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Figure 1: Using our design tool, users can create structurally-sound curve networks over complex surfaces with a broad variety of aesthetic
appeals. (1-4) Deformable packings created in a semi-automatic way. (5) A manually-designed branching structure.

Abstract

We present a computational tool for designing ornamental
curve networks—structurally-sound physical surfaces with user-
controlled aesthetics. In contrast to approaches that leverage tex-
ture synthesis for creating decorative surface patterns, our method
relies on user-defined spline curves as central design primitives.
More specifically, we build on the physically-inspired metaphor of
an embedded elastic curve that can move on a smooth surface, de-
form, and connect with other curves. We formalize this idea as
a globally coupled energy-minimization problem, discretized with
piece-wise linear curves that are optimized in the parametric space
of a smooth surface. Building on this technical core, we propose
a set of interactive design and editing tools that we demonstrate
on manually-created layouts and semi-automated deformable pack-
ings. In order to prevent excessive compliance, we furthermore
propose a structural analysis tool that uses eigenanalysis to identify
potentially large deformations between geodesically-close curves
and guide the user in strengthening the corresponding regions. We
used our approach to create a variety of designs in simulation, vali-
dated with a set of 3D-printed physical prototypes.
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1 Introduction

Ornamental patterns can transform a common object into a work
of art, beautiful and unique. The decorative arts abound with ex-
amples of such artifacts, including wood and bone carvings, wire
wrappings, intricate jewelery pieces and many other types of valu-
ables. Traditionally, creating designs of such complexity required
the steady hand of a skilled and experienced craftsman. Nowadays,
with the advent of digital fabrication, the general public has the
means to create their own exquisitely decorated objects. However,
while manufacturing processes are ever more accessible, designing
ornate artifacts that are aesthetically-pleasing and strong enough
for fabrication, shipment and handling is a challenging task. In-
deed, many fine pieces of craftsmanship exhibit an intimate relation
between structure and ornament. As the natural product of this co-
alescence, we focus on ornamental curve networks—aesthetically-
pleasing surface representations that convey a sense of delicacy and
filigree.

To facilitate the creation of ornamental curve networks that depict
arbitrary surfaces, we seek an assisstive tool that provides artis-
tic freedom while automating tedious tasks as much as possible.
Taking wrought-iron works as inspiration, our design tool allows
the user to decorate input shapes with networks of interconnected
curves. In order to lay down an aesthetic language for the design,
curves are drawn from a user-defined space and instantiated on the
input surface one-by-one or through higher-level layout tools. At
any time, existing curves can be repositioned, reoriented or rescaled
by the user. Such editing operations are propagated through the en-
tire structure, as curves aim to retain their original shape as much as
possible while conforming to the embedding surface and interacting
with other curves in physically-meaningful ways.

In addition to promoting creativity, our computational tool must
help to ensure that the resulting curve network is stable. To uphold
the aesthetic style of the designs, we assume structural stability can
be controlled solely through the way in which curves connect to
each other, as opposed to, for example, thickening different parts
of the network. To guide the user in strengthening structurally-
weak regions of their design, our system identifies and visualizes
geodesically-close curves that undergo large relative deformations
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under worst-case loading scenarios. Based on this information, the
user can then improve the stability of the design through simple
interactions.

Our approach aims to enable a simple design experience, but im-
plementing the above concepts requires a significant level of tech-
nical sophistication. In order to map planar curves to arbitrary
surfaces, prevent unwanted intersections, handle contacts, and sup-
port connectivity-preserving editing operations, we cast curve net-
work design as a globally-coupled energy minimization problem.
To solve this problem efficiently, we turn to the smooth setting
of subdivision surfaces, where continuous surface derivatives can
be leveraged for fast Newton-type minimization. In particular, we
achieve low-distortion curve embeddings by minimizing a shape-
preserving energy, inspired by Euler elastica, in the parametric
space of the underlying smooth surface. Furthermore, we describe
an efficient way to determine the worst-case stability of a curve net-
work through eigenanalysis. We demonstrate our method on a set
of digital objects and physical prototypes that exhibit a broad range
of ornamental styles, each with its distinct aesthetic appeal.

2 Related Work

Texture Synthesis Creating decorative patterns on digital sur-
faces has a long history in graphics. A general class of approaches
are example-based texture synthesis methods that produce seam-
less output from a small input example; see Wei et al. [2009] for an
overview of the large body of literature on this subject. Dumas et
al. [2015] recently extended this idea to the context of digital fabri-
cation as a way of stylizing 3D-printed objects. Our method creates
sparse networks from spline-based example curves and could thus
be considered a vector-based analogon of the rasterization method
by Dumas and colleagues. More importantly, however, our ap-
proach puts the user at the heart of the design loop, offering a much
higher degree of artistic control.

Tilings and Distributions Another way of creating decorative
patterns is through tiling or sampling. For example, the method by
Kaplan and Salesin [2000] deforms a single complex shape to seam-
lessly tile the plane. Kim and Pellacini [2002] use sets of arbitrarily-
shaped tiles taken from photographs in order to create jigsaw mo-
saics in complex-shaped 2D domains. While their method allows
gaps between tiles, the approach presented by Peng et al. [2014]
achieves gap-less layouts by deforming template tiles. These meth-
ods aim to cover the output domain in a seamless way, but other
works have focused on less tight object distributions that exhibit
specific local [Ma et al. 2011] or global [Reinert et al. 2013] ar-
rangements. As one way of creating curve networks with our tool,
we draw inspiration from object distribution methods in order to
create deformable curve packings with artistic control.

Curve Network Synthesis A number of works have investigated
the problem of creating weaving or otherwise interleaving patterns
on surfaces. Kaplan and Cohen [2003] describe a procedural ap-
proach for creating Celtic knot patterns over arbitrary surfaces. In a
more general setting, the method by Akleman et al. [2009] allows
users to create cyclic plain-weaving patterns. Zhou et al. [2006]
propose an example-based method to directly synthesize 3D geom-
etry such as basket-like weaves around a surface mesh.

Another line of work has considered the automatic synthesis of
(2D) branching curve networks. Merrell and Manocha [2010] de-
scribed a method for generating branching structures by progres-
sively inserting sub-parts of an input curve. Xu and Mould [2009]
create specific types of branching networks by tracing particles
through artificial force fields. Runions et al. [2005] propose a

biologically-inspired method for creating leaf venation patterns.
While each of the above methods creates a particular type of curve
network, we seek a more general approach that provides explicit
user control over the shape of the curves and the connectivity of the
network in order to accommodate a large variety of styles.

Curves on Surfaces While spline curves in Euclidean space
have been studied for a long time, the problem of modeling smooth
curves on manifolds has only recently received attention from the
graphics community. Hofer and Pottman [2004] compute energy-
minimizing spline curves on manifolds using constrained mini-
mization with a gradient projection approach. Wallner et al. [2005]
subsequently extended this approach to spline networks. Starting
directly in the discrete setting, Lee and Lee [2002] propose geomet-
ric snakes, an active contour model for feature detection on triangle
meshes. Geometric snakes are computed by minimizing feature
and shape preservation energies. The minimization is performed in
2D by virtue of a (constantly updated) local parameterization of the
corresponding surface region. As another application, Campen et
al. [2014] used embedded elastic curves for interactive quad mesh-
ing. Our approach for modeling discrete embedded elastica is sim-
ilar, but the application to 3D-printable curve networks that satisfy
aesthetic and structural constraints leads to a very different set of
challenges.

In this context, we also mention the method by Stam [2003] for
simulating fluid flows on smooth manifolds represented by Loop
subdivision surfaces. While our approach relies on the same dis-
crete representation for smooth surfaces, we consider the problem
of simulating embedded elastic curves for the problem domain of
fabrication-oriented design.

Fabrication-Oriented Design The graphics community has seen
a steady increase in design tools for various forms of physical
surfaces, including plush toys [Mori and Igarashi 2007], inflata-
bles [Skouras et al. 2012; Skouras et al. 2014], bead-work models
[Igarashi et al. 2012], wire-mesh sculptures [Garg et al. 2014], and
others. From an aesthetic point of view, our work is also related to
the design tool for wire-wrap jewelry by Iarussi et al. [2015].

In the context of 3D-printing, several methods that leverage
physics-based simulation in order to analyze and improve the stabil-
ity of 3D-printed artifacts [Stava et al. 2012; Umetani and Schmidt
2013] while minimizing material use [Lu et al. 2014] have been
proposed. Most closely related to our approach, Zhou et al. [2013]
determine worst-case force distributions using eigenanalysis and
highlight areas of high stress on input 3D models. Our method also
relies on eigenanalysis, but instead of visualizing stress concen-
trations, we identify undesired deformations between geodesically-
close curves and guide the user in strengthening the structure.

The types of structures that we target in this work can be modeled as
networks of discrete elastic rods [Bertails et al. 2006; Bergou et al.
2008; Spillmann and Teschner 2009]. Our approach for predicting
deformations within curve networks is most closely related to the
one described by Prez et al. [2015]. However, while they optimize
existing curve structures with fixed topology, our method facilitates
the design and creation of arbitrary curve networks.

Another line of research has started to explore the connection be-
tween aesthetics and structural stability: Dumas et al. [2015] cre-
ate structurally-sound patterns for 3D-printable surfaces using an
example-based texture synthesis approach; Martinez et al. [2015]
simultaneously optimize for stability, material use, and appearance
using topology optimization; Zhou et al. [2014] optimize the lay-
out of segments in order to create well-connected decorative curves
from vector patterns. We share the goal of creating physical sur-



face representations that are aesthetically-pleasing and structurally-
sound. However, by combining a curve-centric approach with
a user-in-the-loop paradigm, our approach enables very different
types of designs.

Concurrent to our work, Chen et al. [2016] present a method
for creating physical surface representations using decorative pat-
terns. Their approach is to pack an input surface with user-provided
base elements that are optimized to overlap in a way that preserves
aesthetic appearance while providing sufficient structural strength.
While the method by Chen et al. [2016] offers a fully-automated
design process that is particularly well-suited for regular structures,
our system promotes user interaction and enables heterogeneous
designs.

3 Elastic Curves on Surfaces

The underpinnings for our design tool are formed by a computa-
tional method for simulating the motion, deformation, and interac-
tion of elastic curves embedded in smooth surfaces.

3.1 Variational Curve Mapping

As a central component of curve network design, we must define
a way to map user-defined planar curves to arbitrary 3D surfaces.
In seeking such a mapping, our primary goals are to induce mini-
mal distortion and to ensure continuity in geometry as curves move
across the surface. In order to achieve low distortion while, at
the same time, permitting deformation as needed, we take a vari-
ational approach and model curves on surfaces as embedded elas-
tica. These elastic curves can bend and stretch in order to comply
with editing operations or contacts with other curves, but aim to
preserve their original shape as much as possible. However, we can
only expect shape-preservation to the extent to which the underly-
ing surface allows it.

To explain this point further, we turn to
the continuous setting and let γ(t) de-
note an arc-length parameterized curve
on the surface, whose orthonormal
frame [t,n,b] is defined by its tangent
t = γ′, the normal of the surface n,
and the binormal b = t × n. At any
point along the curve, the total curva-
ture is given as κ = |γ′′(t)|. Noting
that |γ′| = 1 implies t · γ′′ = 0, the second derivative of the curve
can be decomposed into components along the normal γ′′n = n ·γ′′
and binormal γ′′b = b · γ′′, giving rise to the normal curvature
κn = |γ′′n | and geodesic curvature κg = |γ′′b |, respectively. As
an intuitive interpretation, any embedded curve must assume the
normal curvature imposed by the underlying surface, whereas its
geodesic curvature is independent of the embedding. For an (ini-
tially straight) elastic curve embedded on a surface, this observation
suggests an energy formulation of the form

∫
κg(t)2dt, as it only

considers deviations in geodesic curvature and is invariant under
normal curvature (see, e.g., [Langer and Singer 1996]). We note
that penalizing the normal curvature term in the energy function
would result in the embedded curve drifting towards regions of the
surface where the total curvature is minimum, which is undesirable
for our application.

3.2 Discretization

For numerical treatment, we need discrete representations for elas-
tic curves as well as the surfaces to which they are confined. In
order to enable interactive design and editing of curve networks,

we would like to take advantage of efficient numerical methods that
leverage derivative information. Since the smoothness of a curve’s
motion in Euclidean space is determined by the underlying surface,
we combine higher-order surface representations with piece-wise
linear curves.

Discrete Surface Representation Its applicability to arbitrary
triangle meshes make the Loop subdivision scheme an appealing
candidate for our setting. The Loop scheme defines smooth sur-
faces as the limit of repeated refinement and smoothing of an initial
control meshM. Let Xi denote the vertices of the control mesh.
The limit position of a point with barycentric (natural) parameters
(u, v) within a given triangle Tk is computed as

xk(u, v) =

N+6∑
i=1

ϕk
i (u, v)Xk

i , (1)

where ϕk
i is the basis function of vertex i and N + 6 is the number

of nodes in the one-ring neighborhood of Tk. For regular triangles
having only vertices of valence six (i.e.,N = 6), the corresponding
part of the limit surface is a quartic bezier patch whose twelve basis
functions can be evaluated analytically. For triangles with irregular
vertices (N 6= 6), we use the eigenbasis of the subdivision operator
as proposed by Stam [1998] for efficient evaluation of the basis
functions and their derivatives at arbitrary parameter values.

Discrete Embedded Elastica We represent curves on the limit
surface through a set of vertices defined on the control meshM. In
particular, for every vertex j of a given curve, we store the index kj
of the triangle it lies on as well as its two barycentric coordinates
0 ≤ uj , vj ≤ 1 with uj + vj ≤ 1. Curves can therefore be com-
pactly represented as vectors ci = (k1, u1, v1, . . . , kn, un, vn)T ,
where the superscript i represents the index of the curve in the
network and is omitted for simplicity when referring to a generic
curve. As the vertices of a curve glide along the underlying surface,
we update both their barycentric coordinates and their triangle in-
dex as described in Sec. 3.5. The limit surface position of a vertex
j on curve i is denoted by cij = xkj (uj , vj), while ci(t) denotes
the position of an arc-length parameterized point along the curve,
determined through linear interpolation of its vertices.

In order to define energies for discrete embedded elastica, we adapt
the formulation by Bergou et al. [2008; 2010]. Following this
model, the integrated total curvature at a given vertex is captured
by the curvature vector

κi =
2ei−1 × ei

|ei−1||ei|+ ei−1 · ei
, (2)

where ei = ci+1 − ci are the edge vectors of the curve. By pro-
jecting the curvature vector onto the surface normal, we obtain an
approximation of discrete geodesic curvature and define a corre-
sponding energy term as

Ebend = µbend

∑
i

(κi · ni − κ̄i)
2

l̄i
, (3)

where l̄i = 1
2
(|ēi−1| + |ēi|), κ̄i is the curvature at vertex i in the

2D rest state. Here and henceforth, µ∗ denotes stiffness parameters
whose values are provided in Sec. 6. We complement the curvature
energy by a term that penalizes stretching as

Estretch = µstretch

∑
i

1

2

(
|ei| − |ēi|s
|ēi|s

)2

|ēi| (4)



where s isotropically scales the curve relative to its undeformed
state. The scaling parameter s is a free variable that is computed
along with the curve’s vertex positions during optimization. One
interesting question in this context is whether, instead of using the
Euclidean edge vectors ei, one should consider the corresponding
geodesics on the limit surface. Computing these geodesics and their
derivatives with respect to the curve points, however, would mean
a considerable increase in computational complexity. Nevertheless,
both alternatives converge to the same expressions under refinement
and since we observed good behavior using Euclidean distances and
angles, we opt for this simpler variant.

In summary, we can now compute the mapped shape of a planar
curve on a given surface by minimizing its discrete elastic energy,
subject to sufficient boundary conditions for position and orienta-
tion. Before we describe how to handle intersections and contacts
between different curves, we briefly discuss the impact of Gaussian
curvature.

Gaussian Curvature The underlying surface determines the nor-
mal curvature at every point on the curve, but it also affects its
geodesic curvature: according to the Gauss-Bonet theorem, the in-
tegrated geodesic curvature along a closed curve is proportional to
the integral of Gaussian curvature of the surface within the curve.
Consequently, an embedded elastic curve will necessarily have non-
zero bending energy in regions of non-zero Gaussian curvature
since, unlike in its flat rest state, the sum of its exterior angles does
not equal 2π. This residual energy will make closed curves drift
towards developable regions where their bending energy can van-
ish exactly. Fortunately, we found that, for our application, small
amounts of regularization can reduce this effect to a level that is
unnoticeable in practice (see Sec. 3.5).

3.3 Intersections & Contact

Our focus is on networks of curves that can form contact but, by
default, are not allowed to intersect. We therefore automatically
prevent intersections during the design process and provide tools
for editing contact relations between curves.

Intersections Similar to common practice in computer anima-
tion, our strategy is to maintain the invariant that the network is
free of intersections at the end of each optimization step. Given a
search direction from the Newton solver, we geometrically check
for intersections between pairs of edges and reduce the size of the
step until the first one is found. Once such a pair is found, we insert
a uni-lateral penalty potential preventing further approach between
the corresponding vertex-edge pairs. For the penalty potential, we
use a truncated log-barrier function

Ei(x) =


∞ if x ≤ 0

µi

(
− ln(x)− 1

2
x2 + 2x− 3

2

)
if 0 < x < 1

0 otherwise ,
(5)

where x = d−dmin
dmax−dmin

and dmin is the minimum distance between
two curves, which we set to half their radius. Furthermore, dmax is
the distance beyond which the penalty is deactivated. The distance
function d = d(ci, cj) itself is defined in a piece-wise manner to
reflect the world-space distance between two given edges i and j,
resulting in either a point-to-point, point-to-edge, or edge-to-edge
distance. Although this function is onlyC1-continuous with respect
to the involved vertices, we did not notice any adverse effects during
optimization.

Contact During network design, curves will generally form inter-
mittent contacts. By default, these contacts are uni-lateral and will
be resolved as soon as the contacting curves want to separate. In
order to enforce persistent contact between a pair of curves, we pro-
vide an editing tool that allows the user to specify a pair of points,
one on each curve, that should be connected. In order to imple-
ment bi-lateral contact, we use a penalty energy in the form of a
zero-length spring

Econtact(ti, tj) = µc
1
2
|ci(ti)− cj(tj)|2 , (6)

where ci(ti) and cj(tj) are world-space contact points, corre-
sponding to curve parameters ti and tj on curves ci and cj , respec-
tively. Once two curves are connected, the user can still change
the curve parameters in order to slide the contact points along the
curves. The user can also select the desired angle αt between the
two tangents at the point of contact, which we model as

Etangent(ti, tj) = µt

(
](ti(ti), t

j(tj))− αt)
)2

, (7)

where t(t) are the tangents at the contact point, computed as the
normalized edge vectors.

3.4 Editing Objectives

As a central component of our design system, we propose a number
of tools for creating and editing curve networks. We defer a more
detailed discussion to Sec. 4, but briefly describe the energies that
form the basis of these tools.

In order to move curves across the surface, the user selects a given
point ci(t) on the curve and drags it to a target location xt. The
curve is then pulled toward the target by means of a penalty energy
in the form of

Epull = µp
1
2
|ci(t)− xt|2 . (8)

Each curve is endowed with a scaling parameter s that enters into
the stretching energy (4) and is a degree of freedom in the optimiza-
tion. In order to change the size of a curve to a desired value st, we
add a penalty potential of the form

Escale = µscale
1
2
(s− st)2 . (9)

It should be noted that the bending energy (3) is scale invariant by
design.

3.5 Numerical Solution

We cast curve network design as a minimization problem where
the objective function is the summation of energies for shape-
preservation, intersection-prevention and contact handling, as well
as additional terms relating to design objectives. All terms are
scaled by individual stiffness coefficients µ, whose values are given
in Sec. 6.

Surface Derivatives All terms of the objective function depend
explicitly on world-space positions, but the degrees of freedom
of the curve live in 2D parametric space. When computing first
and second derivatives required for Newton-type minimization, we
therefore have to take into account the derivatives of the surface
with respect to the parametric coordinates. The gradients of these
energies are computed as

∂E

∂p
=
∂x

∂p

T ∂E

∂x
= −JT f , (10)



where J = ∂x
∂p

is the surface Jacobian obtained by differentiating
(1) and f ∈ R3 is the penalty force obtained as the negative gradient
of the energy with respect to Euclidean positions.

Newton Updates In order to minimize the objective function, we
use Newton’s method with line search and adaptive viscous regular-
ization to ensure convergence in the presence of non-linearities. In
each iteration, the solver provides a search direction ∆p for updat-
ing the parametric positions of all curve vertices as well as their
scale parameters. If the linear solver signals indefiniteness, we
add a viscous regularizer of the form Ereg = 1

2
µn
reg||∆x(∆p)||2,

where n is incremented until the system is positive definite. It
should be noted that it is crucial to define the regularizer on Eu-
clidean displacement ∆x in order to prevent distortion artifacts due
to the non-isometric nature of the intrinsic per-triangle parameteri-
zation.

Surface Coordinate Updates For each curve vertex, we use the
natural piece-wise parameterization of Loop subdivision surfaces,
corresponding to barycentric coordinates of a host triangle. When
updating these coordinates according to a given search direction
from the Newton step, curve vertices may migrate from one triangle
to another. Whenever such a transition occurs, we must smoothly
update both the parameter values and the search direction in order
to reflect the change in parameterization. Let ∆pk ∈ R2 denote the
update direction for a given vertex ci currently located in triangle
Tk and suppose that moving ci along ∆pk would make it transition
into its neighboring triangle Tl. To perform this transition, we trace
ci up to the boundary of Tk and then update its search direction
by requiring that the corresponding Euclidean vectors coincide at
the boundary between the two triangles, i.e., Jk∆pk = Jl∆pl.
Although this system is over-determined (J ∈ R3×2) the C1-
continuity of the surface ensures that, away from irregular vertices,
it always has a unique solution, which we compute by applying
QR-decomposition to the normal equations.

With the computational framework laid out, we can now proceed to
the actual design of curve networks.

4 Curve Network Design

Our interface offers a simple work flow, aimed at making the design
of ornamental curve networks simple, efficient, and enjoyable. The
user starts by creating a set of planar example curves that reflect a
desired aesthetic style. These curve primitives are then instantiated
on the surface, where they can be moved, deformed, and connected
to other curves in order to form networks. We consider two basic
approaches for curve network design: a manual mode, in which the
user, supported by our system, instantiates curves one-by-one; and
a semi-automatic mode in which, guided by the user, curves are
seeded and grown in an automated fashion. Both modes build on a
set of editing operations that allow the designer to guide and adapt
the resulting networks.

4.1 Curve Library

The user defines curve samples in 2D-
space using a simple spline tool, il-
lustrated in the inset figure. Exam-
ple curves can be open or closed, and
they can also self-intersect. To con-
vert the spline curves into embedded
elastica, we evaluate them at a given
number of equally-spaced samples to
obtain a set of curve points that define

the rest state of the piece-wise linear
elastic curve. In order to instantiate elastica, we first project a down-
scaled version onto the surface and then grow the curve to the de-
sired size using the scaling energy (9). For initial projection, we
simply use the normal at the location selected by the user.

4.2 Manual Layout

The manual mode implements a forward-design approach, in which
curves are instantiated one-by-one. The user chooses a sample
curve from the library and instantiates it on the surface: selecting a
point on the surface determines the origin of the curve, dragging in
a given direction changes its size and orientation. Curves can also
be instantiated by selecting a point on an existing curve in order
to extrude a new curve. The connection between the two curves is
modeled using penalty energies for contact (6) and tangent orienta-
tion (7) as described in Sec. 3. This way of curve instantiation is
particularly convenient when modeling, e.g., branching structures
(see Fig. 1, 5).

Editing After instantiation, the user can reposition, reorient, or
rescale the curves. By default, curves can move freely across the
surface, but they can also be constrained by creating connections
between curves, by pinning individual curve points to the surface,
or by locking curves entirely. In the presence of motion constraints
or contact, curves will deform in order to comply with editing ob-
jectives issued by the user; the deformed state follows as the one
that minimizes the sum of elastic energy and all other energies due
to contact or editing. In addition to purely aesthetic purposes, these
editing operations are also used to improve the stability of the de-
sign (see Sec. 5).

During manual design, we sometimes found it convenient to auto-
matically lock curves in order to avoid unwanted alterations to the
existing network. To allow fast and easy editing, curves will un-
lock immediately upon selection, and relock after editing. As the
network design proceeds, curves become increasingly connected.
However, since manual network design is an inherently explorative
and iterative process, curves may be revisited and altered several
times during the design process. Thanks to its flexible contact
model, our formulation allows connected curves to be edited while
preserving connectivity. In order to propagate these edits, selecting
a connected curve will automatically unlock a local neighborhood
of curves, allowing them to deform in order to comply with the re-
quested edit. By default, this neighborhood includes all curves that
are either directly connected to the curve being edited or within a
given distance from it. However, the size can also be manually ad-
justed by the user.

4.3 Automated Layout

The manual design mode poses virtually no limits on creativity, al-
lowing users to create, e.g., intricate branching networks that follow
a specific aesthetic vision on both local and global scales. Other
types of networks appeal because of their less structured or even
random layouts, which require less deliberation and are thus more
amenable to automation. Targeting a specific class of such lay-
outs, we propose a semi-automatic method for creating deformable
packings—quasi-random arrangements of deformable curves that
evolve according to an elastic growth metaphor.

To create deformable packings, we first sample the surface accord-
ing to an underlying sizing field. We mimic on-surface blue noise
distributions using a dart throwing algorithm based on approximate
geodesic distances. After samples are generated, we instantiate the
curves at a small scale, ensuring that no overlap occurs. Curves



then grow by virtue of penalty energy (9) with their scale parameter
determined by the underlying sizing field.

In order to create sizing fields, the
users draws on the surface with the
help of a brush tool. The inset
figure shows an example of a siz-
ing field, darker shade indicating
smaller target scale. The brush sets
the target scale s̄i for the affected
vertices Xi of the control mesh to
the selected value. The target scale
s̄j for a given curve cj is computed
from the weighted average at its
vertices,

s̄j =

∑
s̄(cji )l̄i∑
l̄i

, (11)

where s̄(cji ) is determined from per-vertex sizing values using the
interpolation functions of the subdivision surface. It is worth noting
that the target scale for a curve changes as a function of its configu-
ration. Curves can therefore adapt their position, size, and shape in
order to better comply with the underlying sizing field.

After the curves started to grow, the user can pause the process at
any time in order to guide the evolution of the network. Curves
can be deleted, inserted, or edited using the tools described above.
Once the user is satisfied with the network, its structural stability
can be analyzed and, if necessary, improved as explained next.

5 Structural Stability

The class of artifacts that we target with our design systems are not
meant to bear significant loads, but they have to be strong enough
to warrant safe fabrication, shipment, and handling. Furthermore,
while flexible curve networks can exhibit interesting deformation
behaviors, we found that strongly localized deformations are rather
disturbing. Our goal is therefore to analyze the structural stability of
curve networks, identify weak spots, and guide the user in making
improvements. Since loads that occur during manipulation cannot
be predicted, we preclude optimization based on specific load cases.
Instead, we leverage eigenanalysis to identify deformation modes
that can be induced with minimal applied force.

5.1 Structural Eigenanalysis

In order to predict the deformations caused by applying loads to
the curve network, we use a simulation method based on discrete
elastic rods [Bergou et al. 2008]. Our extension to rod networks
largely follows the one described by Pérez et al. [2015], but instead
of inferring connection states using best-fit transformations to inci-
dent rods, we model connections as rigid bodies with explicit de-
grees of freedom. In order to compute eigenmodes for a given input
design, we first down-sample the curve network in a connectivity-
preserving way and compute reference frames via parallel transport.
We then evaluate the Hessian H of the elastic energy at the unde-
formed configuration and use Spectra [Qiu 2015] in shift-and-invert
mode to compute the n eigenvectors corresponding to the smallest
eigenvalues (we use n = 20). Note that, for a given eigenvector ui,
we have

Hui = σiu
i = −f i , (12)

implying that eigendisplacements ui and corresponding eigenloads
f i are collinear—the smaller the eigenvalue σi, the less force is
required to create a unit displacement along the eigenvector.

5.2 Detecting Structural Weakness

In order to improve the stability of a given structure, a central
question is how to detect and quantify structural weakness. Fol-
lowing common practice in engineering, recent work from the
graphics community has considered the maximum deformation or
stress induced by a given load [Stava et al. 2012; Zhou et al.
2013; Lu et al. 2014]. But while these measures can provide
information on where a structure is likely to fail, these loca-
tions are not necessarily the ones where it should be improved.
For example, when connecting
two hemispheres with a single
curve as shown in the inset fig-
ure, eigenanalysis will indicate
relative rotation and twist be-
tween the two halves as the
low-energy modes. While the
connecting curve experiences
the highest deformation for
these modes, the best location
for improving the structure is
not at the curve, but on the op-
posite side of the sphere. In a broader perspective, a single missing
link within a curve network can disrupt load propagation and lead
to critical deformations in far away regions. But without assistance,
the location of the missing link is generally not obvious. In order
to directly identify locations that should be strengthened, we detect
deformations in the network’s dual structure—i.e., between exist-
ing curves, not within existing curves. To this end, we set up virtual
edges between nodes from the existing network in order to measure
relative displacement of curves within a given spatial radius. The
underlying reasoning is that high deformations in virtual edges in-
dicate structurally-weak spots that, once strengthened, will reduce
the relative displacement in the network.

Virtual Edges In order to detect structurally-weak spots, we mea-
sure the deformation induced in the virtual edges when applying
eigenloads f i = σiu

i corresponding to low-energy modes of the
structure. Let x̄1 and x̄2 denote the positions of the two end points
of a given virtual edge in the undeformed configuration. Further-
more, let x1(t) = x̄1 + tui

1 and x2(t) = x̄2 + tui
2 for 0 < t ≤ 1

be the positions obtained by displacing the original points along the
corresponding components of the eigenvector ui, which, for small
deformations, is equivalent to applying the corresponding eigen-
load. For a given value of t, we define the strain of the edge as

ε(t) =
|x2(t)− x1(t)| − |x̄2 − x̄1|

lgd
, (13)

where lgd measures the geodesic distance between the two points
in the undeformed configuration. We use geodesic instead of Eu-
clidean distance for two reasons: first, it puts less emphasis on pairs
of points that are close in Euclidean space but far apart on the sur-
face; second, it better reflects the amount of change that would be
required to connect the corresponding points. Noting that ε(0) = 0,
we do not consider the absolute deformation for a given value of t
but the rate at which strain increases when deforming the structure
along the eigenvector. We therefore evaluate the rate of strain at the
undeformed configuration as

ε′(0) =
(x̄2 − x̄1)T (ui

2 − ui
1)

|x̄2 − x̄1|lgd
. (14)

It should be pointed out that, while Dumas et al. [2015] also con-
sider the ratio of Euclidean and geodesic distance as a stability in-
dicator, they do not take into account the deformation induced in
this dual structure.



Improving Stability Once the user has converged on a candidate
design, it can be checked for structural weaknesses and, if nec-
essary, corrected. Virtual edges are set up according to a user-
provided search radius and their deformations are computed si-
multaneously for all eigenmodes. The maximum values are then
visualized by color-coding (14) relative to a user-provided inter-
val (see inset figure). Since automatically changing the network
at this stage of the design would
run the risk of conflicting with
the user’s intent, we only pro-
vide suggestions on where to
change the existing structure.
The user can then make an in-
formed decision on where and
how to change the design in or-
der to improve stability. Cor-
rections are applied sequen-
tially by editing existing curves
(using the operations described
in Sec. 4) to form new or stronger connections, or by adding new
structure. The user can update the eigenmodes of the structure af-
ter each correction, which typically does not take more than a few
seconds of computation.

5.3 Finishing & Fabrication

Once a design has been checked for stability and possibly corrected,
we have to convert the curve network into a surface mesh for fab-
rication. In order to obtain smooth geometry, we first fit Catmull-
Rom splines to the piece-wise linear curves and then create high-
resolution triangle meshes. We fabricate the resulting meshes in
PA12, a flexible thermoplastic polymer, using Selective Laser Sin-
tering.

6 Results

In order to evaluate our design tool, we created ornamental curve
networks for a variety of surface shapes and experimented with dif-
ferent aesthetics. Before reporting on the findings and experiences
made during the design process, we start with an analysis of the
performance and robustness of our method.

6.1 System Analysis

We designed a set of simulation experiments in order to assess the
performance, scalability, and robustness of our method with regard
to various factors. Unless indicated, we use the following values
for the stiffness coefficients of the individual potentials described
in Sec. 3: µi = 1, µc = 107, µp = 103, µt = 100. While
the remaining parameters can be set by the user, we typically used
µbend = 5, µstretch = 103, and µscale = 100.

Performance In order to provide a representative sample of av-
erage run time costs for our method, we consider a simple circle
packing experiment. We evenly distribute varying numbers of sam-
ples on a sphere and set the target scale of the circles such that, in
the flat setting, the sum of their areas would be 1.5 times the area
of the sphere. The curve network is then grown by performing 500
solver iterations, which yields visually stable results for all cases.
Table 1 lists statistics obtained on a standard desktop machine with
an Intel Core i7-3770 CPU and an nVidia GeForce GTX 680 graph-
ics card. It can be seen that, when displaying the result after each
solver iteration, our method provides interactive frame rates for up
to around 100 curves.

When editing curves in an existing network, the performance of the
system depends on the complexity of the curves and the size of the
neighborhood, i.e., the number of curves that are activated during
the edit. Using a similar setup with circles, each having 79 degrees
of freedom, placed on a sphere, our method was fast enough to
enable editing of around 20 curves at interactive rates.

Material Parameters Apart from the design objectives defined
by the user, the resulting networks also depend on physical param-
eters, i.e., the stretching and bending stiffness of the curves, and the
stiffness of the scaling energy. Due to the direct coupling between
stretching and scaling, we only investigate the ratio between scal-
ing and bending stiffness. To this end, we again run a circle packing
experiment with progressively decreasing bending stiffness. In ad-
dition to intriguing structures that emerge for low bending stiffness,
the results shown in Fig. 2 indicate that this ratio can be adjusted
to trade-off shape preservation against packing density. It can also
be noted that, even for tight packings with extreme deformations,
the system remains responsive and robustly prevents intersection
between the curves (we do not prevent self-intersections).

6.2 Design Examples

We performed design experiments using both the computer-assisted
manual mode and the semi-automatic packing mode. In the follow-
ing, we discuss some representative examples of the various curve
networks that we created using our method.

Forward Network Design Aiming for a maximum degree of
artistic freedom, the manual design mode of our system helps the
user in creating, adapting and connecting curves, but the user is
responsible for creating the layout. This mode is particularly well-
suited for complex, heterogeneous networks that exhibit specific
structures on both global and local scales. An example of such a
network can be seen in Fig. 1 (5). Reminiscent of wrought-iron
railings, this branching network of Euler spirals conveys the im-
pression of an organically-grown structure whose carefully-placed
curves delineate and emphasize different features of the underlying
surface. Another example is shown in Fig. 4, where the user cre-
ated a sparse surface covering with composite shapes made from
individual curve primitives.

Deformable Packings Using the semi-automatic layout tool, we
created deformable packings with different shapes and varying de-
grees of user control. Fig. 1 (1-4) shows examples of homoge-
neous packings that were created with minimal user input: apart
from slightly smaller scaling targets for the ears of the bunny, the
user only made a few changes to improve the aesthetics and the sta-
bility of the converged layouts. Another example can be seen in
Fig. 3, where the designer specified two circular curves to delineate
the eyes of the character, while all other curves where seeded and
grown automatically. By painting sizing fields on the target surface,

# Curves # DOFs tavg[s] ttot[s] fps
13 1027 0.0165 22.0 22.7
21 1659 0.0247 28.6 17.5
37 2923 0.045 42.0 11.9
83 6557 0.101 76.9 6.5
304 24016 0.479 296.2 1.7

Table 1: Statistics for circle packing test. Average time per it-
eration (tavg), total time (ttot) including rendering, and average
frames per second (fps) for 500 iterations.



Figure 2: Effect of bending and scaling stiffness demonstrated on a circle packing example. (1) Starting from a high ratio between bending
and scaling stiffness that yields circles with virtually no bending deformation, we gradually decrease the bending stiffness. (2) circles form
more contact without noticeable deformation, (3) circles begin to deform, densifying the packing, (4-6) ellipsoids progressively collapse into
lobes.

users can control the size of the curves for artistic purposes or to
better reflect the underlying geometry in regions of high curvature
or for small features.

Depending on the number of curves, packings can take up to a few
minutes to converge to their final states. However, we found that
the aesthetic impression can typically be assessed reasonably well
after only a few seconds, thus enabling iterative tuning. It is worth
noting that the user can intervene at any point in order to guide
the evolution of the layout and to edit or fine-tune the converged
networks in order to achieve specific artistic effects; see also the
accompanying video. On average, creating the deformable pack-
ings that we present here took on the order of 15 minutes, including
packing simulation, editing, and structural improvements.

In order to obtain further indications as to the usability of our design
tool, we asked five users who had not used our tool before to create a
curve network of their liking for a given input surface. The aesthetic
variability among the resulting designs (see Fig. 5) confirms the
consistent impression among the users that our tool provides ample
artistic freedom. The design times were between 20 (Fig. 5, 1) and
40 minutes (Fig. 5, 5).

6.3 Structural Stability

We used our structural analysis tool for improving the stability of
all examples that we generated. Most of the indicated weak spots
could be mended by editing existing curves in order to form new
or strengthen existing connections. For some cases, the user intro-
duced new curves to add more stability to the structure. For the
manually designed spiral bunny (Fig. 1, 5), the analyzer signaled a
number of structurally-weak spots. While the most significant ones
could be resolved without noticeable visual impact on the design,
some were deliberately left unchanged in order to maintain the aes-
thetic intent of the designer. These decisions being governed by
subjective considerations, this example illustrates the importance
and advantage of a user-guided approach to structural optimization.

We performed an additional simulation experiment in order to fur-
ther analyze the effectiveness of the structural improvements sug-
gested by our system. To this end, we probe the curve network
shown in Fig. 1 (5) by applying concentrated loads of 0.1N in
the normal direction at 1000 different locations on the surface and
compute the resulting deformed state by minimizing the (nonlin-
ear) energy of the system. In order to quantify the improvement in
stability, we measure the resulting relative displacements between
near-by curves according to (13) and compare the maximum values
before and after user-applied corrections. We find that the average
peak and peak deformations are reduced by a factor of 1.93 (from
0.05 to 0.02) and 2.24 (from 0.42 to 0.18), respectively. These ob-
servations indicate that our method is indeed effective at reducing
excessive relative deformations within the curve networks.

7 Conclusions

We presented a computational design tool for ornamental curve
networks—delicate, yet structurally-sound surface representations
with user-controlled aesthetics. Building on elastic curves embed-
ded in smooth subdivision surfaces, we developed an intuitive set
of user-driven design and editing tools for curve networks. Our
computational system assists users in realizing their creative vision
while helping to ensure that the resulting designs are structurally
stable. The stability of the networks is predicted through an eigen-
analysis that efficiently identifies geodesically-close curves under-
going large relative displacements under low-energy deformation
modes. As evidenced by the simulated and fabricated designs cre-
ated with our system, curve networks are well-suited to portraying
a rich variety of aesthetic styles.

7.1 Limitations & Future Work

The energy model we employ to generate low-distortion curve em-
beddings relies on the normal of the input limit surface, as well as
its derivatives. Unfortunately, irregular vertices introduce disconti-
nuities in the derivatives of the surface normals. As a side effect, the
convergence rates of our numerical solver are somewhat affected
when curves glide over irregular vertices. In practice, we have ob-
served that the artifacts are not significant enough to interfere with
the design process. Nevertheless, as an avenue for future work, we
would like to experiment with the improved subdivision scheme of
Loop and Schaefer [2008], which yields surfaces that are at least
G2-continuous everywhere.

For performance reasons, we model elastica as piece-wise linear
curves whose vertices live on the limit surface. The energy term
that measures stretch is therefore based on Euclidean distances,
while the bending energy only approximately captures geodesic
curvature, as edges incident to a vertex are not perfectly tangent
to the surface. While this approximate model converges to the ex-
act one under refinement, it would be interesting to investigate ways
of directly accounting for geodesic distances in a computationally-
tractable way.

From a design and interaction point of view, there are several use-
ful extensions that we plan to explore. For example, scalar fields
are currently used to control the size of the curves depending on
their position on the surface. It would be useful to have similar
levels of control over the orientation of individual curves. Higher-
level brushes could also be used to more precisely specify the dis-
tribution and packing of curves, while procedural brushes based on
L-systems could add further automation to the design of intricate
branching structures.
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