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  − A little theory
     − Quadratic forms, Hessians, and Eigenvalues
     − maximum learning rate, minimum learning time
  − How GD works in simple cases
     − a single 2−input neuron
     − stochastic vs batch update
  − Transformation laws
     − shifting, scaling, and rotating the input
     − the non−invariance of GD
  − The minimal multilayer network

3 − Second order methods
  − Newton’s algorithm, and why it does not work.
     − parameter space transformations
  − computing the second derivative information
     − diagonal terms, quasi−linear hessians, partial hessians
  − analysis of multilayer net Hessians
  − Classical optimization methods
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  − Mini batch methods
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PLAIN  BACKPROP:

HOW TO MAKE IT WORK
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BASIC CONCEPTS, TERMINOLOGY,
NOTATIONS

Average Error: 1
p
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GRADIENT DESCENT LEARNING

Average Error:

ω(τ+1) = ω(τ) − η ∂ Ε
∂ ω

1
pΕ(ω) =     ∑Εκ(ω)

Gradient Descent:

COST FUNCTION

LEARNING
MACHINE

Parameters

X0, X1, ....Xp

Output

E0, E1,....Ep

Error

Desired
Output

D0, D1,...Dp

Y0, Y1,...Yp

Input

ω

ω0

ω1



COST FUNCTION
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COMPUTING THE GRADIENT
WITH BACKPROPAGATION

Ο = Α(Ι1, Ι2)  

δΙ1 =          δΟ∂ Α
∂ Ι1 δΙ2 =          δΟ∂ Α

∂ Ι2

− The learning machine is composed of modules (e.g. layers)
− Each module can do two things:
  1− compute its outputs from its inputs (FPROP)

  
  2− compute gradient vectors at its inputs from
       gradient vectors at its outputs (BPROP)

Α

Ο, δΟ

Ι1, δΙ1

Ι2, δΙ2



AN INTERESTING SPECIAL CASE:
MULTILAYER NETWORKS

X0, X1, ....Xp

Output

Desired
Output

D0, D1,...Dp

Y0, Y1,...Yp

Input

 || D − Y || 2
2
1

WX

F()

WX

F()

Mean Square Error

Parameters
(weights +
  biases)

ω

Weight matrix

E0, E1,....Ep

Sigmoids + Biases

Weight matrices: 
Ο = ω ΙFPROP

BPROP δΙ = ω′ δΟ ;   δω = δΟ′ Ι

Sigmoids + Bias:
FPROP

BPROP

Ο = ƒ(Ι+Β)

δΙ = ƒ′(Ι+Β) δΟ ;  δΒ = δΙ



FULL GRADIENT

STOCHASTIC  GRADIENT

Repeat {
  for all examples in training set {
      forward prop           // compute output 
      backward prop        // compute gradients
      update parameters }}

Repeat {
  for all examples in training set {
      forward prop           // compute output 
      backward prop        // compute gradients
      accumulate gradient }   
  update parameters }

The parameters are updated after each
presentation of an example

The gradients are accumulated over the
whole training set before a parameter 
update is performed

STOCHASTIC UPDATE
BATCH UPDATE

ω(τ+1) = ω(τ) − η 

∂ Ε
∂ ω

∂ Ετ
∂ ω

ω(ρ+1) = ω(ρ) − η 



A FEW PRACTICAL TRICKS

BackProp is a simple algorithm, but convergence
can take ages if it is not used properly.

The error surface of a multilayer network is non
quadratic and non−convex, and has often
many dimensions.  
THERE IS NO MIRACLE TECHNIQUE for finding
the minimum. Heuristics (tricks) must be used.

Depending on the details of the implementation,
the convergence time can vary by orders
of magnitude, especially on small problems.

On large, real−world problems, the convergence
time is usually much better than one would expect
from extrapolating the results on small problems.

Here is a list of some common traps, and some
ideas about how to avoid them.

The theoretical justifications for many of these tricks
will be given later in the talk.



STOCHASTIC vs BATCH UPDATE

Imagine you are given a training set with 1000
examples.  
Imagine this training set is in fact composed 
of 10 copies of a set of 100 patterns

small batches can be used without penalty, provided
the patterns in a minibatch are not too similar.

In real life, repetitions rarely occur, but very often
the training examples are highly redundant
(many patterns are similar to one another), which
has the same effect. 

Batch will be AT LEAST 10 times slower than Stochastic

In practice speed differences of orders of magnitude
between Batch and Stochastic are not uncommon

Stochastic update is usually MUCH faster than
Batch update.  Especially on large, redundant
data sets.
Here is why: 

BATCH: the computation for one update
               will be 10 times larger then necessary.

STOCHASTIC: the redundancy in the training set will
              be taken advantage of.  One epoch on the large
              set will be like 10 epochs on the smaller set.



STOCHASTIC vs BATCH UPDATE
(continued)

STOCHASTIC:

BATCH:

ADVANTAGES:
  − guaranteed convergence to a local minimum under
     simple conditions.
  − lots of tricks and second order methods to accelerate it
  − easy convergence proofs

DISADVANTAGES:
  − painfully slow on large problems

Despite the long list of disadvantages for STOCHASTIC,
that is what most people use (and rightfully so, at least
on large problems).

ADVANTAGES:
  − much faster convergence on large redundant datasets
  − stochastic trajectory allows escaping from local minima

DISADVANTAGES:
  − keeps bouncing around unless the learning rate
     is reduced
  − theoretical conditions for convergence are not as clear
     as for batch
  − convergence proofs are probabilistic
  − most nice acceleration tricks or second−order methods
     do not work with stochastic gradient
  − it is harder to parallelize than batch



SHUFFLING THE EXAMPLES

RULE:  at any time, chose the training example
            with the maximum information content.

For example:
        − the one with the largest error
        − the one that is maximally different 
           from its predecessors

A MORE REFINED TRICK:

use an "emphasizing" scheme:
show difficult patterns more often than easy patterns

[whether a pattern is easy of hard can be determined
 with the error it produced during the previous iterations]

A SIMPLE TRICK:

 (applicable to stochastic gradient on classification tasks)
 
Shuffle the training set so that successive examples
never (or rarely) belong to the same class.

Problem with emphasizing techniques:

  − they perturb the distribution of inputs

  − the presence of outliers or of mislabeled
     examples can be catastrophic.



THE SIGMOID

Symetric sigmoids (like tanh) often yield faster
convergence than the standard logistic function.

MORE GENERALLY:  the mean of each input to
  a neuron should be small compared to its
  standard deviation [more on this later]

 Symetric sigmoids are more likely to produce
"small mean" signals than are positive sigmoids.

Sigmoids (and their derivatives) can be efficiently
computed as ratios of polynomials

Problems with symetric sigmoids:

− The error surface is VERY FLAT around the origin.
    (the origin is a saddle point which is attractive 
     in almost all directions)
− Avoid small weights
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3

The one I use:   a rational approximation to

                  f(x) = 1.7159 tanh(     x)

1

1

The precise choice of the sigmoid is almost irrevelant,
but some choices are more convenient than others

Properties:     
  −       f(1) =1,  f(−1)=−1 
  −       2nd derivative is maximum at x=1
  −       the effective gain is close to 1

THE SIGMOID (continued)

It is sometimes helpful to add a small linear term
to avoid flat spots, e.g.

                  f(x)  = tanh(x) + ax



NORMALIZING THE INPUTS

Each input input variable should be sifted so
that its mean (averaged over the training set)
is close to 0 (or is small compared to its 
standard deviation).

Here is why:

Consider the extreme case where the input variables
are always positive.

The weights of neuron in the first hidden layer can
only increase together or decrease together
(for a given input pattern the gradients all have 
the same sign).

This means that if the weight vector has to change
its direction, it will have to do it by zigzaging
(read: SLOW).

Shifts of the input variables to a neuron introduce
a preferred direction for weight changes, which
slows down the learning.

This is also why we prefer symetric sigmoids:
what is true for input units is also true for other
units in the network.



covariance:   
1
Ρ ∑ χ 2

κ κ

The speed at which the output of a 
particular weight varies with gradient descent 
is proportional to the COVARIANCE of its input.
[more on this later]

To equalize the learning speeds of input weights, 
the input variables should be scaled to have 
approximately equal covariances.

To equalize the learning speeds of these weights
with that of the weights in the next layers,
this covariance should be comparable to the expected
covariances of the hidden units states
(around 1 with the type of sigmoid proposed earlier).

An exception to this rule is when some inputs are
known to be of lesser significance than others.
Scaling them down makes them less "visible"
to the learning process.

NORMALIZING THE INPUTS
(continued)



NORMALIZING THE INPUTS
(continued)

Input variables should be UNCORRELATED
if possible

Correlations between input variables also
introduce "preferred directions for weight changes"

Sometimes the input have a particular meaning
that would be destroyed by the KL−expansion
(e.g.: if the input variables are the pixels of an image
         and the network uses local connections)

Original data points

Mean Cancelation

KL−expansion

Covariance
equalization

Decorrelation can be performed by a Principal 
Component Analysis (Karhunen−Loeve expansion).



Avoid saturating the output units. Choose
target values within the range of the sigmoid

In classification applications, the desired
outputs are often binary.

Common sense would suggest to set the target
values on the asymptotes of the sigmoid.

However this has several adverse effects:

Saturating the units erases the differences between
typical and non−typical examples.

Setting the target values at the point of maximum
second derivative on the sigmoid (−1 and +1 for the
sigmoid proposed earlier) is the best way to take
advantage of the non linearity without saturating the units

CHOOSING THE TARGET VALUES

1 − this tends to drive the output weights to infinity
      (and to saturate the hidden units as well).
      When a training example happens not to saturate
      the outputs (say an outlier), it will produce
      ENORMOUS gradients (due to the large weights).

2 − outputs will tend to be binary EVEN  WHEN THEY 
      ARE WRONG. This means that a mistake will
      be difficult to correct, and that the output levels
      cannot be used as reliable confidence factors.

      



INITIALIZING THE WEIGHTS

Initialize the weights so that the expected
standard deviation of the weighted sums
is at the transition between the linear part
and the saturated part of the sigmoid function

Large initial weights saturate the units, leading to
small gradients and slow learning.
Small weights correspond to a very flat area of
the error surface (especially with symetric sigmoids)

Assuming the sigmoid proposed earlier is used,
the expected standard deviation of the inputs to
a unit is around 1, and the desired standard deviation
of its weighted sum is also around 1.

Assuming the inputs are independent, the expected 
standard deviation of the weighted sum is

σ = ( ∑ ω   )       =  φ    ϖ
i

2
i

½ ½

where       is the number of input to the unit, and
      is the standard deviation of its incoming weights.

φ
ϖ

ϖ = φ -½

σTo ensure that        is close to 1, the weights to a unit 
can be drawn from a distribution with standard deviation



CHOOSING LEARNING RATES

Equalize the learning speeds.

η
Each weight (or parameter) should have its own
learning rate. 
Some weights may require a small learning rate
to avoid divergence, while others may require
a large learning rate to converge at reasonable 
speed.

Because of possible correlations between input
variables, the learning rate of a unit should be
inversely proportional to the square root of the
number of inputs to the unit.

If shared weights are used (as in TDNNs and
convolutional networks), the learning rate of
a weight should be inversely proportional to the
square root of the number of connection sharing
that weight.

Learning rates in the lower layers should generally
be larger than that in the higher layers.

The rationale for many of these rules of thumb
will become clearer later.
Several techniques are available to reduce
"learning rate fiddling".



NEURONS AND WEIGHTS

Although most systems use neurons based
on dot products and sigmoids, many other types
of units (or layers) can be used.

A particularly interesting example is when the dot
product of the input by the weight vector is replaced
by a Euclidean distance, and the sigmoid by an
exponential (Gaussian units of RBF).

These units can replace (or coexist with) standard
units, and they can be trained with gradient descent:

ω

Β
2

exp

||ω−Ι||

Ι

FPROP

BPROP

Ο =       (Ι+Β)exp

δΙ = Ο δΟ ;  δΒ = δΙ
weight vector: 
FPROP

BPROP

Ο =  (ω−Ι)′(ω−Ι)

δΙ = 2 δΟ′(Ι−ω) ;   
δω = −δΙ

exponential + Bias:

PROS and CONS
  − Locality: each unit is only affected by a small part of
     the input space. This can be good (for learning
     speed) and bad (a lot of RBF are needed to cover
     high dimensional spaces)
  − gradient descent learning may fail if the RBFs are not
      properly initialized (using clustering techniques e.g.
      K−means). There are LOTS of local minima.
  − RBFs are more apropriate in higher layers, and 
     sigmoids in lower layers (higher dimension).



MORE STANDARD TRICKS

− Momentum
  − Increases speed in batch mode. 
     seems marginally useful but not indispensable
     in stochastic mode.

− Adaptive learning rates:
  − a separate learning rate for each weight is
     increased if the gradient is steady, 
    decreased if the gradient changes sign often
     [Jacobs 88]. This only works with BATCH.

  − a global learning rate is adjusted using
     line searches. Again, this only works for BATCH.
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THE CONVERGENCE OF

GRADIENT DESCENT



A LITTLE THEORY

weight vector learning rate

gradient of
objective function

Ε(ω)

ω

Ε(ω)

ω

opt opt

∂Ε
∂ωω ← ω − η

Ε(ω)

ω

optη < η

Ε(ω)

ω

η = ηopt

η > η η > 2 η

Gradient Descent in one dimension



OPTIMAL LEARNING RATE IN 1D

Ε(ω)

ω

η = ηopt

ω

∂Ε
∂ω

∆ω

∂Ε
∂ω

Assuming E
is quadratic:

∂  Ε
∂ω

2

2
∂Ε
∂ω

∆ω =

2
∂ Ε

2∂ω
= 

−1

optη

∂Ε
∂ω∆ω = η

Weight change:

Optimal
Learning
Rate

Maximum
Learning
Rate optη= 2 ηmax



CONVERGENCE OF GRADIENT DESCENT

Local quadratic approximation of the cost function
around a minimum:

Hessianminimum

Ε(ω) ≈ Ε(ϖ) + 1/2(ω−ϖ)′ Η(ϖ) (ω−ϖ)

ϖ0

ϖ1

Hessian
eigenvectors

Η    =ij
  ∂  Ε
∂ω  ∂ω

2

i j

HESSIAN 
Second derivative matrix

Gradient Descent weight update:

∂Ε
∂ω

ω      = ω  −ηκκ+1 = ω  −η Η(ω  ) (ω  −ϖ)κ κ κ

(ω      −ϖ)  =  (Ι − ηΗ(ω  ) )(ω   −ϖ) κ+1
 

κ κ

The Hessian is a symetric  NxN matrix 

Convergence <===> 
if the prefactor of the
right handside shrinks
any vector



Ε(ω) ≈ Ε(ϖ) + 1/2[(ω−ϖ)′Θ′] [ΘΗ(ϖ) Θ′] [Θ(ω−ϖ)]

CONVERGENCE OF GRADIENT DESCENT
(continued)

ν0

ν1 Ε(ν) ≈ Ε(0) + 1/2 ν′Λ ν

Let       be the rotation matrix that make H diagonal:Θ

Now denote: ν = Θ (ω − ϖ)

The eigenvectors
of a diagonal matrix
are the coordinate 
axes

κ+1 κν        =  (Ι − η Λ) ν

Θ Η Θ′ = Λ ;        Θ′Θ=Ι

Gradient Descent in N dimensions can be
viewed as N independent unidimensional 
Gradient Descents along the eigenvectors
of the Hessian.

Gradient update in
 the transformed space:

 Convergence is obtained for η  < 2/ λ max
where                is the largest eigenvalue
of the Hessian

maxλ



 

CONVERGENCE  SPEED
OF GRADIENT DESCENT

The maximum learning rate to ensure 
convergence is

maxmaxη       = 2/ λ

The one that yields the fastest convergence
in the direction of highest curvature is

maxoptη       = 1/ λ

With this choice, the convergence time will
be determined by the directions of SMALL
eigenvalues (they will be the slowest to 
converge).

The convergence time is proportional to:

min

    1
η λ >

min
  λ
2λ

max

where            is the smallest "non−negligible"
eigenvalue

λmin

The convergence time is proportional to
the ratio of the largest eigenvalue to smallest
"non−negligible" eigenvalue of the Hessian



CONVERGENCE OF GRADIENT DESCENT
A SIMPLE EXAMPLE

A single 2−input 
linear neuron:

ω0 ω1

ω2

χ0 χ1

Υ

 Η =      ∑ χ  χ′ pp p
 1
 P

The Hessian of a single linear neuron is
the covariance matrix of the inputs

Ε(ω) =      ∑ ||  p pp
||  2(ω) pp

2
p =        ∑ ||    1

 2P
  1
 2Pd−y ω′χ   ||  d−

 Ε(ω) =       [ ∑      −  2 (∑    χ )′ω  + ω′ (∑χ  χ′ ) ω ]pp p
d2 d

p p p
  1
 2P p
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Batch gradient descent

Weight space
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Batch gradient descent

Weight space
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Stochastic gradient descent

data set:  set−1  (100 examples, 2 gaussians)
network:   1 linear unit, 2 inputs, 1 output.
                  2 weights, 1 bias.

Learning
rate:

Hessian
largest
eigenvalue:

λ   = 0.84
max

η    = 2.38max

Maximum
admissible
Learning
rate 
(for batch):

η = 0.2

Weight space
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CONVERGENCE OF GRADIENT DESCENT:
MINIMAL MULTILAYER NETWORK

1 input
1 hidden unit
1 output

2 weights
2 biases

ω0

ω1
ω2

Υ

ω3

χ

TRAINING SET:  20 examples.

Class1:
  10 examples drawn from a Gaussian distribution 
  with mean −1, and standard deviation 0.4

Class2:
  10 examples drawn from a Gaussian distribution
  with mean +1, and standard deviation 0.4

Sigmoid:  1.71 tanh(2/3 x)

Targets: −1 for class 1, +1 for class 2
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Stochastic gradient:  1−1−1 network

data set:  20 examples, 2  1D−gaussians)
network:   1 input, 1 hidden, 1output
                  2 weights 2biases

η = 0.4
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INPUT TRANSFORMATIONS
ERROR SURFACE TRANSFORMATIONS

A shift (non zero mean) in the input variables
creates a VERY LARGE eigenvalue which
leads to eccentric paraboloids, and to slow
convergence

Subtract the means from the input variables

Normalize the variances of the input variables

Decorrelate the input variables

Correlations between input variables lead
to eccentric paraboloid with ROTATED axes

widely spread variances for the input variables
lead to widely spread Hessian eigenvalues

The gradient is NOT the best descent 
direction
Use a spearate learning rate for each weight.
No use spending time and effort to
compute an accurate gradient estimate

For a single linear neuron, If the input variables have 
zero means, the eigenvectors of the Hessian are the 
principal axes of the cloud of training vectors



3

SECOND ORDER METHODS



NEWTON ALGORITHM

Newton Algorithm in one dimension

Ε(ω)

ω

ω

∂Ε
∂ω

∆ω

∂Ε
∂ω

Assuming E
is quadratic:

∂  Ε
∂ω

2

2
∂Ε
∂ω

∆ω =

Optimal weight change:

2
∂ Ε

2∂ω

−1
∂Ε
∂ω∆ω = 

2
∂ Ε

2∂ω

−1
∂Ε
∂ω∆ω = η 0<η<1

If E is not 
perfectly  :
quadratic



Hessian

NEWTON ALGORITHM

Local quadratic approximation of the cost function
around the current point:

Ε(ω + ∆ω) ≈ Ε(ω) + ∇Ε(ω) ∆ω +1/2 ∆ω′Η(ω) ∆ω

gradientweight change

Solve: ∇Ε(ω) + Η(ω) ∆ω = 0 for ∆ω

∆ω = Η(ω)   ∇Ε(ω)−1

IDEA:  find the weight change that minimizes the above.
   (i.e.: find the weight change for which the gradient is 0)

ω



½ ½Η(ω)= Θ′Λ  Λ  Θ

NEWTON ALGORITHM AND
PARAMETER SPACE TRANSFORMS

Η   (ω)= ΘΛ   Λ   Θ′-½ -½-1

ω -½Λ    Θ′

-½ΘΛ

U

Network

input

output

ω Network
ω

input

output

Θ-½ΛU

Newton Algorithm here ...... ....is like Gradient Descent
   there

Diagonalized Hessian



NEWTON ALGORITHM

− it converges in 1 iteration if the error is quadratic

− unlike Gradient Descent, it is invariant with respect 
   to linear transformations of the input vectors,
   i.e. the convergence time is not affected by
   shifts, scaling and rotations of the input vectors.

BUT:

− it requires computing, storing and inverting the
   NxN Hessian (or solving an NxN linear system). 
   The complexity is O(N^3), which is impractical
   with more than a few variables)

− there is ABSOLUTELY NO GUARANTEE 
   of convergence when the error is non−quadratic

− in fact, it diverges if the Hessian has some null
   or negative eigenvalues (the error surface is 
   flat or curved downward in some directions).
   The Hessian MUST be Positive Definite.
    (this is obviously not the case in multilayer nets)

The Newton Algorithm in its original form
is unusable for Neural Net learning.

but its basic idea is useful for understanding
more sophisticated algorithms



COMPUTING THE HESSIAN
INFORMATION IN 
MULTILAYER NETWORKS

 

There are many techniques to compute the full
Hessian, or parts of it, or approximations to it,
in multilayer networks.

We will review the following simple methods:

− finite difference

− square Jacobian approximation
   (for the Gauss−Newton and 
    Levenberg−Marquardt algorithms)

− computing the diagonal term (or block
   diagonal terms) by backpropagation

− computing the product of the Hessian by a
   vector without computing the Hessian

There exist more complex techniques to compute
semi−analytically the full Hessian
[Bishop 92,  Buntine&Weigend 93, others.....]
but they are REALLY complicated, and require
many forwardprop/backprop passes.



FINITE DIFFERENCE

(Line k of H) = 
 

∂ ( ∇Ε(ω) )
     ∂ωκ

Finite difference approximation:

The k−th line of the Hessian is the derivative of
the GRADIENT with respect to the k−th parameter

RECIPE for computing the k−th line of the Hessian

1− compute total gradient (multiple fprop/bprop)
2− add Delta to k−th parameter
3− compute total gradient
4− subtract result of line 1 from line 3, 
     divide by Delta.

due to numerical errors, the resulting Hessian may
not be perfectly symetric. It should be symetrized.

(Line k of H) =  

 

κ
δ

∇Ε(ω+δ φ   ) − ∇Ε(ω)

κφ    = (0,0,0,.....,1,...,0)



SQUARE JACOBIAN APPROXIMATION
FOR GAUSS−NEWTON AND
LEVENBERG−MARQUARDT ALGOS.

∂Ν(ω,χ  ) 
   ∂ω

pDp
p
∑ (      − Ν(ω,χ  ) )′ ∂Ε(ω)

  ∂ω = −

Gradient:

D D pp pp
p

Ε(ω) = 1/2∑ (      − Ν(ω,χ  ) )′ (        − Ν(ω,χ   ) )
Assume the cost function is the Mean Square Error:

p

∂Ν(ω,χ  ) 
   ∂ω

pΗ(ω) = ∑ ∂Ν(ω,χ  ) 
   ∂ω

p ′
+

Dp
p
∑ (      − Ν(ω,χ  ) )′ p∂  Ν(ω,χ  ) 

   ∂ω ∂ω′
2

Hessian:

Simplified Hessian (square of the Jacobian):

ω

χ

Ν(ω,χ)

D

Ε

p

∂Ν(ω,χ  ) 
   ∂ω

pΗ(ω) = ∑ ∂Ν(ω,χ  ) 
   ∂ω

p ′
Jacobian: NxO matrix
(O: number of outputs)

RECIPE for computing the k−th column of the Jacobian:
for all training patterns {
   forward prop
   set gradients of output units to 0;
   set gradient of k−th output unit to 1;
   back propagate;   accumulate gradient;
}

− the resulting approximate Hessian is positive semi−definite
− dropping the second term is equivalent to assuming that 
   the network is a linear function of the parameters



ignore this!

BACKPROPAGATING SECOND DERIVATIVES

ω

Υ

χ

Β(ω,χ)

Assuming we know ∂  Ε
∂Υ

2

2

what are 
2

2
∂  Ε
∂ω

2

2
∂  Ε
∂χ

A multilayer system composed of 
functional blocs. Consider one of 
the blocs with I inputs, O outputs, 
and N parameters

(OxO matrix)

(NxN matrix) and (IxI matrix)

2

2
= ∂  Ε

∂Υ
2

2
∂Υ
∂ω

′ ∂Υ
∂ω

+ ∂Ε
∂Υ

2

2
∂  Υ
∂ω

∂  Ε
∂ω

OxONxO OxNNxN 1xO OxNxN

Chain rule for 
2nd derivatives:

The above can be used to compute a 
bloc diagonal subset of the Hessian

If we are only interested in the diagonal terms, it reduces to:

qIf the term in the red square is dropped, the resulting
Hessian estimate will be positive semi−definite

(and same with     instead of     )χ ω=
2

2
∂  Ε
∂ω

ii

∂  Ε
∂Υ

2

2
∂Υ
∂ω

kk

kk

ii
∑
k

2



BACKPROPAGATING THE DIAGONAL
HESSIAN IN NEURAL NETS

ω
Υ

χ

ωχ

ƒ()

Ζ

Weighted sums

= ∂  Ε
∂Υ

2

2∑
k

2

2
∂  Ε
∂χ

i

2ω
ki

k

(with the square Jacobian approximation)

RBFs

Sigmoids (and other scalar functions)

∂  Ε
∂Ζ

2

2
=

2

2
∂  Ε
∂Υ (ƒ′(Υ))2

k k
k

ω

Υ

χ

||ω−χ||2

= ∂  Ε
∂Υ

2

2 i
χ 2∂  Ε

∂ω
ki

2

2
k

=∂  Ε
∂ω

ki

2

2
∂  Ε
∂Υ

2

2 i

2

k
ki(χ −ω   )

=
2

2
∂  Ε
∂χ

i

∑
k

= ∂  Ε
∂Υ

2

2 i

2

k
ki(χ −ω   )

[LeCun 87, Becker&LeCun 88, LeCun 89]

the "OBD" network pruning techniques uses 
this procedure [LeCun,Denker&Solla 90]

(the 2nd derivatives with
 respect to the weights 
should be averaged over 
the training set)

SAME COST AS REGULAR BACKPROP



COMPUTING THE PRODUCT OF THE
HESSIAN BY A VECTOR

ω

χ

Ν(ω,χ)

D

Ε

(without computing the Hessian itself)

1
α

∂Ε
∂ω (ω) −∂Ε

∂ω )(ω+αΨΗΨ≈  

Finite difference:

RECIPE for computing the product
of a vector      by the Hessian:

1− compute gradient
2− add         to the parameter vector
3− compute gradient with perturbed
     parameters
4− subtract result of 1 from 3,
      divide by     

Ψ

αΨ

α

This method can be used to compute the principal
eigenvector and eigenvalue of H by the power method.

By iterating Ψ ← ΗΨ / ||Ψ||  Y 

||Ψ||
      will converge to the principal eigenvector of H
and             to the corresponding eigenvalue
[LeCun, Simard&Pearlmutter 93]

A more accurate method which does not use finite
differences (and has the same complexity) has 
recently been proposed [Pearlmutter 93]



 

−What does the Hessian of a multilayer network
   look like?
− How does it change with the architecture and
   the details of the implementation?

− Typically, the distribution of eigenvalues of a
   multilayer network looks like this:
   

These large ones are the killers

a few small eigenvalues, a large
number of medium ones, 
and a small number of very 
large ones

They come from:
− non−zero mean inputs or neuron states
− wide variations second derivatives from
   layer to layer
− correlations between state variables

for more details see [LeCun, Simard&Pearlmutter 93]
[LeCun, Kanter&Solla 91]

ANALYSIS OF THE HESSIAN
IN MULTILAYER NETWORKS



EIGENVALUE SPECTRUM

Network:  256−128−64−10 with local connections and
                 shared weights (around 750 parameters) 
Data set: 320 handwritten digits
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MULTILAYER NETWORKS HESSIAN

The second derivative is often smaller in
lower layers. The first layer weights learn
very slowly, while the last layer weights 
change very quickly.

This can be compensated for using the
diagonal 2nd derivatives (more on this later)



CLASSICAL 2ND ORDER
OPTIMIZATION METHODS

− Conjugate Gradient methods
  − O(N) methods
  − do not use the Hessian directly
  − attempts to find descent directions that
      minimally disturb the result of the previous
      iterations
  − uses line search. Works only in BATCH.

− Gauss−Newton and Levenberg−Marquardt
    methods
  − use the square Jacobian approximation
  − works only for mean−square error
  − mainly designed for BATCH
  − O(N^3)

− Quasi−Newton methods (BFGS)
  − iteratively computes an estimate of the
     inverse Hessian.
  − requires a line search. Works only in BATCH.
  − O(N^2)

[Dennis&Schnabel 83], [Fletcher 87], 
[Press et al. 88] [Battiti 92]



CONJUGATE GRADIENT
[Hestenes&Stiefel 52], [Fletcher&Reeves 64]
[Polak 71] (see [Fletcher 87])

Pick a descent direction (say the gradient),
find the minimum along that direction (line search).
Now, find a direction along which the gradient
does not change its direction, but merely its length
(conjugate direction). Moving along that direction
will not spoil the result of the previous iteration

MAIN IDEA: to find a descent direction which does
       not spoil the result of the previous iterations

first descent
direction gradients

conjugate
direction

There are two slightly different formulae:
Fletcher−Reeves  &   Polak−Ribiere



CONJUGATE GRADIENT

Conjugate directions are like ORTHOGONAL directions
in the space where the Hessian is the identity matrix

p and q are conjugate <===> p’Hq = 0

descent direction at iteration k

ρ  =  −∇Ε(ω   ) + β  ρκ κ κ κ−1

ρ κ−1

ρ κ

κω 

β  =κ
∇Ε(ω  )′ ∇Ε(ω  )
∇Ε(ω    )′ ∇Ε(ω    )

κκ
κ−1κ−1

 (Fletcher−Reeves)

(∇Ε(ω  )−∇Ε(ω     ))′ ∇Ε(ω  )
          ∇Ε(ω    )′ ∇Ε(ω    )β  =κ κ−1κ−1

κ κ−1 κ  (Polak−Ribiere)

κρ  : 

− A good line search must be done along 
   each descent direction (works only in batch)

− Convergence in N iterations is guaranteed for
   a quadratic function with N variables



CONJUGATE GRADIENT

− Conjugate gradient is simple and effective.
   the Polak−Ribiere formula seems to be more
   robust for non−quadratic functions.

− The conjugate gradient formulae can be viewed
   as "smart ways" to choose the momentum.

− Conjugate gradient has been used with success
   in the context of multilayer network training
   [Kramer&Sangiovani−Vincentelli 88, 
    Barnard&Cole 88, Bengio&Moore 89,
    Møller 92, Hinton’s group in Toronto.....]

− It seems particularly apropriate for moderate
   size problems with relatively low redundancy
   in the data.
   Typical applications include function approximation,
   robotic control, times−series prediction, and other
   real−valued problems (especially if a high accuracy
    solution is sought).
   On large classification problems, stochastic
   backprop is faster.

− The main drawback of CG is that it is a BATCH
   method, partly due to its requirement for an 
   accurate line search.
   There have been attempts to solve that problem
   using "mini−batches" [Møller 92].



BFGS and Quasi−Newton methods

ρ = Μ ∇Ε(ω)
ρ ω ← ω − ηρ

There exist several Quasi−Newton methods,
but the most successful is the
Broyden−Fletcher−Goldfarb−Shanno (BFGS)
method.

[Fletcher 87],[Dennis&Schnabel 83], 
[Watrous 88],[Battiti 92].

Compared to Newton method, Quasi−Newton
methods only require the first derivative, they
use positive definite approximations to the 
inverse Hessian (which means they go downhill), 
and they require O(N^2) operations per iteration.

All of the quasi−Newton methods are BATCH methods

Quasi−Newton (or secant) methods attempt to
keep a positive definite estimate of the 
INVERSE HESSIAN directly, without requiring 
matrix inversion, and by only resorting to the 
gradient information.

They work as follows:

1− pick a positive definite matrix M (say M=I)
2− set search direction
3− line search along      giving  
4− update estimate of inverse Hessian M



BFGS 

past parameter vector:
present parameter vector:
past parameter increment:
past gradient:
present gradient:
past gradient increment:
present inverse Hessian:
future inverse Hessian

ω
ω
δ = ω    − ω
∇Ε(ω      )
∇Ε(ω   )
ϕ = ∇Ε(ω   )−∇Ε(ω      )
Μ
Μ κ

κ−1κ

κ

κ
κ−1

κ−1

κ−1

κ−1

Μ   =  Μ     + (1+ ϕ′Μϕ
  δ′ϕ

δδ′
δ′ϕ

δϕ′Μ+Μϕδ
        δϕ) − ( )κ κ−1

ρ     = Μ   ∇Ε(ω   )κκ+1 κ

ω     = ω    − η     ρκκ+1 κ+1 κ+1

update inverse Hessian estimate

compute descent direction

line search

− it is an O(N^2) algorithm BUT
− it requires storing an NxN matrix
− it is a BATCH algorithm (requires a line search)

Only practical for VERY SMALL networks with
non−redundant training sets.

Several variations exist that attempt to reduce the 
storage requirements:
− limited storage BFGS [Nocedal 80]
− memoryless BFGS, OSS [Battiti 92]



GAUSS−NEWTON AND
LEVENBERG−MARQUARDT METHODS

These methods only apply to Mean−Square Error
objective functions (non−linear least square).

Gauss−Newton algorithm:

Levenberg−Marquardt algorithm:

ω

χ

Ν(ω,χ)

D

Ε

like Newton but the Hessian is 
approximated by the square of the jacobian
(which is always positive semidefinite)

∆ω  =  
p

∂Ν(ω,χ  ) 
   ∂ω

p∂Ν(ω,χ  ) 
   ∂ω

p ′
∑ 

−1
∇Ε(ω)

like Gauss−Newton, but has a safeguard parameter to
prevent it from blowing up if some eigenvalues are small

∆ω  =  
p

∂Ν(ω,χ  ) 
   ∂ω

p∂Ν(ω,χ  ) 
   ∂ω

p ′
∑ 

−1
∇Ε(ω)+ µ Ι

− Both are O(N^3) algorithms 
− they are widely used in statistics for regression
− they are only practical for small numbers of
   parameters.
− they do not require a line search, so in principle
   they can be used in stochastic mode (although
   that has not been tested)



4

APPLYING SECOND ORDER

METHODS TO MULTILAYER NETS



(NON)APPLICABILITY OF
2nd ORDER METHODS TO
NEURAL−NET LEARNING

BAD NEWS:

  − Full Hessian techniques (GN, LM, BFGS) can only
     apply to small networks. But small networks are not
     the ones we need to speed up most.

  − Most 2nd order techniques (CG, BFGS....) require a
     line search, and therefore are not directly usable
     in stochastic mode

  − Many heuristic tricks (adaptive learning rates....)
     also apply to batch only.

On large classification problems, a carfully tuned 
stochastic gradient is hard to beat.

On smaller problems requiring accurate real−valued
outputs (function approximation, control...), 
conjugate gradient (with Polak−Ribiere) offers the 
best combination of speed, reliability and simplicity.

This section is devoted to 2nd order techniques
specifically designed for large neural−net training



MINI BATCH METHODS

Attempts at applying Conjugate Gradient to large
and redundant problems have been made
[Kramer&Sangiovani−Vincentelli 88], [Møller 92]

They use "mini batches": subsets of increasing
sizes are used.

Møller proposes a systematic way of choosing
the size of the mini batch.

He also uses a variant of CG which he calls
"scaled CG".  Essentially, the line search is replaced
by a 1D Levenberg−Marquardt−like algorithm.



A STOCHASTIC DIAGONAL
LEVENBERG−MARQUARDT
METHOD

[LeCun 87, Becker&LeCun 88, LeCun 89]

THE MAIN IDEAS:

− use formulae for the backpropagation of 
   the diagonal Hessian (shown earlier) to keep 
   a running estimate of the second derivative 
   of the error with respect to each parameter.

− use these term in a "Levenberg−Marquardt" 
   formula to scale each parameter’s learning rate

∂  Ε
∂ω

ki

2

2

Each parameter (weight)         has its own 
learning rate        computed as:kiη kiω

ε is a global "learning rate"

µ

is an estimate of the
diagonal second derivative
with respect to weight (ki)

kiη

kiη = ε
∂  Ε
∂ω

ki

2

2
+ µ

is a "Levenberg−Marquardt"
parameter to prevent         
form blowing up if the 2nd
derivative is small



The second derivatives             can be computed using

a running average formula over a subset of the training
set prior to training:

A STOCHASTIC DIAGONAL
LEVENBERG−MARQUARDT
METHOD

∂  Ε
∂ω

ki

2

2

∂  Ε
∂ω

ki

2

2
∂  Ε
∂ω

ki

2

2
+  γ ←  (1−γ) ∂  Ε

∂ω
ki

2

2
p

new estimate
of 2nd der.

 previous
estimate

small 
constant

instantaneous
2nd der. for
pattern p

The instantaneous second derivatives are computed using
the formula in the slide entitled:
"BACKPROPAGATING THE DIAGONAL HESSIAN IN NEURAL NETS"

Since the second derivatives evolve slowly, there is no need
to reestimate them often.  
They can be estimated once at the beginning by sweeping 
over a few hundred patterns.
Then, they can be reestimated every few epochs.

The additional cost over regular backprop is negligible.

Is usually about 3 times faster than carefully tuned 
stochastic gradient.



Stochastic Diagonal Levenberg−Marquardt

Weight space
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data set:  set−1  (100 examples, 2 gaussians)
network:   1 linear unit, 2 inputs, 1 output.
                  2 weights, 1 bias.
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Learning
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Stochastic Diagonal Levenberg−Marquardt

Weight space
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data set:  set−1  (100 examples, 2 gaussians)
network:   1 linear unit, 2 inputs, 1 output.
                  2 weights, 1 bias.

Hessian
largest
eigenvalue:

λ   = 0.84
max

η    = 2.38max

epochs

Learning
rates:

Maximum
admissible
Learning
rate (batch):

η0 = 0.76
η1 = 0.18
η2 = 0.12



IDEA #1  (the power method):

Ψ ← Η  Ψ
||Ψ||

HESSIAN
NEW ESTIMATE
OF EIGENVECTOR

OLD ESTIMATE
OF EIGENVECTOR

ESTIMATE OF
EIGENVALUE

 Ψ1 − Choose a vector             at random

2 − iterate:

 Ψ will converge to the principal eigenvector
(or a vector in the principal eigenspace)

||Ψ|| will converge to the corresponding
eigenvalue

without computing the Hessian

 

COMPUTING THE PRINCIPAL
EIGENVALUE/VECTOR OF THE
HESSIAN



NEW ESTIMATE
OF EIGENVECTOR

OLD ESTIMATE
OF EIGENVECTOR

Η ΨCOMPUTING THE PRODUCT 

IDEA #2  (Taylor expansion):

1
αΨ ← ∂Ε

∂ω (ω) −∂Ε
∂ω ||Ψ||

Ψ(ω+α )

GRADIENTPERTURBED
GRADIENT

"SMALL"
CONSTANT

One iteration of this procedure requires
2 forward props and 2 backward props
for each pattern in the training set. 

This converges very quickly to a good
estimate of the largest eigenvalue of H



NEW ESTIMATE
OF EIGENVECTOR

OLD ESTIMATE
OF EIGENVECTOR

IDEA #3  (running average):

"SMALL"
CONSTANTS

PERTURBED
GRADIENT FOR
CURRENT PATTERN

GRADIENT FOR
CURRENT
PATTERN

1
α

∂Ε
∂ω (ω) −∂Ε

∂ω ||Ψ||
Ψ(ω+α )Ψ ← (1−γ)Ψ+γ 

p p

ON−LINE COMPUTATION OF Ψ

This procedure converges VERY quickly to the largest
eigenvalue of the AVERAGE Hessian.

The properties of the average Hessian determine the
behavior of ON−LINE gradient descent 
(stochastic, or per−sample update).

EXPERIMENT:  A shared−weight network with 5 layers
of weights, 64638 connections and 1278 free parameters.
Training set: 1000 handwritten digits.

Correct order of magnitude is obtained in less than
100 pattern presentations (10% of training set size)

The fluctuations of the average Hessian over the training
set are small.



RECIPE

1
α

∂Ε
∂ω (ω) −∂Ε

∂ω ||Ψ||
Ψ(ω+α )Ψ ← (1−γ)Ψ+γ 

p p

||Ψ||
Ψα 

α 

||Ψ||
1

1 − Pick  initial eigenvector estimate at random

2 − present input pattern, and desired output.
      perform forward prop and backward prop.
      Save gradient vector G(w)

3 − add                 to current weight vector

4 − perform forward prop and backward prop with
      perturbed weight vector. Save gradient vector G’(w)

5 − compute difference G’(w)−G(w). and divide by 
      update running average of eigenvector
     with the result

6 − goto 2 unless a reasonably stable result is obtained

7 − the optimal learning rate is  
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Network: 784x30x10 fully connected
Training set: 300 handwritten digits
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Network: 1024x1568x392x400x100x10
                 with 64638 (local) connections 
                 and  1278 shared weights
Training set: 1000 handwritten digits


