {A1,D2,E2} to nearest 10 pitches

�������������������������������������������������������������������������������������������
rank pitch distance rank pitch distance�������������������������������������������������������������������������������������������
1 D2 2.528 6 C#2 4.422
2 E2 2.779 7 A2 4.422
3 A1 3.399 8 E1 4.441
4 B1 3.859 9 G1 4.497
5 C2 4.130 10 G2 4.497�������������������������������������������������������������������������������������������
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Table 5: Distance from representation of {A1,D2,D#2} to nearest 10 pitches

�������������������������������������������������������������������������������������������
rank pitch distance rank pitch distance�������������������������������������������������������������������������������������������
1 D2 2.373 6 D#2 3.774
2 C2 3.277 7 A1 3.946
3 E2 3.538 8 F2 4.057
4 C#2 3.654 9 A#1 4.146
5 B1 3.714 10 G1 4.323�������������������������������������������������������������������������������������������
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son that a PH scale factor other than 1.0 on the inputs causes difficulties is that the resulting error surface is poorly conditioned
when different units have different activity ranges (Widrow & Stearns, 1985).
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One serious shortcoming of the PHCCCF representation is that it is based on the similarity between pairs
of pitches presented in isolation. Listeners of music do not process individual notes in isolation; notes
appear in a musical context which suggests a musical key which in turn contributes to an interpretation of
the note. Some psychologically-motivated work has considered the effects of context or musical key on
pitch representation (Krumhansl, 1990; Krumhansl & Kessler, 1982; Longuet-Higgins, 1976, 1979).
CONCERT could perhaps be improved by incorporating the ideas in this work. Fortunately, it does not
require discarding the PHCCCF representation altogether, because the PHCCCF representation shares
many properties in common with the representations suggested by Krumhansl and Kessler and by
Longuet-Higgins.

Duration representation

Although considerable psychological research has been directed toward the problem of how people per-
ceive duration in the context of a rhythm (e.g., Fraisse, 1982; Jones & Boltz, 1989; Pressing, 1983), there
appears to be no psychological theory of representation of individual note durations comparable to
Shepard’s work on pitch. Shepard suggests that there ought to be a representation of duration analogous
to the PHCCCF representation, although no details are discussed in his work. The representation of dura-
tion built into CONCERT attempts to follow this suggestion.

The representation is based on the division of each beat (quarter note) into twelfths. A quarter note thus
has a duration of 12/12, an eighth note 6/12, an eighth note triplet 4/12, and so forth (Figure 3). Using
this characterization of note durations, a five-dimensional space can be constructed, consisting of three
components (Figure 4). In this representation, each duration specifies a point along the duration height
dimension, an (x ,y ) coordinate on the 1/3 beat circle, and an (x ,y ) coordinate on the 1/4 beat circle. The
duration height is proportional to the logarithm of the duration. This logarithmic transformation follows
the general psychophysical law (Fechner’s law) relating stimulus intensity to perceived sensation. The
point on the 1/n beat circle is the duration after subtracting out the greatest integer multiple of 1/n . For
example, the duration 18/12 is represented by the point 2/12 on the 1/3 beat circle and the point 0/12 on
the 1/4 beat circle. The two circles result in similar representations for related durations. For example,
eighth notes and quarter notes (the former half the duration of the latter) share the same value on the 1/4
beat circle; eighth note triplets and quarter note triplets share the same value on the 1/3 beat circle; and
quarter notes and half notes share the same values on both the 1/4 and 1/3 beat circles.

This five-dimensional space is encoded directly by five units in CONCERT. It was not necessary to map
the 1/3 or 1/4 beat circle into a higher dimensional binary space, as was done for the chroma circle and
circle of fifths (Table 2), because the beat circles are sparsely populated. Only two or three values need to
be distinguished along the x and y dimensions of each circle, which is well within the capacity of a single

3 3 3

2/12 3/12 4/12 6/12 8/12 12/12

Figure 3. The characterization of note durations in terms of twelfths of a beat. The fractions shown correspond to the duration of
a single note of a given type.
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0/12
3/12

1/122/12

0/12

1/122/12

0

12/12

24/12

48/12

96/12

Duration Height

log(duration)

1/3 Beat Circle

mod(duration, 1/3)

1/4 Beat Circle

mod(duration, 1/4)

Figure 4. The duration representation used in CONCERT.

unit.

Several alternative approaches to rhythm representation are worthy of mention. A straightforward
approach is to represent time implicitly by presenting each pitch on the input layer for a number of time
steps proportional to the duration. Thus, a half note might appear for 24 time steps, a quarter note for 12,
an eighth note for 6. Todd (1989) followed an approach of this sort, although he did not quantize time so
finely. He included an additional unit to indicate whether a pitch was articulated or tied to the previous
pitch. This allowed for the distinction between, say, two successive quarter notes of the same pitch and a
single half note. The drawback of this implicit representation of duration is that time must be sliced into
fairly small intervals to allow for a complete range of alternative durations, and as a result, the number of
steps in a piece of music becomes quite large. This makes it difficult to learn contingencies among notes.
For instance, if four successive quarter notes are presented, to make an association between the first and
the fourth, a minimum of 24 input steps must be bridged.

One might also consider a representation in which a note’s duration is encoded with respect to the role it
plays within a rhythmic pattern. This requires the explicit representation of larger rhythmic patterns.
This approach seems quite promising, although it moves away from the note-by-note prediction paradigm
that this work examines.



Mozer Neural Network Music Composition
March 24, 1994 15

Chord representation

The chord representation is based on Laden and Keefe’s (1989) proposal for a psychoacoustically
grounded distributed representation. I begin by summarizing the Laden and Keefe proposal and then
explain how it was modified for CONCERT.

The chords used here are in root position and are composed of three or four component pitches; some
examples are shown in Table 6. Consider each pitch separately. In wind instruments, bowed string
instruments, and singing voices, a particular pitch will produce a harmonic spectrum consisting of the
fundamental pitch (e.g., for C3, 440 hz), and harmonics that are integer multiples of the fundamental (880
hz, 1320 hz, 1760 hz, and 2200 hz). Laden and Keefe projected the continuous pitch frequency to the
nearest pitch class of the chromatic scale, e.g., 440 to C3, 880 to C4, 1320 to G3, 1760 to C5, and
2200 to E5, where the projections to G3 and E5 are approximate. Using an encoding in which there is
an element for each pure pitch class, a pitch was represented by activating the fundamental and the first
four harmonics. The representation of a chord consisted of the superimposition of the representations of
the component pitches. To allow for the range C3-C7, 49 elements are required. In Laden and Keefe’s
work, a neural network with this input representation better learns to classify chords as major, minor, or
diminished than a network with an acoustically neutral input representation.

Several modifications of this representation were made for CONCERT. The octave information was
dropped, reducing the dimensionality of the representation from 49 to 12. The strength of representation
of harmonics was exponentially weighted by their harmonic number; the fundamental was encoded with
an activity of 1.0, the first harmonic with an activity of .5, the second harmonic with an activity of .25,
and so forth. Activities were rescaled from a 0-to-1 range to a −1-to-1 range. Finally, an additional ele-
ment was added to the representation based on a psychoacoustic study of perceived chord similarity.
Krumhansl, Bharucha, and Kessler (1982) found that people tended to judge the tonic, subdominant, and
dominant chords (i.e., C, F, and G in the key of C) as being quite similar. This similarity was not
present in the Laden and Keefe representation. Hence, an additional element was added to force these
chords closer together. The element had value +1.5 for these three chords (as well as C7, F7, and G7),
−1.5 for all other chords. Hierarchical clustering shows some of the similarity structure of the 13-
dimensional representation (Figure 5).

Basic simulation results

Many decisions had to be made in constructing CONCERT. In pilot simulation experiments, I explored
various aspects of CONCERT, including: variants in the representations, such as using two units to
represent the circles in the PHCCCF representation instead of six; alternative error measures, such as the
mean-squared error; and the necessity of the NNL layer. Empirical comparisons supported the architec-
ture and representations described earlier.

Table 6: Elements of chords

� ���������������������������������������������������������������������������������
chord component pitches� ���������������������������������������������������������������������������������

C major C3 E3 G3
C minor C3 Eb3 G3

C augmented C3 E3 G#3
C diminished C3 Eb3 Gb3

C7 C3 E3 G3 Bb3� ���������������������������������������������������������������������������������
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Figure 5. Hierarchical clustering of the representations of various chords used in simulation studies.

One potential pitfall in the research area of connectionist music composition is the uncritical acceptance
of a network’s performance. It is absolutely essential that a network be evaluated according to some
objective criterion. One cannot judge the enterprise to be a success simply because the network is creat-
ing novel output. Even random note sequences played through a synthesizer sound interesting to many
listeners. Thus, I begin an examination of CONCERT’s performance by testing CONCERT on simple artifi-
cial pitch sequences, with the aim of verifying that it can discover the structure known to be present. In
these sequences, there was no variation in duration and harmony; consequently, the duration and chord
components of the input and output were ignored.
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Extending a C major diatonic scale

To start with a simple experiment, CONCERT was trained on a single sequence consisting of three octaves
of a C major diatonic scale: C1 D1 E1 F1 . . . B3. The target at each step was the next pitch in the
scale: D1 E1 F1 G1 . . . C4. CONCERT is said to have learned the sequence when, at each step, the
activity of the NNL unit representing the target at that step is more active than any other NNL unit. In 10
replications of the simulation with different random initial weights, 15 context units, a learning rate of
.005, and no momentum, CONCERT learned the sequence in about 30 passes. Following training, CON-

CERT was tested on four octaves of the scale. CONCERT correctly extended its predictions to the fourth
octave, except that in 4 of the 10 replications, the final note, C5, was transposed down an octave. Table
7 shows the CONCERT’s output for two octaves of the scale. Octave 3 was part of the training sequence,
but octave 4 was not. Activities of the three most active NNL pitch units are shown. Because the activi-
ties can be interpreted as probabilities, one can see that the target is selected with high confidence.

CONCERT was able to learn the training set with as few as 2 context units, although surprisingly, generali-
zation performance tended to improve as the number of context units was increased. CONCERT was also
able to generalize from a 2 octave training sequence, but it often transposed pitches down an octave.

Learning the structure of diatonic scales

In this simulation, CONCERT was trained on a set of diatonic scales in various keys over a one octave
range, e.g., D1 E1 F#1 G1 A1 B1 C#2 D2. Thirty-seven such scales can be made using pitches in
the C1-C5 range. The training set consisted of 28 scales—roughly 75% of the corpus—selected at ran-
dom, and the test set consisted of the remaining 9. In 10 replications of the simulation using 20 context
units, CONCERT mastered the training set in approximately 55 passes. Generalization performance was
tested by presenting the scales in the test set one pitch at a time and examining CONCERT’s prediction.
This is not the same as running CONCERT in composition mode because CONCERT’s output was not fed
back to the input; instead, the input was a predetermined sequence. Of the 63 pitches to be predicted in
the test set, CONCERT achieved remarkable performance: 98.4% correct. The few errors were caused by
transposing pitches one full octave or one tonal half step.

To compare CONCERT with a transition table approach, a second-order transition table was built from the
training set data and its performance measured on the test set. The transition table prediction (i.e., the
pitch with highest probability) was correct only 26.6% of the time. The transition table is somewhat of a

Table 7: Performance on octaves 3 and 4 of C major diatonic scale

�������������������������������������������������������������������������������������������������������
input pitch output unit activities�������������������������������������������������������������������������������������������������������

C3 D3 0.961 C3 0.017 E3 0.014
D3 E3 0.972 D3 0.012 F3 0.007
E3 F3 0.982 D#3 0.008 G3 0.006
F3 G3 0.963 F3 0.015 A3 0.010
G3 A3 0.961 G3 0.024 B3 0.012
A3 B3 0.972 A3 0.025 C4 0.002
B3 C4 0.979 A#3 0.010 C#4 0.005
C4 D4 0.939 C4 0.040 E4 0.009
D4 E4 0.968 D4 0.018 F4 0.006
E4 F4 0.971 D#4 0.016 E4 0.005
F4 G4 0.931 F4 0.037 F#4 0.015
G4 A4 0.938 G4 0.044 B4 0.007
A4 B4 0.915 A4 0.080 A#4 0.003
B4 C5 0.946 A#4 0.040 B4 0.011�������������������������������������������������������������������������������������������������������
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straw man for this task: A transition table that is based on absolute pitches is simply unable to generalize
correctly. Even if the transition table encoded relative pitches, a third-order table would be required to
master the environment. Kohonen’s musical grammar faces the same difficulties as a transition table.

A version of CONCERT was tested using a local pitch representation in the input and NND layers instead
of the PHCCCF representation. The local representation had 49 pitch units, one per tone. Although the
NND and NNL layers may seem somewhat redundant with a local pitch representation, the architecture
was not changed to avoid confounding the comparison between representations with other possible fac-
tors. Testing the network in the manner described above, generalization performance with the local
representation and 20 context units was only 54.4%. Experiments with smaller and larger numbers of
context units resulted in no better performance.

Learning random walk sequences

In this simulation, ten-element sequences were generated according to a simple rule: The first pitch was
selected at random, and then successive pitches were either one step up or down the C major scale from
the previous pitch, the direction chosen at random. The pitch transitions can easily be described by a
transition table, as illustrated in Table 1. CONCERT, with 15 context units, was trained for 50 passes
through a set of 100 such sequences. If CONCERT has correctly inferred the underlying rule, its predic-
tions should reflect the plausible alternatives at each point in a sequence. To test this, a set of 100 novel
random walk sequences was presented. After each note n of a sequence, CONCERT’s performance was
evaluated by matching the top two predictions—the two pitches with highest activity—against the actual
note n +1 of the sequence. If note n +1 was not one of the top two predictions, the prediction was con-
sidered to be erroneous. In ten replications of the simulation, the mean performance was 99.95% correct.
Thus, CONCERT was clearly able to infer the structure present in the patterns. CONCERT performed
equally well, if not better, on random walks in which chromatic steps (up or down a tonal half step) were
taken. CONCERT with a local representation of pitch achieved 100% generalization performance.

Learning interspersed random walk sequences

The sequences in this simulation were generated by interspersing the elements of two simple random
walk sequences. Each interspersed sequence had the following form: a 1, b 1, a 2, b 2, . . . , a 5, b 5, where a 1

and b 1 are randomly selected pitches, ai +1 is one step up or down from ai on the C major scale, and like-
wise for bi +1 and bi . Each sequence consisted of ten pitches. CONCERT, with 25 context units, was trained
on 50 passes through a set of 200 examples and was then tested on an additional 100. In contrast to the
simple random walk sequences, it is impossible to predict the second pitch in the interspersed sequences
(b 1) from the first (a 1). Thus, this prediction was ignored for the purpose of evaluating CONCERT’s perfor-
mance. CONCERT achieved a performance of 94.8% correct. Excluding errors that resulted from octave
transpositions, performance improves to 95.5% correct. CONCERT with a local pitch representation
achieves a slightly better performance of 96.4%.

To capture the structure in this environment, a transition table approach would need to consider at least
the previous two pitches. However, such a transition table is not likely to generalize well because, if it is
to be assured of predicting a note at step n correctly, it must observe the note at step n −2 in the context of
every possible note at step n −1. I constructed a second-order transition table from CONCERT’s training
set. Using a testing criterion analogous to that used to evaluate CONCERT, the transition table achieved a
performance level on the test set of only 67.1% correct. Kohonen’s musical grammar would face the
same difficulty as the transition table in this environment.
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Learning AABA phrase patterns

The melodies in this simulation were formed by generating two phrases, call them A and B, and con-
catenating the phrases in an AABA pattern. The A and B phrases consisted of five-note ascending
chromatic scales, the first pitch selected at random. The complete melody then consisted of 21
elements—four phrases of five notes followed by a rest marker—an example of which is:

F#2 G2 G#2 A2 A#2 F#2 G2 G#2 A2 A#2 C4 C#4 D4 D#4 E4 F#2 G2
G#2 A2 A#2 REST.

These melodies are simple examples of sequences that have both fine and coarse structure. The fine
structure is derived from the relations among pitches within a phrase, the coarse structure is derived from
the relations among phrases. This pattern set was designed to examine how well CONCERT could cope
with multiple levels of structure and long-term dependencies, of the sort that is found (albeit to a much
greater extent) in real music.

CONCERT was tested with 35 context units. The training set consisted of 200 examples and the test set
another 100 examples. Ten replications of the simulation were run for 300 passes through the training
set.

Because of the way that the sequences were organized, certain pitches could be predicted based on local
context whereas other pitches required a more global memory of the sequence. In particular, the second
to fifth pitches within a phrase could be predicted based on knowledge of the immediately preceding
pitch. To predict the first pitch in the repeated A phrases and to predict the rest at the end of a sequence,
more global information is necessary. Thus, the analysis was split to distinguish between pitches that
required only local structure and pitches that required more global structure. Generalization performance
was 97.3% correct for the local components, but only 58.4% for the global components.

Discussion

Through the use of simple, structured training sequences, it is possible to evaluate the performance of
CONCERT. The initial results from CONCERT are encouraging. CONCERT is able to learn structure in short
sequences with strong regularities, such as a C major scale and a random walk in pitch. Two examples of
structure were presented that CONCERT can learn but that cannot be captured by a simple transition table
or by Kohonen’s musical grammar. One example involved diatonic scales in various keys, the other
involved interspersed random walks.

CONCERT clearly benefits from its psychologically-grounded representation of pitch. In the task of
extending the C major scale, CONCERT with a local pitch representation would simply fail. In the task of
learning the structure of diatonic scales, CONCERT’s generalization performance drops by nearly 50%
when a local representation is substituted for the PHCCCF representation. The PHCCCF representation
is not always a clear win: generalization performance on random walk sequences improves slightly with a
local representation. However, this result is not inconsistent with the claim that the PHCCCF representa-
tion assists CONCERT in learning structure present in human-composed melodies. The reason is that ran-
dom walk sequences are hardly based on the sort of musical conventions that gave rise to the PHCCCF
representation, and hence, the representation is unlikely to be beneficial. In contrast, musical scales are
at the heart of many musical conventions; it makes sense that scale-learning profits from the PHCCCF
representation. Human-composed melodies should fare similarly. Beyond its ability to capture aspects of
human pitch perception, the PHCCCF representation has the advantage over a local representation of
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reducing the number of free parameters in the network. This can be an important factor in determining
network generalization performance.

The result from the AABA-phrase experiment is disturbing, but not entirely surprising. Consider the dif-
ficulty of correctly predicting the first note of the third repetition of the A phrase. The listener must
remember not only the first note of the A phrase, but also that the previous phrase has just ended (that
five consecutive notes ascending the chromatic scale were immediately preceding) and that the current
phrase is not the second or fourth one of the piece (i.e., that the next note starts the A phrase). Minimally,
this requires a memory that extends back 11 notes. Moreover, most of the intervening information is
irrelevant.

Capturing higher-order musical organization

In principle, CONCERT trained with back propagation should be capable of discovering arbitrary con-
tingencies in temporal sequences, such as the global structure in the AABA phrases. In practice, how-
ever, many researchers have found that back propagation is not sufficiently powerful, especially for con-
tingencies that span long temporal intervals and that involve high order statistics. For example, if a net-
work is trained on sequences in which one event predicts another, the relationship is not hard to learn if
the two events are separated by only a few unrelated intervening events, but as the number of intervening
events grows, a point is quickly reached where the relationship cannot be learned (Mozer, 1989, 1992,
1993; Schmidhuber, 1992). Bengio, Frasconi, and Simard (1993) present theoretical arguments for
inherent limitations of learning in recurrent networks.

This poses a serious limitation on the use of back propagation to induce musical structure in a note-by-
note prediction paradigm because important structure can be found at long time scales as well as short. A
musical piece is more than a linear string of notes. Minimally, a piece should be characterized as a set of
musical phrases, each of which is composed of a sequence of notes. Within a phrase, local structure can
probably be captured by a transition table, e.g., the fact that the next note is likely to be close in pitch to
the current, or that if the past few notes have been in ascending order, the next note is likely to follow this
pattern. Across phrases, however, a more global view of the organization is necessary.

The difficult problem of learning coarse as well as fine structure has been addressed recently by connec-
tionist researchers (Mozer, 1992; Mozer & Das, 1993; Myers, 1990; Ring, 1992; Schmidhuber, 1992;
Schmidhuber, Mozer, & Prelinger, 1993). The basic idea in many of these approaches involves building
a reduced description (Hinton, 1988) of the sequence that makes global aspects more explicit or more
readily detectable. In the case of the AABA structure, this might involve taking the sequence of notes
composing A and redescribing them simply as "A". Based on this reduced description, recognizing the
phrase structure AABA would involve little more than recognizing the sequence AABA. By constructing
the reduced description, the problem of detecting global structure has been turned into the simpler prob-
lem of detecting local structure.

The challenge of this approach is to devise an appropriate reduced description. I describe here the simple
scheme in Mozer (1992) as a modest step toward a solution. This scheme constructs a reduced descrip-
tion that is a bird’s eye view of the musical piece, sacrificing a representation of individual notes for the
overall contour of the piece. Imagine playing back a song on a tape recorder at double the regular speed.
The notes are to some extent blended together and indistinguishable. However, events at a coarser time
scale become more explicit, such as a general ascending trend in pitch or a repeated progression of notes.
Figure 6 illustrates the idea. The curve in the top graph, depicting a sequence of individual pitches, has
been smoothed and compressed to produce the bottom graph. Mathematically, "smoothed and
compressed" means that the waveform has been low-pass filtered and sampled at a lower rate. The result
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Figure 6. (a) A sequence of individual notes. The vertical axis indicates the pitch, the horizontal axis time. Each point
corresponds to a particular note. (b) A smoothed, compact view of the sequence.

is a waveform in which the alternating upwards and downwards flow is unmistakable.

Multiple views of the sequence can be realized in CONCERT using context units that operate with different
time constants. With a simple modification to the context unit activation rule (Equation 1),

(2)ci (n ) = τi ci (n −1) + (1−τi )s
jΣwi j xj (n ) +

jΣvi j cj (n −1) ,

where each context unit i has an associated time constant, τi , that ranges from 0 to 1 and determines the
responsiveness of the unit—the rate at which its activity changes. With τi = 0, the activation rule reduces
to Equation 1 and the unit can sharply change its response based on a new input. With large τi , the unit is
sluggish, holding on to much of its previous value and thereby averaging the response to the net input
over time. At the extreme of τi = 1, the second term drops out and the unit’s activity becomes fixed.
Thus, large τi smooth out the response of a context unit over time. This is one property of the waveform
in Figure 6b relative to the waveform in Figure 6a.

The other property, the compactness of the waveform, is also achieved by a large τi , although somewhat
indirectly. The key benefit of the compact waveform in Figure 6b is that it allows a longer period of time
to be viewed in a single glance, thereby explicating contingencies occurring during this interval. Equa-
tion 2 also facilitates the learning of contingencies over longer periods of time. To see why this is the
case, consider the relation between the error derivative with respect to the context units at step n ,
∂E /∂c(n ), and the error back propagated to the previous step, n −1. One contribution to ∂E /∂ci (n −1), from
the first term in Equation 2, is

∂ci (n )
∂E

∂ci (n −1)
∂ τi ci (n −1) = τi

∂ci (n )
∂E

.

This means that when τi is large, most of the error signal in context unit i at note n is carried back to note
n −1. Thus, the back propagated error signal can make contact with points further back in time, facilitat-
ing the learning of more global structure in the input sequence.
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Several comments regarding this approach.
� Figure 6 is inaccurate in that it represents a filtering of the raw input sequence. The idea pro-

posed here actually involves a filtering of the transformed input (i.e., the representation in the
context layer). Regardless, the basic intuition applies in either case.

� Time constants have been incorporated into the activation rules of other connectionist architec-
tures. Most pertinent is Bharucha and Todd’s (1989) use of fixed time constants to implement an
exponentially decaying memory of input context. McClelland’s (1979) cascade model makes
use of time constants in a feedforward network. The continuous-time networks of Pearlmutter
(1989) and Pineda (1987) are based on a differential equation update rule, of which Equation 2 is
a discrete time version. Mozer (1989) proposed an architecture for sequence recognition that
included linear-integrator units. However, none of this work has exploited time constants to con-
trol the temporal responsivity of individual units.

� Although Figure 6 depicts only two time scales, context units can operate at many different time
scales, with smaller values of τi specializing the units to be sensitive to local properties of the
sequence and larger values specializing the units to be sensitive to more global properties. One
obvious possibility is to use back propagation to determine the appropriate values of τi ; however,
my suspicion is that there are many local optima blocking the path to the best τi .

� This approach specializes each context unit for a particular time scale. Nonetheless, it allows for
interactions between representations at different time scales, as each context unit receives input
from all others. Thus, CONCERT can in principle learn to encode relationships between structure
at different scales.

� Equation 2 suggests one particular type of reduced description, consisting of a smoothed and
compressed representation of the context unit response over time. This is a simple-minded
reduced description; ideally, one would like the reduced description to characterize meaningful
"chunks" or events in the input sequence. I expand upon this idea upon later in the article.

AABA phrase patterns revisited

In the experiment with AABA phrase patterns described earlier, the CONCERT architecture contained 35
context units, all with τ = 0. In this experiment, called the reduced description or RD version, 30 context
units had τ = 0 and 5 had τ = 0.8. The experiment was otherwise identical. Table 8 compares the generali-
zation performance of the original and RD networks, for predictions involving local and global structure.
Performance involving global structure was significantly better for the RD version (F(1,9)=179.8,
p<.001), but there was only a marginally reliable difference for performance involving local structure
(F(1,9)=3.82, p=.08). The global structure can be further broken down to prediction of the end of the
sequence and prediction of the first pitch of the repeated A phrases. In both cases, the performance
improvement for the RD version was significant: 88.0% versus 52.9% for the end of sequence
(F(1,9)=220, p<.001); 69.4% versus 61.2% for the first pitch (F(1,9)=77.6, p<.001).

Table 8: Performance on AABA phrases
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Experiments with different values of τ in the range .7−.95 yielded qualitatively similar results, as did
experiments in which the A and B phrases were formed by random walks in the key of C. Overall, mod-
est improvements in performance are observed, yet the global structure is never learned as well as the
local, and it is clear that CONCERT’s capabilities are no match to those of people in this simple domain.

Larger simulation experiments

In the next three sections, I describe simulations using real music as training data, and including the
reduced description technique described in the previous section.

Composing melodies in the style of Bach

The melody line of ten simple pieces by J. S. Bach were used to train CONCERT (Table 9). The set of
pieces is not particularly coherent; it includes a variety of musical styles. The primary thing that the
pieces have in common is their composer. The original pieces had several voices, but the melody gen-
erally appeared in the treble voice. Importantly, to naive listeners the extracted melodies sounded
pleasant and coherent without the accompaniment.

In the training data, each piece was terminated with a sequence of three rests. This allowed CONCERT to
learn not only the notes within a piece but also when the end of the piece was reached. Further, each
major piece was transposed to the key of C major and each minor piece to the key of A minor. This was
done to facilitate learning because the pitch representation does not take into account the notion of musi-
cal key; hopefully, a more sophisticated pitch representation would avoid the necessity of this step.

Two fixed input units were included in this simulation. One indicated whether the piece was in a major
versus minor key, another whether the piece was in 3/4 meter versus 2/4 or 4/4. These inputs did not
change value for a given piece. To keep CONCERT on beat, an additional input unit was active for notes
that were on the downbeat of each measure. If a note was tied from one measure to the next, it was
treated as two events; this assured each downbeat would correspond to a distinct input event.8

Learning the examples involves predicting a total of 1,260 notes altogether. CONCERT was trained with
40 hidden units, 35 with τ = 0 and 5 with τ = .8, for 3000 passes through the training set. The learning rate
was gradually lowered from .0004 to .0002. By the completion of training, CONCERT could correctly
predict about 95% of the pitches and 95% of the durations correctly. Attempts were made to train

Table 9: Bach training examples
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piece number of notes�����������������������������������������������������������������������������

Minuet in G major (no. 1) 126
Minuet in G major (no. 2) 166

Minuet in D minor 70
Minuet in A minor 84
Minuet in C minor 80
March in G major 153
March in D major 122
March in Eb major 190
Musette in D major 128
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8 To maintain information about note ties, an additional component of the duration representation signaled whether a note was
tied from the previous.
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CONCERT with a greater proportion of RD context units and with greater τ values, but training perfor-
mance suffered.

New pieces were created by presenting the first four notes of one of the training examples to seed CON-

CERT, and then allowing CONCERT to run in composition mode. Selection was made independently for
the pitch and duration of each note, according to their respective probability distributions, with the addi-
tional constraint that durations were ruled invalid if the resulting note crossed measure boundaries (this
was allowed only when the component of the duration representation indicating a tied note was active).
Two examples of compositions produced by CONCERT are shown in Figure 7. CONCERT specifies the end
of a composition by producing a sequence of rests. The compositions rapidly diverge from the training
example used as seed, due to the probabilistic note selection process, although some compositions occa-
sionally contain brief excerpts from the training examples.

Compositions were also generated based on the Bach examples using a transition table approach. Two
third-order transition tables were built from the training data, one for durations and one for pitches. (Com-
bining the two in a single table is not feasible because the resulting table is too large—over 110 million
cells—and is too sparse to be useful.) Twelve musically-untrained listeners were asked to state their
preference for the CONCERT compositions or the transition table compositions. Two representative exam-
ples of each technique were played. Order of presentation was counterbalanced across listeners. All
twelve chose CONCERT, some with ambivalence others with a strong preference. Listeners commented
that the CONCERT compositions were more coherent and had a more consistent beat. The final cadences
of the CONCERT composition were also noted as superior, no doubt because at this point in the piece

Figure 7. Two sample compositions produced by CONCERT based on the Bach training set.
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CONCERT did actually consider more than third order structure.

Composing melodies in the style of of European folk tunes

In a second experiment, CONCERT was trained on a set of twenty-five traditional European folk melodies
(included in Der Fluiten Luschof of J. van Eyck). The pieces were somewhat shorter than the Bach
examples, having an average of 74 notes per piece. All pieces were in the key of C major and had 4/4
meter. Because of the uniform mode and meter of the pieces, there was no need to represent these
features explicitly on the input, as was done for the Bach examples.

CONCERT was trained with 50 hidden units, 45 with τ = 0 and 5 with τ = .8, for about 2000 passes through
the training set. By the completion of training, CONCERT could correctly predict 93% of the pitches and
90% of the durations in the training set correctly. Compositions using the trained network sounded rea-
sonable, occasionally having more appeal than the training examples! Figure 8 shows a sample composi-
tion.

Explicit training on higher-order structure: the waltz experiment

The two experiments with real musical data were a mixed success. Although clearly superior to a third-
order transition table, CONCERT failed to produce music with high-order structure. One cannot claim a
qualitative difference between the CONCERT and transition table compositions.

The above experiments utilized only 5 RD context units. One might conjecture that higher-level structure
might be learned better with more RD units. However, even with no RD units, CONCERT achieved a train-
ing performance of 95%; replacing ordinary context units with RD units did not improve, and generally
harmed, training performance. The problem appears to be that the prediction task can be performed very
well using only local structure.

Figure 8. A sample composition produced by CONCERT based on a training set of traditional European folk melodies.
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To encourage the consideration of structure on a longer time scale, a final experiment introduced har-
monic accompaniment to the melody line. The training examples were a set of 25 waltzes by various
composers, collected in a "Fakebook" with a rhythmically-simplified melody line and accompanying
chord progressions. The change in chords occurred at a slower rate than the change in notes of the
melody: In the training set, the average duration of a melody note was 1.4 beats, while the average dura-
tion between chord changes was 5.9 beats. Consequently, one might hope that in order to learn the struc-
ture of the chord progression, it would be necessary to span longer periods of time, and hence, it would be
necessary for CONCERT to extract higher-level structure from the pieces.

Each note in the input was accompanied by the current chord. Chord duration was not explicitly
represented; the duration of a chord was simply the sum of the durations of the consecutive notes that
were associated with the chord.

Figure 9 shows two compositions produced by CONCERT based on the waltz data set. There was little evi-
dence in the compositions that significant global structure was learned.

Discussion

While CONCERT performs well on simple, structured, artificial sequences, the prognosis looks bleaker for
natural music. One critic described CONCERT’s creations as "compositions only their mother could love."
To summarize more delicately, few listeners would be fooled into believing that the pieces had been com-
posed by a human. While the local contours made sense, the pieces were not musically coherent, lacking
thematic structure and having minimal phrase structure and rhythmic organization.

It appears that the CONCERT architecture and training procedure do not scale well as the length of the
pieces grow and as the amount of higher-order structure increases. This comes as no surprise to some:
learning the structure of music through a note-by-note analysis is formally the same task as learning to
read and understand English from a letter-by-letter analysis of text. Nonetheless, many researchers are
pursuing a linear note-by-note approach to music analysis and composition. This is not entirely naive, as
connectionist algorithms are in principle capable of discovering the multiple levels of structure in music.
However, the experiments reported here show no cause for optimism in practice, despite the use of state-
of-the-art connectionist architectures and training algorithms, and attempts to encourage CONCERT to
learn global structure.

The present results clearly signal difficulty in using sequential networks to match transition probability
distributions of arbitrary order. Even more sophisticated approaches are clearly needed. I mention
several directions that one might consider in the domain of music analysis and composition.

� Multiple recurrent hidden layers. The current CONCERT architecture is limited in that the update
rule for the context layer is a squashed linear mapping. That is, the new context is a linear func-
tion of the old context and current input, passed through a squashing function. To give CONCERT

more flexibility in the update rule, one might consider multiple hidden layers in the recurrent
loop (for related work, see Cottrell & Tsung, 1993; Tsung & Cottrell, 1993).

� Alternative approaches to remembering the past. There are many connectionist approaches to
constructing a memory of past events for the purpose of predicting the future (Mozer, 1993; Prin-
cipe, Hsu, & Kuo, 1994). CONCERT with the RD units would be considered a TIS-exponential
architecture according to Mozer’s taxonomy. Another promising approach might be to include a
small buffer in the input and/or context layers to hold a history of recent activities, allowing local
temporal structure to be learned without wasting the resources of the recurrent connections.
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Figure 9. Two compositions produced by CONCERT based on a training set of waltzes. For both compositions, CONCERT was
given the same initial three measures, but the compositions rapidly diverged.

Cascaded sequential networks. Burr and Miyata (1993) and Todd (1991) have proposed cas-
caded sequential networks for the purpose of representing hierarchically organized structure.
Gjerdingen (1992) has suggested a related approach using a hierarchy of masking fields in an
ART 3 architecture. The basic idea is for lower levels of the hierarchy to encode fine structure
and higher levels to encode coarser structure. While only small scale tests of this idea have been
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performed, it seems promising and worth pursuing.
� Chunking architectures. In the cascaded sequential networks described above, the network

designers specify in advance the hierarchical decomposition of a linear sequence. Todd (1991)
assumes that an explicit decomposition is included as part of the training process. Burr and
Miyata (1993) assume that successively higher levels operate on fixed, slower time scales: the
lowest level net is updated once a beat, the next net once every three beats, the next net every
twelve beats, and so forth. Rather than providing the system with a hierarchical decomposition,
one would really like for the system to discover the decomposition itself. Ideally, each level of
the hierarchy should encode meaningful "chunks" or events in the sequence—the nature of a
chunk being determined by the statistics of the environment—and the next higher level should
operate on these chunks. Schmidhuber, Mozer, and Prelinger (1993) describe an architecture of
this sort in which the higher level analyzes only components of the input that cannot be inter-
preted by the lower level, yielding an automatic decomposition of sequences. This architecture
has not been tested on musical sequences. Mozer and Das (1993) present an explicit chunking
mechanism that has the capability of creating new symbols to represent an abstraction of a
sequence of input elements. The mechanism operates on the generated symbols just as it does on
the input elements, allowing it to recursively chunk the chunks. The creation of new symbols
achieves a reduced description that is more flexible than the time constant method proposed in
this article. The time constant method attempts to derive global statistics, whereas the chunk-
ing mechanism derives only local statistics, but does so over abstractions of the input. We are
presently exploring how the chunking mechanism performs on musical sequences.

� Explicit representation of structure. In the final simulation study, CONCERT was trained to
predict harmonic accompaniment, which naturally operates at a coarser time scale than the
melody itself. The hope was that by including this coarser structure as an explicit component of
the task, CONCERT would be forced to learn it. One can push this idea further and include struc-
ture at even coarser time scales, e.g., the sort of description that musicologists might use to
characterize or analyze a piece, such as phrase boundaries, themes, inversions, key modulations.
Given training data annotated with these descriptions, CONCERT would have the opportunity to
learn global structure explicitly.

� Staged training. Music appears to have a tremendous amount of local structure that can mask
the presence of global structure. The evidence for this comes from the fact that CONCERT per-
formed very well on training sets even without paying attention to global structure. One might
get around this problem by staging training in CONCERT, first training RD units with large time
constants, and then gradually introducing units with smaller (and zero) time constants in the
course of training. This would force CONCERT to examine the more global structure from the
start.

� Representations of musical elements in context. In the current work, the encoding of pitch, dura-
tion, and harmony is independent of the temporal context in which the elements are embedded.
This is clearly wrong from a psychological perspective: in music, as in every domain of cogni-
tion, context and expectations affect the interpretation of perceptual elements. A truer cognitive
architecture would allow interactions between the processes that determine the encoding and the
processes—modeled in CONCERT—that generate expectancies (see Bharucha, 1987, 1991, for a
relaxation model that has this general flavor). Another way of embodying this interaction is to
consider the representation of musical elements in a musical context. The representations of
pitch and chords in CONCERT are based on psychoacoustic studies that consider only pairwise
similarities. Psychological studies of pitch and harmony in a musical context (e.g., Krumhansl,
1990; Krumhansl & Kessler, 1982; Longuet-Higgins, 1976, 1979) could potentially be of value
in incorporating the preceding input history into the network’s representations. Similarly,
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structured representations of rhythm (e.g., Lerdahl & Jackendoff, 1983; McAuley, 1993) might
help to impose higher-level organization on the input sequences.
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