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Figure 1: Our interactive editing system allows users to adapt the shape and motion of planar linkages in an intuitive manner. As shown on
the Strandbeest sculpture (1st from left), we support diverse edits including changes to the enclosure of the assembly (2nd) or the shape of
individual components (3rd). Our editing tools preserve correct functioning at all times, as illustrated on a 3D-printed prototype (4th).

Abstract

We present a method for interactive editing of planar linkages.
Given a working linkage as input, the user can make targeted edits
to the shape or motion of selected parts while preserving other, e.g.,
functionally-important aspects. In order to make this process intu-
itive and efficient, we provide a number of editing tools at different
levels of abstraction. For instance, the user can directly change
the structure of a linkage by displacing joints, edit the motion of
selected points on the linkage, or impose limits on the size of its
enclosure. Our method safeguards against degenerate configura-
tions during these edits, thus ensuring the correct functioning of the
mechanism at all times. Linkage editing poses strict requirements
on performance that standard approaches fail to provide. In order to
enable interactive and robust editing, we build on a symbolic kine-
matics approach that uses closed-form expressions instead of nu-
merical methods to compute the motion of a linkage and its deriva-
tives. We demonstrate our system on a diverse set of examples,
illustrating the potential to adapt and personalize the structure and
motion of existing linkages. To validate the feasibility of our edited
designs, we fabricated two physical prototypes.
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1 Introduction

As 3D printers become widely available, more and more printable
content is published online. Ranging from artwork to replacement
parts and mechanically functional models, there are numerous cat-
alogs with myriad printable models to download and replicate at

home. While there is interest and value in replication, however,
this usage forgoes the true potential of 3D printers: personaliza-
tion—the opportunity to adapt content to individual needs and pref-
erences.

A variety of existing software tools allow for intuitive editing of
static digital models. Some of these tools even maintain or es-
tablish structural stability by virtue of finite element analysis. To
date, however, no equivalent CAD software has been developed for
mechanically-functional models. Yet, a vast array of mechanically-
functional objects such as kinetic sculptures, fold-away furniture,
electro-mechanical toys, and even robots stand to benefit from user-
friendly editing tools and the corresponding potential for personal-
ization that they would bring about.

We focus on the challenge of editing planar linkages, which are the
beating heart of many mechanically-functional models—and noto-
riously difficult to design and edit: even for simple linkages, the re-
lation between joint displacements and resulting change in motion-
curves is complex and very difficult to predict. Within the group of
planar linkages, our method can handle a large set of well-known
and widely-used mechanisms.

Editing a linkage means changing certain aspects of its shape or
motion while others are preserved. The reasons for editing linkages
are diverse: for example, one may want to personalize an existing
design by adapting the aesthetic appeal of its shape while maintain-
ing its function, or one may want to alter the motion in order to
reuse the linkage in a different context. In order to support such
customization, we propose a set of interactive tools and high-level
editing abstractions. Our method complements the recent body of
work aimed at creating mechanically-functional objects [Zhu et al.
2012; Coros et al. 2013; Ceylan et al. 2013; Thomaszewski et al.
2014] and is designed to leverage the wealth of mechanical designs
that can be found in online repositories such as GrabCAD and Thin-
giverse.

Overview & Contributions In this work, we present an interac-
tive tool for intuitive editing of existing planar linkages, i.e., as-
semblies of interconnected rigid components that perform planar
motion. Although mechanisms can involve other components such
as gear-trains and cams, planar linkages are arguably the most chal-
lenging to design and edit. In order to accommodate the work flow
that we propose, the design tool must a) be fast enough to provide
interactive rates, b) offer abstractions and high-level metaphors for
intuitive editing, and c) preserve correct functioning of the mecha-



nism at all times. Interactivity is a key requirement to enable quick
and intuitive navigation of the design space of a given linkage, but
we found that existing approaches cannot provide the necessary
speed. The stringent performance requirements drive us to develop
faster algorithmic solutions that distinguish our method from ex-
isting work on mechanism design. In particular, we depart from
the typical constraint-based simulation in favor of a symbolic kine-
matics algorithm that uses closed-form expressions to determine
the motion of a planar linkage. As a vital component of linkage
editing, we further propose efficient solutions for computing state
derivatives and preventing singular configurations.

We have used our system to edit a representative set of mechanisms,
most of which are freely available on the internet. As indicated by
the results, our method can accommodate a wide range of planar
linkages and diverse edits. In addition to showing results in simu-
lation, we also fabricated physically prototypes in order to demon-
strate the validity of our personalized designs.

2 Related Work

Digital content generation has been a core topic of computer graph-
ics since its very beginnings. Unsurprisingly, many techniques and
concepts developed for creating virtual assets are now beginning
to make their way into the digital fabrication pipeline. For exam-
ple, CAD software packages specifically designed for 3D Printing,
such as Autodesk’s MeshMixer [2015], implement a variety of tools
for mesh editing (sculpting, deformation, transferring parts between
different 3D objects, etc) that find their roots in graphics research
[Perry and Frisken 2001; Sorkine et al. 2004]. However, bringing
virtual objects to the real world through 3D printing requires many
additional challenges to be addressed.

Design for Digital Fabrication When it comes to digital fabri-
cation, and in particular 3D-printing, a central challenge is to im-
prove the reliability of the output. To this end, several methods
have recently been developed to improve the strength-to-weight ra-
tio of fabricated models [Stava et al. 2012; Zhou et al. 2013; Lu
et al. 2014], or to create optimized support structures that enable
complex 3D prints [Dumas et al. 2014]. However, the true power
of digital fabrication is the ability to personalize the objects that
are to be manufactured. Consequently, a variety of recent works
propose methods for generating 3D-printable objects with, e.g., de-
sired appearance properties [Weyrich et al. 2009; Hasan et al. 2010;
Dong et al. 2010] or deformation behaviors [Bickel et al. 2010;
Bickel et al. 2012; Skouras et al. 2012; Skouras et al. 2013]. Other
methods have been proposed to allow casual users to design furni-
ture pieces that are unique, stable and functional [Lau et al. 2011;
Umetani et al. 2012], to quickly design prototypes that test and vali-
date the way in which finished products will work [Koo et al. 2014],
or to statically and dynamically balance intricate shapes [Prévost
et al. 2013; Bächer et al. 2014]. The potential to reuse existing de-
signs has been recognized in several of these works and was the
topic of investigation for the recent method proposed by Schulz et
al. [2014]. By empowering average users to intuitively edit planar
linkages, our method shares the goal of reusing existing designs.
However, rather than focusing on static objects such as furniture
pieces, our focus is on mechanically-functional models that com-
bine shape and motion through complex kinematic relationships.

Mechanism Design Understanding and designing mechanical
objects by hand is notoriously difficult as it requires a great deal
of skill, experience and engineering knowledge. In order to make
this process accessible to the general public, a variety of computa-
tional methods have been proposed by the graphics community. For

example, Mitra et al. [2010] introduced a method that generates in-
tuitive visual aids to illustrate the motion of mechanisms. Several
methods for synthesizing 3D printable mechanisms whose motions
resemble those of virtual characters have also been proposed in the
computer graphics community [Zhu et al. 2012; Coros et al. 2013;
Ceylan et al. 2013; Thomaszewski et al. 2014; Megaro et al. 2014].

Outside the field of computer graphics, the problem of mechanism
design has a rich history and continues to be studied extensively
today [Burmester 1888; Freudenstein 1954; Kaufman and Maurer
1971; Erdman et al. 2001; Myszka et al. 2013]. As is the case for
our work, these methods typically start from a template mechanism
that is then edited to perform a desired motion or to fit a desired me-
chanical advantage profile. However, while powerful in the hands
of a professional designer, methods developed in the mechanical
engineering community are generally not meant to be used by ca-
sual users. For instance, state-of-the-art mathematical models allow
singular configurations of closed-loop linkages to be traced out as
individual design parameters vary [Myszka et al. 2013]. This level
of information detail is very likely to be overwhelming for casual
users as there are no obvious and direct ways in which it can be used
to generate the envisioned designs. In this work, we therefore focus
on developing intuitive interaction modes that allow casual users
to exert direct and intuitive control over the design. Importantly,
by safeguarding against singularities, our method automatically en-
sures the feasibility of the mechanical designs throughout the entire
editing process. As discussed in prior work, singular configura-
tions can be identified through zero singular values of the Jacobian
of a mechanism’s set of constraints [Erdman et al. 2001]. Based
on this criterion, Thomaszewski et al. [2014] employed a stochastic
optimization method to ensure that the generated linkages main-
tain a safe distance to singular configurations. However, due to its
computational overhead, their formulation is only appropriate for
an offline process. Instead, we seek to provide users of our system
with immediate feedback in order to support an interactive design
experience. To this end, we present a formulation that lends itself
to efficient, derivative-based optimization methods.

Feature-Aware Model Editing Editing the shape of existing dig-
ital models is a core problem in geometry processing. Closest to
our application are higher-level editing tools that aim to preserve
both the global characteristics of the model and specific structures
typically found in man-made objects [Gal et al. 2009; Bokeloh et al.
2011; Bokeloh et al. 2012]. Such high-level editing tools infer the
parts of a model that can be deformed freely and the geometric
features that must be preserved or parameterized in specific ways.
Functional relationships or algebraic models are then used to map
user inputs, typically handles that are interactively manipulated, to
changes in the model’s geometry. Inspired by the ease-of-use of
these methods, our editing tools pursue the guiding principle of
minimal invasion: in order to satisfy a user-specified editing objec-
tive, parts of the linkage should adapt automatically and as much
as necessary, but the remainder should change as little as possible.
Building on this principle, we propose a set of tools that allow the
user to make selective edits to the shape and motion of a given link-
age while preserving other, e.g., functionally-important aspects.

3 Closed-Form Kinematics

As a primordial requirement for interactive linkage editing, we must
be able to compute their motion at sufficiently fast rates. For the
sake of efficiency, we focus on purely kinematic approaches in this
work—but even in this case, there is a large number of alternatives
[Laulusa and Bauchau 2008]. A standard approach is to represent
all components of a mechanism as rigid-bodies and impose con-
straints that model the different types of connections between the



bodies. While general and powerful, the computational burden of
constraint-based simulation can be substantial, as it requires the so-
lution of nonlinear systems of equations. An alternative that has
been explored in computational engineering is symbolic process-
ing [Kecskeméthy et al. 1997; Uchida and McPhee 2012], which
provides solutions in closed-form using recursive computations.
Rather than solving systems of equations that involve all degrees-
of-freedom at once, the basic principle of this class of approaches is
to decompose a mechanism, possibly with multiple loops, into in-
dependent parts that can be processed in isolation and in order. Due
to its promise in computational efficiency, we pursue a symbolic
kinematics approach in this work.

Relation to Existing Work Among the existing works on sym-
bolic kinematics, our approach is perhaps closest to the one by
Kecskeméthy et al. [1997], which we briefly summarize here for
comparison. A given mechanism is decomposed into sets of over-
lapping loops such that, in each loop, only two rigid components
meet in a given joint. The degrees of freedom (DOFs) are rigid-
body transformations between neighboring components and a clo-
sure condition enforces that the transformations match up at the be-
ginning and end of the loop. In this way, six DOFs can be expressed
as a function of the remaining DOFs, a fact that is leveraged to de-
rive coupling conditions between all loops that meet in a given joint.
Finally, an ordering algorithm determines a numbering of the loops
that allows for sequential processing. While we follow a similar
principle, our approach allows us to readily compute derivatives of
state with respect to parameters and to detect and avoid singular
configurations. These are quintessential requirements for linkage
editing: state derivatives are needed to transform a desired change
in state to a corresponding change in parameters; singularities need
to be prevented to maintain correct functioning of the linkages at all
times.

3.1 Representation

We assume that a mechanical assembly consists of nc rigid com-
ponents interconnected by nj joints. For the sake of efficiency, we
renounce explicit representations of rigid components in terms of
position and orientation. Instead, we retain only the joint positions
as degrees of freedom but keep track of distance constraints be-
tween neighboring joints, i.e., pairs of joints that pertain to a given
rigid component. The configuration of a linkage is thus defined
through its time-varying joint positions xi(t), 1 ≤ i ≤ nj , and
we denote the initial configuration as x̄ = x(0). For simplicity,
we further assume that all joints are revolute (i.e., pin joints) and
that there is a single motor m(t) controlling the position of the first
joint, x1(t) = x1(m(t)). Finally, we require that at least two of
the joints remain fixed or move in prescribed ways and that the re-
mainder of the assembly is fully-constrained. The motor value at
any given time thus uniquely determines the configuration of the
linkage.

3.2 Joint Ordering

Our symbolic kinematics algorithm follows a simple principle:
since the distances between neighboring joints are constant, the po-
sition of a given joint can be determined as soon as the positions of
two neighboring joints are known. This construction is analogous
to determining the position of a triangle’s node from its two other
node positions and the lengths of its two incident edges. In order to
successively determine the joint positions in this way, we first have
to find an appropriate ordering of the joints. We start by setting up
a graph with nodes corresponding to the linkage’s joints and whose
edges correspond to distance constraints imposed by the rigid com-

ponents. Each node holds an index, a flag indicating whether it
has been visited by the ordering algorithm yet, and a reconstruc-
tion rule that explains its geometric relation to previously visited
nodes. As explained in Algorithm 1, we initially assign indices for
the motor and all fixed joints and mark them as visited. We also in-
sert all unvisited neighbors of these initial nodes into an active list.
The algorithm then iterates over the active list, retrieving a node
k and checking whether at least two of its neighboring nodes have
been visited. If this is the case, we retain two of the visited neigh-
bor nodes, i and j, and add a corresponding reconstruction rule
(i, j)→ k. Node k is then assigned the next index, marked as vis-
ited and removed from the list, while all of its unvisited neighbors
are added. As soon as rules for two joint positions on a given com-
ponent are known, we add corresponding rules for all remaining
joints on that component. The process terminates once the active
list is empty.

Algorithm 1 Joint Ordering

Require: initialNodes //fixed joints and motor
Require: activeList

1: for all i ∈ initialNodes do
2: activeList.insert(neighbors(initialNodes(i)))
3: end for
4: while !activeList.empty() do
5: k = activeList.pop front()
6: vn = visitedNeighbors(k) //list of visited neighbors
7: if vn.size()> 1 then
8: i = vn(1), j = vn(2)
9: addRule(i,j,k) //(i, j)→ k

10: assignNextIndex(k), setVisited(k)
11: activeList.append(unvisitedNeigbors(k))
12: else
13: activeList.push back(k)
14: end if
15: end while

3.3 Symbolic Reconstruction

With the node ordering and reconstruction rules given by Algo-
rithm 1, we can successively determine the positions of all joints
from the current motor value m(t) using closed-form expressions.

Figure 3: Notation for re-
construction triangle.

Let k be the index of the current
node and assume that the positions
of all nodes i < k have already
been determined. Furthermore, as-
sume that the reconstruction rule as-
sociated with node k is (i, j) → k.
Interpreting the three joint positions
as the nodes of a reconstruction tri-
angle, our goal is to analytically de-
termine xk from xi, xj , and the two
constant edge lengths l̄ik, l̄jk (see
Fig. 3). To this end, we first scale the vector xj − xi to length
l̄ik, then rotate it about the known node xi by an angle φ to obtain

xk = R(φ)l̄ik
xj − xi

||xj − xi||
+ xi , (1)

where we use the Law of Cosines to obtain the rotation angle

φ = arccos

(
l2ij + l̄2ik − l̄2jk

2lij l̄ik

)
. (2)

Note that the 2 × 2 matrix R(φ) either represents a counterclock-
wise or a clockwise rotation, depending on the orientation of the
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Figure 2: Symbolic reconstruction illustrated on a leg of the Jansen linkage. 2nd from left: starting with two fixed joints (red) and a
joint controlled by a motor (blue), the ordering algorithm determines the sequence in which to compute the remaining joints (as numbered).
3rd − 7th: joints (green) are reconstructed from two known joint positions and two edge-lengths as indicated by the green triangle.

triangle. We choose among the two solutions by asking that the
triangle orientation in the initial configuration of the linkage is pre-
served. It is important to note that this choice is not arbitrary, but a
requirement for non-degeneracy of the linkage. If, for contrast, we
assume that its motion is such that the orientation changes, the three
joints must become collinear at some point in time. This, in turn,
results in a bifurcation point beyond which the motion of xk is no
longer uniquely determined through xi and xj . Such singularities
have to be avoided at all costs and, as will be shown in Sec. 4.2, the
orientation of the reconstruction triangle will play a crucial role for
detecting and preventing such degenerate configurations.

Limitations The algorithm described above assumes that the in-
put linkage can be decomposed into kinematic loops that can be
processed sequentially such that only one unknown joint position
has to be determined at a time. We refer to these basic building
blocks as simple kinematic loops. But while many planar linkages
can be decomposed into simple kinematic loops, this is not true for
all cases.

The inset figure shows an example of a complex kinematic loop
consisting of 5 links, a motor (blue), and a fixed joint (red).
Given the motor value, we can determine the
positions of two joints (green), but none of
the three remaining joints can be directly de-
termined from known quantities. It is a sim-
ple matter to detect such higher-order kine-
matic loops. Whenever the ordering algo-
rithm returns an order for a given linkage,
our symbolic kinematics algorithm is applicable. If the linkage ex-
hibits a complex kinematic loop, the algorithm will not be able to
further reduce the active list at some point and signal failure. In
order to deal with these cases, one could design dedicated analytic
reconstruction rules or use an embedded constraint-based simula-
tion solver. As a matter of fact, however, a large range of practical
mechanisms can be decomposed into basic kinematic loops, which
is why we leave this extension as future work.

We have investigated the behavior of our symbolic kinematics al-
gorithm on a diverse set of example linkages and, as we show
in Sec. 5, the performance is orders of magnitudes better than a
Newton-based solver. Building on this approach, we develop an
interactive editing system as described next.

4 Linkage Editing

Editing a linkage means changing certain aspects of its geometry or
motion while preserving others. Starting from a working linkage,
the user specifies desired edits through interactive tools that issue
editing objectives of different granularity. During editing, our sys-
tem provides constant and immediate feedback through animations

of the entire mechanism and motion curves that visualize the move-
ment of selected points. In addition to meeting these objectives, we
must imperatively maintain the correct functioning of the linkage at
all times during the edits. To this end, we introduce functionality
constraints that safeguard against singular configurations.

4.1 Objectives

The shape and motion of a linkage are defined by the positions of its
joints and their evolution over time. For the type of linkages that we
consider here—fully-constrained and driven by a single motor—the
joint positions at any time are determined by the time-varying mo-
tor value and the constant initial configuration of the mechanism.
Therefore, by changing the initial state of the linkage, we can con-
trol its shape and motion. Our system provides a set of tools that
allow the users to intuitively change a linkage’s initial state. These
tools give rise to various editing objectives that we describe in the
following. Examples of different use cases are given in Sec. 5.

Joint Displacements The most basic way of editing a linkage
is to directly change its initial configuration by imposing displace-
ments on individual joints. For this purpose, the user selects a given
joint x̄i in the initial configuration and drags it to a desired location
x̂i as illustrated in Fig. 4. The system responds to this edit by cre-
ating an energy term that encourages this operation as

fDisp
e (x̄i) = 1

2
(x̄i − x̂i)

2 . (3)

Apart from editing the initial configuration, the user can also stop
the motion of the mechanism at any time and specify changes di-
rectly on the current configuration. In such cases, we replace x̄
with xi(x̄) in (3). This editing mode is useful if, e.g., the position
of a given joint at a single point in time is important. If the entire
motion matters, the user can edit the trajectory of selected points
as described next. The per-joint energy is also easily extended to
higher-order editing tools such as rigid transformations of sets of
joints or global scaling of the linkage. Sec. 5 and the accompany-
ing video show examples that demonstrate these tools.

Trajectory Editing Instead of manually displacing joints, it is of-
ten more intuitive to specify a desired effect and compute the re-
quired joint displacements automatically. We support this editing
mode by allowing the user to change the motion of selected track-
ing points. The user defines tracking points by specifying a loca-
tion relative to a selected component. The time-varying position
p(t) = p(x(t)) of the point is determined from the current con-
figuration of the linkage or, equivalently, from the initial configu-
ration and the motor value as p(t) = p(m(t), x̄). In order to edit
the trajectory of a given tracking point pi, we define an energy that



Figure 4: Joint-displacement and trajectory objectives are used to
change the shape of a Jansen linkage while preserving the motion
of its feet.

penalizes deviations from the discrete target trajectory p̂j
i as

fTrack
e (x̄) = 1

2

∑
j

(pj
i (x̄)− p̂j

i )
2 . (4)

We note that this formulation also allows us to demand that the mo-
tion of selected points remain unchanged. As shown in Fig. 1, this
is crucial if, e.g., the motion of an end-effector needs to be tracked
precisely in order to maintain correct functioning. Our system sup-
ports two ways of generating target trajectories for tracking points.
A global transformation mode allows the user to translate, rotate,
and scale the motion curve. In order to change the shape of motion
curves, the user can drag on selected points on the curve, using a
soft-selection metaphor to specify the range of points that are influ-
enced.

Motion Envelope Editing Editing a linkage for reuse in a differ-
ent context often demands that we change its motion envelope, e.g.,
to fit into a narrower enclosure. We define the motion envelope of a
linkage as the convex hull of all of its joint positions for any point
in time. A simple way of defining enclosure constraints is to im-
pose limits on the extents of an axis-aligned bounding box for the
motion envelope as shown in Fig. 5. Whenever a joint moves out-
side this bounding box at a given time step, we add a penalty term
that pulls the joint back to the admissible region. The formulation
is analogous to (3), but applies only to the time steps in which the
enclosure constraints are violated.

Regularization Most of the objectives described above involve
only a subset of the joints. Furthermore, there can be a multitude
of joint displacements that satisfy a given editing objective equally
well. In selecting a particular solution, we generally prefer those
that induce the least amount of change in the linkage. We quantify
the amount of change by measuring the change in distance between

Figure 5: Editing the motion envelope of a mechanism while pre-
serving the motion of its end-effectors. Bounds on the envelope are
specified per coordinate using an axis-aligned bounding box.

pairs of joints on the same component as

fReg
e (x̄) = 1

2

∑
i,j

(lij(x̄)− l̃ij)2 , (5)

where lij and l̃ij denote the current and reference distance be-
tween joints i and j. Instead of regularizing towards the original
state, we update the reference distances after each editing opera-
tion. While this regularizer is slightly more involved than a simple
L2-norm penalty on the joint displacements, it encourages shape-
preservation without penalizing rotations or translations.

4.2 Avoiding Singularities

The objectives described in the previous section promote fast and
intuitive linkage editing. However, without further action, these
editing operations are bound to drive the mechanisms towards sin-
gularities, i.e., parameter values for which the motion becomes in-
definite or grinds to halt altogether. Singularities are not merely
a hypothetical peril, they arise very frequently, making editing te-
dious at best. In a constraint-based approach, a standard way of
detecting singular configurations is by analyzing the Jacobian of
the constraints, i.e., their derivatives with respect to the states of the
components. As long as this matrix maintains full rank, the system
stays clear of singularities. In order to prevent a linkage from mov-
ing too close to these problematic configurations, Thomaszewski et
al. [2014] employ a penalty term proportional to the inverse of the
smallest singular value. However, the computational costs of this
approach are too high for our interactive editing application.

Fortunately, the symbolic simulation algorithm described in
Sec. 3.3 provides us with a simple yet effective means to detect
and prevent singular configurations. In the reconstruction rule de-
scribed by (1), we established that, for non-degenerate linkages, the
orientation of the reconstruction triangle described by three points
involved in the rule does not change. Using the reverse of this state-
ment, we obtain a strong predicate for singularities: the linkage
undergoes a singularity whenever the three points of any recon-
struction triangle become colinear at any time. This observation
provides a direct recipe for preventing singularities. To this end, we
quantify the distance to a singular configuration as

ds(xi,xj ,xk) = 1− cos(α(xi,xj ,xk))2 , (6)

where α(xi,xj ,xk) denotes the angle formed by the two edges in-
cident to the reconstructed joint xk. One possible approach would
be to introduce inequality constraints for each reconstructed joint
and each sample in time that prevent the distance to singularities
from becoming too small. However, this would mean a drastic in-
crease in problem size. We therefore pursue a penalty approach and
define a corresponding energy as

fs(xi,xj ,xk) = − 1
2

log2( 1
ε
ds(xi,xj ,xk)) . (7)

We implement this term as a one-sided function, returning a zero
value whenever the distance defined by (6) is larger than a threshold
ε. Note that this formulation ensures continuity in the first deriva-
tive.

It is worth noting that, compared to the approach described in
[Thomaszewski et al. 2014], the simplicity of our construction is
owed to additional information and simplifying assumptions that
we can use to our advantage. By exploiting knowledge on kine-
matic causality and focusing on simple kinematic loops, we are
able to construct an efficient and robust way of avoiding singu-
lar configurations. Next we describe how to formulate and solve
the optimization problem that integrates the various objectives and
constraints.



4.3 Optimization

The objectives and constraints described above are functions of the
time-varying configuration of the linkage x(t). However, we can
only change its initial configuration x̄ directly. We therefore for-
mulate a minimization problem where we seek to find changes ∆x̄
to the linkage’s initial state that satisfy

∆x̄ = arg min
∆x̃

µefe(x(x̄ + ∆x̃)) + µsfs(x(x̄ + ∆x̃)) , (8)

where the coefficients µe and µs are weights for the editing objec-
tives and singularity penalties, respectively. In order for this energy
to attain a minimum, its gradient has to vanish. This requirement
leads to a system of nonlinear equations,(

µe
∂fe
∂x

+ µs
∂fs
∂x

)
∂x

∂x̄
= 0 , (9)

which we solve using Newton’s method. An aspect that deserves
further attention is the computation of the derivative ∂x

∂x̄
, relating

a change in initial state to the corresponding change in the current
configuration.

Computing State Derivatives As described in Sec. 3.3, our
symbolic kinematics algorithm relies on recursive computations in
order to determine the state of the linkage from a given motor value
and initial configuration. Consequently, we also compute deriva-
tives of the state with respect to the initial configuration using a
recursive algorithm based on the same graph structure. We focus
on the algorithm for combining and propagating the derivatives of
the reconstruction rules (see supplemental material for derivations),
which are readily obtained analytically. While the true parameters
of our system are the joint positions in the initial configuration of
the linkage, notational simplicity justifies the detour of using dis-
tances between the joints as intermediate parameters. The relation
between positions and lengths is obvious, as are the corresponding
derivatives. For a given reconstruction rule (i, j) → k, we need
to compute the derivatives of Eq. 1 with respect to the joint po-
sitions xi and xj , as well as the two distances l̄ik and l̄jk. Only
the latter depend directly on the initial configuration, but we also
need to account for the fact that the two nodes xi and xj can poten-
tially depend on all other nodes that have a lower index and thus
the distances involved in the corresponding reconstruction rules.
Using the graph structure described in Sec. 3.3, we keep track
of these dependencies and compute the corresponding derivatives
recursively using the chain rule as described in the supplemental
material. While this scheme could be extended to compute sec-
ond derivatives, we instead use the BFGS-algorithm to compute an
incrementally-updated estimate of the Hessian of (8) from its gra-
dients.

Our approach for computing state derivatives is very fast and, to-
gether with the symbolic kinematics algorithm and our formulation
for preventing singularities, it constitutes the enabling technology
for interactive linkage editing. Sec. 5 provides evidence for this fact
in terms of performance comparisons with a state-of-the-art numer-
ical kinematics solver.

5 Results

We have used our interactive editing system to apply various
changes to the shape and motion of a diverse set of linkages. In
the following, we demonstrate common use cases for our method
and highlight its main features on three example linkages. But be-
fore we proceed to examples, we compare the performance of our
symbolic kinematics algorithm to a reference solution for numeri-
cal kinematics.

5.1 Symbolic vs. Numerical Kinematics

In order to quantify the computational benefits of our symbolic
kinematics algorithm, we consider the implications and perfor-
mance of an alternative approach based on standard numerical kine-
matics [Laulusa and Bauchau 2008]. Following the model de-
scribed in [Coros et al. 2013], we represent a linkage as a set of
rigid components interconnected through constraints. The state of
the linkage is given by the position and orientation of the compo-
nents, whereas the parameters are the positions of the joints in the
local coordinate systems of the components. For the purely kine-
matic case, computing the motion of the linkage can be cast as an
unconstrained minimization problem, which amounts to solving a
set of nonlinear equations with Newton’s method.

We have investigated the behavior of our symbolic kinematics al-
gorithm on a diverse set of example linkages and compared its per-
formance to the numerical kinematics solver. We generally ob-
served that the solutions produced by the two approaches agree
within tight margins, but large speedups result for the symbolic
kinematics solver: for the Stranbeest with three leg pairs (Fig. 1),
the numerical solver needed 1.1ms on average to simulate a single
step, whereas our symbolic algorithm took only 0.01ms. Repeat-
ing the experiment for a structure with 10 leg pairs, the numerical
solver required 7.5ms while the symbolic approach took 0.03ms,
indicating that the symbolic algorithm also scales favorably with
increasing complexity. Besides forward simulation, editing a link-
age also requires the derivatives of state with respect to parame-
ters. For numerical kinematics, however, there is no closed-form
relation between the state of a linkage and its parameters, which
is why the derivatives have to be determined indirectly by solving
a system of equations. Finally, in order to guarantee the correct
functioning at all times, one has to explicitly prevent singularities
during the edits. While stochastic optimization is a valid option
for offline applications [Thomaszewski et al. 2014], this approach
is intractable for interactive editing. In an effort to improve per-
formance, we combined the numerical kinematics approach with
singularity constraints with analytical derivatives. But even when
using an industrial-grade constraint optimization package, the per-
formance is far beyond interactive rates. This analysis shows that
the performance gain of our symbolic kinematics approach is not
only substantial, but a vital condition for interactive linkage edit-
ing.

5.2 Editing Examples

Function-Preserving Editing When editing an existing linkage,
we often want to change the aesthetic aspects of its shape and mo-
tion while leaving its function intact. We demonstrate this use case
on the Jansen linkage—the building block of the famous kinetic
sculpture Strandbeest by artist Theo Jansen. Driven by a single ac-
tuator, this mechanism generates walking-like motions for its two
end-effectors. This design has inspired myriad imitations and in-
terpretations, and while the applications are diversely creative, the
linkage itself remains largely unchanged. Indeed, editing the shape
or motion is a difficult task since inadvertent tampering with the
inter-joint distances is bound to end in dysfunction of the mecha-
nism. By contrast, our system makes function-preserving edits easy
and intuitive. In the first edit, the user sets up tracking objectives
for the end-effectors, asking that their motion remain unchanged to
maintain the characteristics of the gait. As illustrated by the edits
shown in Fig. 1, this constraint still leaves ample room for chang-
ing the shape of the structure, e.g., through joint displacements. We
noticed that significant edits to the rest pose can lead to parts of the
linkage colliding with the ground plane. But these problems are
conveniently resolved using our motion envelope tool.



Figure 6: Motion-curve editing demonstrated on a leg of the Klann
linkage.

In the second edit, we use the motion envelope tool to rescale the
Jansen linkage while again leaving the motion of the feet intact. As
can be seen in Fig. 1 (second from left), the changes to the geometry
are quite significant, allowing the joints of the linkage to fit in a
much narrower confinement.

Motion-Curve Editing Another application of linkage editing is
to adapt the function of a mechanism by changing the motion of an
end-effector. By way of illustration, we explore a range of possible
end-effector motions for the Klann linkage—another famous mech-
anism. Navigating the space of feasible motions for a given linkage
is a difficult task without assistance from an interactive tool. Our
motion-curve tool provides rigid-transformation and soft-selection
editing metaphors, allowing the user to deform the target trajectory
in an intuitive way while the optimization works in the background
to comply with these requests. Fig. 6 shows a selection of different
end-effector motions, a more extensive set is provided in the video.
Clearly, the structure of a given linkage will only admit a subset of
the requested edits, but the quick turn-around time of our system
allows the user to navigate around such road blocks and discover
alternate motions.

Aesthetic Retargeting Conceiving a complex linkage is beyond
the capabilities of average users, but existing designs often inspire
new interpretations or reuse in a different context. Starting from
an 11-bar linkage whose shape and motion suggest the hind leg of
a bull-like creature, we edit both its geometry and motion in order
to evoke the characteristics of a rhinoceros. Targeting a stout and
sturdy appearance, we first shorten and broaden the hind leg using
joint-displacements while tracking the motion of a marker on the
foot. The hind leg is then duplicated and re-edited to serve as front
leg using joint-displacements and spline-based geometry edits. We
then use the motion-curve tool to fine-tune the trajectory of the foot.
The result is a personalized physical character with appealing shape
and motion.

Finally, it is worth noting that, for all examples that we have inves-
tigated, the system remains robust and responsive even when trying
to force the linkages into singularities.

5.3 Limitations & Future Work

We presented an interactive system for intuitive editing of planar
linkages. In the future, we plan to extend our system to accommo-
date other mechanical components such as gear trains or cam shafts.

Figure 7: Rhino example. From top to bottom: input mechanism,
result of user edits, and physically-fabricated prototype.

Our symbolic simulation algorithm can currently only handle sim-
ple kinematic loops, i.e., linkages for which the position of any free
joint can be determined in isolation from the position of two neigh-
boring joints. While using an embedded constraint-based solver is
an option, we would like to investigate geometric reconstruction
rules for complex kinematic loops as well as corresponding singu-
larity conditions. As another interesting direction, we would like
to extend our system to detect and handle collisions among mov-
ing parts. While collisions can be resolved for planar mechanisms
by arranging components in different depth layers, this approach
does not apply when editing spatial mechanisms, which is another
interesting direction for future work.
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