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Fig. 1. Our fast energy projection method produces vivid motion for an animated rabbit.

We propose a novel projection scheme that corrects energy fluctuations in
simulations of deformable objects, thereby removing unwanted numerical
dissipation and numerical “explosions”. The key idea of our method is to first
take a step using a conventional integrator, then project the result back to the
constant energy-momentummanifold. We implement this strategy using fast
projection, which only adds a small amount of overhead to existing physics-
based solvers. We test our method with several implicit integration rules
and demonstrate its benefits when used in conjunction with Position Based
Dynamics and Projective Dynamics. When added to a dissipative integrator
such as backward Euler, our method corrects the artificial damping and thus
produces more vivid motion. Our projection scheme also effectively prevents
instabilities that can arise due to approximate solves or large time steps. Our
method is fast, stable, and easy to implement—traits that make it well-suited
for real-time physics applications such as games or training simulators.
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1 INTRODUCTION
Simulation of dynamic elastic objects is important in many areas of
engineering where one of the key numerical considerations is accu-
racy. Consequently, many numerical integration techniques have
been developed with an often implicitly assumed understanding
that accuracy is paramount. This is perfectly justified in engineering
applications when the goal is to simulate the dynamics of structures
such as a bridge or an airplane wing. Quite different situations occur
in interactive physics-based simulations, important e.g. in computer
games or surgical simulators [Sui et al. 2017]. The key difference
is that numerical time integration must be fast enough to provide
solutions in real-time, which often means frame rates of 30Hz or
more. The simulation results are immediately displayed to the user
and therefore, the numerical methods must be stable, because it
is unacceptable to display artifacts such as erroneously “exploded”
frames to the user. With fast advances in technologies for virtual and
augmented reality, we can expect increasing demands for real-time
physics simulators.

Due to this intolerance to instabilities, real-time simulators typi-
cally rely on dissipative integrators such as backward Euler. How-
ever, these integrators come with two types of drawbacks: 1) the
increased stability comes at the cost of artificial numerical damp-
ing which depends on the time step size and other parameters of
the simulated system; 2) implicit integration rules are not easy to
solve numerically. In theory, machine-precision-accurate solutions
of implicit update rules can be computed, e.g., by iterating Newton’s
method to convergence. However, in practice, the implicit integra-
tion rules are often only solved approximatively, e.g., by linearizing
the implicit equations [Baraff andWitkin 1998]. There are also meth-
ods developed specifically for real-time physics, such as eXtended
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Position Based Dynamics (XPBD) which approximates backward
Euler [Macklin et al. 2016]. Unfortunately, these approximations in-
troduce errors which can be problematic, e.g., linearizing backward
Euler does not always prevent instabilities.

In this paper, we present a new light-weight technique to improve
the quality and robustness of dynamic simulations, especially useful
in real-time simulations. Our method is an “add-on” which can be
applied after any combination of an integration rule and its iterative
solution process. This means that software developers do not need
to change their favorite integrator or their numerical solvers in
order to incorporate our method. Our method is motivated by two
elementary observations: 1) numerical “explosions” are usually char-
acterized by the total energy of the system increasing indefinitely;
2) artificial numerical damping is characterized by the decay of the
total energy. These behaviors are due to numerical errors which
contradict an important principle of nature – conservation of energy.
More precisely, total energy, i.e., the sum of potential and kinetic
energies, is constant in conservative dynamical systems. Neverthe-
less, numerical methods commonly used in real-time physics do not
conserve energy, leading to artifacts such as the artificial damping
of backward Euler. Our method can be viewed as the projection of
the state of a dynamical system (positions and velocities) which
restores the correct energy behavior. If this is done carefully, i.e., by
not altering the state too much and paying attention also to linear
and angular momentum in addition to the total energy, we observe
qualitatively improved simulations in a number of practical real-
time-physics settings. Our method guarantees that 1) the simulation
cannot “explode” in the sense of unbounded energy increases; 2) ar-
tificial numerical damping – if present in the underlying integrator
– is eliminated.

Contributions. Our main algorithmic contribution is a new nu-
merical energy-momentum projection method which is very fast
and thus capable of meeting the stringent requirements of real-time
physics applications. We demonstrate that our method improves
the quality of simulation results for a number of different combina-
tions of implicit integration rules (backward Euler, BDF-2, implicit
midpoint) and their numerical solution strategies (linearization,
Position Based Dynamics, Projective Dynamics). Even though the
principle of our method has solid theoretical foundations in clas-
sical mechanics, we caution that our approach is intended only as
dynamics post-processing for computer graphics. Even though in
some cases our results seem to be more accurate, we do not claim or
guarantee the ability to provide more accurate numerical solutions
to the equations of motion.

2 RELATED WORK
Integration in physics-based animation. Explicit integration
methods are usually very fast and simple to implement, but they can
be very unstable when applied to large time steps. Some schemes
can be stable given certain assumptions [Zheng et al. 2017], and
many adaptive schemes have been developed that can choose a suit-
able time step to guarantee accuracy [Debunne et al. 2001]. It is also
possible to time-step different parts of the simulated objects asyn-
chronously [Ainsley et al. 2012; Harmon et al. 2009; Thomaszewski

et al. 2008]. However, these approaches are usually not used in
real-time physics due to their variable computing requirements.
Implicit methods have been used in physics-based animation

[Terzopoulos and Fleischer 1988a,b; Terzopoulos et al. 1987] due to
their good behavior when using large time steps. Baraff and Witkin
[1998] showed that backward Euler can work very well for cloth
simulations using large time steps, while Choi and Ko [2002] pro-
posed to reduce the artificial damping of backward Euler (BDF-1)
by its second order version, BDF-2. Volino and Thalmann [2005]
went even further and proposed to simulate cloth using implicit
midpoint, which as a symplectic integrator does not introduce nu-
merical dissipation. Combinations of implicit and explicit methods
have also been explored with promising results [Bridson et al. 2003;
Eberhardt et al. 2000; Fierz et al. 2011; Stern and Grinspun 2009].

Exponential integrators have been recently introduced to graph-
ics [Chen et al. 2017; Michels et al. 2017, 2014]. Their key idea is
to use the analytical solution (matrix exponential) for the fast (i.e.,
highly oscillatory) component of the potential. This makes them
particularly well-suited for stiff systems. Lie group integrators [Iser-
les et al. 2000; Kobilarov et al. 2009] can also be used for specific
types of problems.

Numerical Solutions for Integration Methods. Many recent
methods for fast physics-based simulation rely on implicit integra-
tion, often formulated as a minimization problem [Gast et al. 2015;
Martin et al. 2011]. The chief advantage of the optimization for-
mulation is that instead of solving systems of (typically nonlinear)
equations, we can instead solve a minimization problem which has
numerical benefits [Kharevych et al. 2006]. The optimization formu-
lation also enables generalizations such as inequality constraints
or contact constraints. [Andrews et al. 2017; Jin et al. 2017]. The
specific choice of the objective functionд(x) for different integration
methods is discussed in the Appendix.
When computing time is limited, the minimization problem is

usually not solved exactly and instead, an approximate solution is
accepted. Many modern real-time physics simulators can be viewed
as approximate solvers for the backward Euler optimization prob-
lem. One popular family of methods is known as Position Based
Dynamics (PBD) [Bender et al. 2014; Frâncu and Moldoveanu 2017;
Macklin et al. 2014; Müller et al. 2007]. Recently, it was shown that
a small modification of the original PBD algorithm [Müller et al.
2007] termed XPBD makes the method converge to the backward
Euler result [Macklin et al. 2016]. Faster constraint projection can
be achieved using Newton’s method [English and Bridson 2008;
Goldenthal et al. 2007] or with Projective Dynamics (PD) [Bouaziz
et al. 2014; Liu et al. 2013]. Wang et al. [2015] further accelerated
PBD and PD by applying a Chebychev semi-iterative method on the
GPU, and then generalized this approach to support more general
materials [Wang and Yang 2016]. The Vivace solver [Fratarcangeli
et al. 2016] accelerates the linear system solve in PD using a novel
graph-coloring approach to achieve fast Gauss-Seidel solves on
the GPU. Overby et al. [2017] showed that PD can be interpreted
as a special case of Alternating Direction Method of Multipliers
(ADMM) [Boyd et al. 2011] while [Liu et al. 2017] reformulated
PD as a Quasi-Newton method. Both the ADMM and the Quasi-
Newton formulations enable more general hyperelastic material
models compared to the original PD constraints.
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Conserved quantities. In physics, Noether’s theorem says that
symmetries of the Lagrangian give rise to conserved quantities,
such as energy and momenta. Another type of conserved quan-
tity is the symplectic form, which provides constraints on how
the motion can change with changing initial conditions. The ideal
continuous solution of the equations of motions is symplectic and
energy-momentum conserving. Unfortunately, it is usually impos-
sible to preserve both symplecticity and energy-momentum with
numerical integrators with a constant time step [Ge and Marsden
1988]. This negative result lead to the development of two branches
on numerical methods: 1) symplectic integrators [Hairer et al. 2006;
Marsden and West 2001] and 2) energy-momentum methods [Gon-
zalez 1996; Kuhl and Crisfield 1999; Kuhl and Ramm 1996; Simo et al.
1992]. Our approach can be viewed as a fast numerical method for
energy-momentum conservation.

[Hughes et al. 1978; LaBudde and Greenspan 1975] are examples
of early work on energy-preserving integration. However, project-
ing just the energy can be dangerous and diverge from the correct
solution [Ortiz 1986], unless the momentum structure is respected
in addition to energy [Hairer 2006]. Discrete gradients that pre-
serve the energy-momentum structure of mechanical systems have
been studied in mechanical engineering and applied mathematics
[Gonzalez 1996, 2000; Harten et al. 1997; McLachlan et al. 1999]. We
explored these methods but found that discrete gradients lead to
highly non-linear equations which are very difficult to solve for
large time steps; we discuss an example of this in Section 4. Energy-
momentum methods have not enjoyed much attention in graphics.
One exception is the method of [Su et al. 2013] which improves the
motion quality in many cases. However, since their method cannot
guarantee monotonicity in energy, simulations can still become
unstable as we discuss in Section 4. Dinev et al. [2018] circumvent
the issues with energy-momentum projection by blending implicit
midpoint with backward Euler to prevent implicit midpoint’s in-
stabilities. As a side effect, however, the backward Euler step can
introduce unwanted damping and decay of momenta.

3 METHOD
We explain the primary definitions and notations before we detail
our method. The total energy of our system is defined as H (x, v) =
E(x) + 1

2 | |v| |
2
M (where | |v| |2M = vTMv stands for the mass-weighted

norm), i.e. the sum of potential and kinetic energies. We also define
the total linear momentum P(v) =

∑
im

ivi and total angular mo-
mentum L(x, v) =

∑
i xi ×mivi where i indexes individual particles,

xi ∈ R3, vi ∈ R3 are positions and velocities of each particle andmi

are masses of corresponding vertices. If the potential is time invari-
ant, i.e., the forces are conservative , the exact solution conserves
the total energy: H (xn+1, vn+1) = H (xn , vn ), where (xn , vn ) is the
previous state and (xn+1, vn+1) is the new state. If the potential is
translation and rotation invariant (e.g., an elastic object without ex-
ternal forces or boundary conditions), the exact solution conserves
momenta: P(vn+1) = P(vn ) and L(xn+1, vn+1) = L(xn , vn ).

Numerical integrators do not compute the exact solution, but only
its approximation. The error in this approximation can be further
exacerbated if the integration rules are not solved exactly, but only
approximated e.g. via linearization. Particularly problematic errors

are consistent increases or decreases of the total energy, which can
manifest themselves as “explosions” or numerical damping. To cor-
rect for these errors, we propose an energy-momentum projection
method. We project the results of any time integration method onto
a constant-energy manifold by solving the following optimization
problem, a modified version of the projection in [Hairer 2006]:

minimize
x,v,s,t

1
2
∥x − xn+1∥2M +

h2

2
∥v − vn+1∥2M +

ϵ

2
(s2 + t2)

subj. to H (x, v) = H (xn , vn )

P(v) = P(vn+1) + s(P(vn ) − P(vn+1))

L(x, v) = L(xn+1, vn+1) +

t(L(xn , vn ) − L(xn+1, vn+1))

(1)

where (x, v) is the resulting projected state and s ∈ R and t ∈ R are
auxiliary variables (discussed below). The constant (xn+1, vn+1) is
the state computed with an arbitrary time integration method and
the term ∥x− xn+1∥2M +

h2

2 ∥v− vn+1∥2M ensures that our projection
deviates from (xn+1, vn+1) as little as possible. In our experiments,
the diagonal M matrix are either nodal masses for mass-spring
systems or a lumped mass-matrix of linear finite elements. While
not strictly necessary, we recommend to scale weight of the velocity
term with h2 (where h is the time step) in order to make the units
in both terms consistent to facilitate numerical optimization. The
constant ϵ is a regularization weight, encoding the mass and size of
the mesh. To be specific, ϵ = cmr2 where c is a mesh independent
small constant,m is the total mass, and r is the radius of the bounding
sphere of the rest pose of the simulated mesh. Because our testing
models have about the same size and mass, in our experiments we
set ϵ directly to 0.001. However, in general we recommend using
the ϵ = cmr2 formulation which ensures the regularization term
has the same units as the objective.

Variables s, t . In an exact solution, if the potential E is transla-
tion invariant, linear momentum is conserved, i.e., P(vn ) = P(vn+1)
and the s parameter becomes moot as the constraint reduces to
P(v) = P(vn+1). Similarly, if E is rotation invariant, angular momen-
tum is conserved, i.e., L(xn , vn ) = L(xn+1, vn+1) and the t parameter
becomes moot as the constraint reduces to L(x, v) = L(xn+1, vn+1).
Therefore if E is both translation and rotation invariant, we can dis-
card the s and t variables and simplify the momentum constraints
to: P(v) = P(vn+1),L(x, v) = L(xn+1, vn+1). We originally tried this
approach with momentum conserving integrators and tested with
potentials E both with and without translation or rotation invari-
ance. This did not always work, because if the linear or angular
momentum varies, numerical integrators (even exactly-solved mo-
mentum conserving integrators) do not compute the exact value
of the momenta, but only their numerical approximation. Due to
these numerical errors, requesting the projection step to exactly
match the momenta P(vn+1) and L(xn+1, vn+1) and the total en-
ergy H (xn , vn ) may be impossible. Specifically, in some cases we
observed the numerical integrator (specifically, we used accurately
solved implicit midpoint) overshoots the momenta, resulting in
momentum constraints incompatible with the total energy con-
straint – the momentum constraints are asking for so large veloci-
ties the total energy constraint cannot accommodate them. To be
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able to guarantee feasibility of our optimization problem, we in-
troduced the auxiliary scalar variables s and t . To prove that the
constrained optimization problem in Eq. 1 is always feasible, we plug
in x := xn , v := vn , s := 1, t := 1 and see that all of the constraints
are indeed satisfied.
Instead of using the variable s, t , one could instead toggle the

momentum constraints on and off depending on which of these
quantities are conserved. However, this toggling strategy needs a
complicated mechanism to control, including determining which
quantities are conserved in a given simulation. For example, in a
spinning cube example as shown in Figure 18, only the angular
momentum around the spinning axis is conserved (one scalar). This
control mechanism would be more difficult to design in cases with
multiple attachment constraints or collisions. Another downside of
the toggling strategy is its binary nature – the conserved quanti-
ties are either required to be conserved exactly, or not at all. The
latter case, corresponding to turning off some of the momentum
constraints, allows the projection to change these quantities arbi-
trarily which may be dangerous. The s, t formulation allows for
momentum changes during the projection if necessary, but restricts
changes to an interpolation between the momenta of the current
and previous simulation step.

Note that the s, t formulation can handle the situation where the
potential E is only partially invariant to translations or rotations.
For example, the linear gravity potential (i.e., the familiarmдh) is
translation invariant but only with respect to translations in the x
and z axis, assuming the gravity acts along the y axis. The vector
P(vn ) − P(vn+1) ∈ R3 used in Eq. 1 correctly reflects this property:
its x and z components are always zero and linear momentum can be
modified only along the y axis, as expected. An analogous situation
occurs with the angular momentum, e.g., when the potential E is
invariant only to a sub-group of rotations, such as elastic cube
spinning about a fixed axis.

3.1 Numerical Solution
Eq. 1 is an optimization problem with a quadratic objective and 7
equality constraints: 3 linear constraints for linearmomentum, 3 qua-
dratic constraints for angular momentum and 1 nonlinear constraint
for energy. We had initially employed a general-purpose interior-
point solver IPOPT [Wächter and Biegler 2006] which worked well,
but was too slow. In this section we propose our own solver which
takes advantage of the special structure of our optimization problem
to achieve fast runtime performance.

First, we simplify the notation used in Eq. 1. Let q := [x; v; s ; t] ∈
R6m+2 be a stacked vector containing all variables, where m is
the number of vertices of our simulated system. Next, let us de-
note qn+1 := [xn+1; vn+1; 0; 0] ∈ R6m+2 (a constant vector), D :=
diaд(M;h2M; ϵ ; ϵ) is a R(6m+2)×(6m+2) diagonal matrix and the con-
straints from Eq. 1 are denoted as function c : R6m+2 → R7. All
constraints are satisfied iff c(q) = 0. With this notation, we can
rewrite Eq. 1 as:

minimize
q

1
2
∥q − qn+1∥2D

subj. to c(q) = 0
(2)

q   =q(0)
n+1

q(1)

q(2)

c(q) = 0

Fig. 2. Geometric interpretation of Eq. 8. Instead of projecting qn+1 directly
onto the manifold c(q) = 0, Eq. 8 projects the next iterate q(k+1) from the
current one, q(k ).

where the minimizer q∗ can be interpreted as projection of qn+1 to
the energy-momentum manifold c(q) = 0 in the D-metric. To find
the constrained minimizer, we can adopt a Sequential Quadratic
Programming (SQP) approach [Nocedal and Wright 2006]. The cor-
responding Lagrangian function isL(q, λ) = 1

2 | |q−qn+1 | |
2
D+c(q)

Tλ
and setting its partial derivatives to zero leads to:

D(q − qn+1) + ∇c(q)λ = 0 (3)
c(q) = 0 (4)

where ∇c(q) = [∇c1(q),∇c2(q), . . . ,∇c7(q)] ∈ R(6m+2)×7 is the Ja-
cobian of c, and ci (q) denotes the i-th constraint. We can linearize
Eq. 3 and Eq. 4 to solve them using Newton’s method, which forms a
sequence of iterates (q(1), λ(1)), ... , (q(k ), λ(k)) converging to (q∗, λ∗).
We can start with an initial guess q(0) := qn+1 and λ(0) = 0. Given
(q(k ), λ(k )) for any k = 0, 1, 2, . . . , the next iterate (q(k+1), λ(k+1))
is computed by solving the following Newton-KKT (Karush-Kuhn-
Tucker) system:[

D + Σiλ
(k )
i ∇2ci (q(k )) ∇c(q(k ))

∇c(q(k ))T 0

] [
q(k+1) − q(k )

λ(k+1) − λ(k )

]
= −

[
D(q(k ) − qn+1) + ∇c(q(k ))λ(k )

c(q(k ))

] (5)

which can be simplified to:[
D + Σiλ

(k )
i ∇2ci (q(k)) ∇c(q(k ))

∇c(q(k ))T 0

] [
q(k+1) − q(k )

λ(k+1)

]
= −

[
D(q(k ) − qn+1)

c(q(k ))

] (6)

This SQP approach converges quickly, but each iterate requires us to
solve a (6m+ 9) × (6m+ 9) linear system to compute (q(k+1), λ(k+1)),
which is too costly for real-time physics. We can accelerate the linear
system solve using a quasi-Newton approximation by dropping
the term Σiλ

(k )
i ∇2ci (q(k )), leaving only a diagonal matrix D in the

upper-left corner. This approximation is equivalent to linearizing
all constraints at the current iterate q(k ) and computing the next

ACM Transactions on Graphics, Vol. 37, No. 4, Article 79. Publication date: August 2018.



FEPR: Fast Energy Projection for Real-Time Simulation of Deformable Objects • 79:5

iterate q(k+1) as:

q(k+1) :=argmin
q

1
2
| |q − qn+1 | |2D

subj. to c(q(k)) + ∇c(q(k ))T(q − q(k )) = 0
(7)

Unfortunately, there is a catch: even though each iteration of Eq. 7
can be computed quickly, the number of iterations to convergence
increase significantly. We observed very oscillatory sequences of
iterates; intuitively, this is because constraints linearized at different
states can vary wildly and fight with objective term which pulls the
result towards qn+1. We found that a simple modification avoids
this problem:

q(k+1) :=argmin
q

1
2
| |q − q(k ) | |2D

subj. to c(q(k)) + ∇c(q(k ))T(q − q(k )) = 0
(8)

The only difference is that in Eq. 8 we use q(k ) in the objective
instead of qn+1 as in Eq. 7. This way, the oscillatory convergence
paths are avoided and the iterative process quickly converges to a
solution which exactly satisfies all of our constraints. A geometric
interpretation of the sequence generated by this iterative process
can be seen in Figure 2.
After this modification, the solution is no longer exactly mini-

mizing the D−distance from qn+1. However, since we use qn+1 as
our initial guess, this approximation is sufficiently close and pro-
duces plausible results. In order to verify this experimentally, we
ran the same simulation with both Eq. 2 and Eq. 8. As shown in
Figure 3, there is only a minor visual difference between the two
results (please see also the acccompanying video).

Fully Solved SQP
162 ms

Our Method
3 ms

Fig. 3. Results produced by fully solved SQP (Eq. 2) (left) and by ourmodified
optimization problem (Eq. 8) (right). Although different (as circled), our
method produces qualitatively similar results with fully converged SQP,
while being much faster.

In a similar way as before, we solve Eq. 8 using Lagrange multi-
pliers. The corresponding Lagrangian is:

L̂(q, λ) =
1
2
| |q − q(k) | |2D +

(
c(q(k)) + ∇c(q(k ))T(q − q(k ))

)T
λ (9)

and the solution (q(k+1), λ(k+1)) is characterized by vanishing partial
derivatives of the Lagrangian:

D
(
q(k+1) − q(k)

)
+ ∇c(q(k ))λ(k+1) = 0 (10)

c(q(k )) + ∇c(q(k ))T(q(k+1) − q(k )) = 0 (11)

We can rearrange these equations into the familiar Karush-Kuhn-
Tucker (KKT) matrix form:[

D ∇c(q(k))
∇c(q(k))T 0

] [
q(k+1) − q(k)

λ(k+1)

]
= −

[
0

c(q(k ))

]
(12)

This time, the matrix of this KKT system is a symmetric (6m + 9) ×
(6m + 9) matrix with special structure which can be exploited to
achieve fast solves. Specifically, D is a constant diagonal matrix,
which invites us to compute its Schur complement:(

∇c(q(k ))TD−1∇c(q(k ))
)
λ(k+1) = c(q(k )) (13)

This is a dense 7 × 7 linear system, therefore, solving for λ(k+1)
is very efficient. The “slowest” part is the matrix multiplication
in ∇c(q(k ))TD−1∇c(q(k )) which has asymptotic complexity O(m).
Because D is a diagonal matrix with positive elements, the Schur
complement S = ∇c(q(k ))TD−1∇c(q(k )) is guaranteed to be a posi-
tive semi-definite matrix. Furthermore, if the constraint Jacobian
has full rank, Swill be positive definite and thus invertible. In theory
∇c can be rank deficient in very special cases. For example, when an
object is in its rest pose with zero velocity, the gradient of the energy
conservation constraint will be zero, causing the entire first column
of ∇c to be zero. For robustness, we have implemented a test by
checking the determinant of S (which is fast because S is just a 7× 7
matrix). If the determinant is close to zero, we apply regularization
S + 10−7I. However in practice, we have never observed this in all
our experiments. After we have computed λ(k+1), we compute:

q(k+1) := q(k ) − D−1∇c(q(k ))λ(k+1) (14)

Eq. 14 has also asymptotic complexity O(m) and all of the computa-
tions involve only dense numerical algebra subroutines with small
dense matrices.

We stop iterating our projection when a state q(k) is close enough
to the energy-momentum manifold c(q) = 0. Specifically, we check
the L1-norm of the constraint function and stop if |c(q(k))|1 < 10−7.
In practice, the number of iterations for our projection method is
quite small, see Table 1.

Our idea of the fast projection algorithm is very similar to Step and
Project (SAP) [Goldenthal et al. 2007] even though our optimization
problem is quite different. In particular, our optimization problem
contains only seven nonlinear constraints, so we can comfortably
rely on dense matrix algebra to solve Eq. 13.

3.2 Attachments, collisions and damping
Attachments. External forces such as gravity can be included as
part of the potential function E and do not require any special
treatment.We also implemented attachment constraints (also known
as “pin constraints”), which are zero rest-length springs with one
endpoint controlled kinematically [Bouaziz et al. 2014; Müller et al.
2007]. The attachment constraints can be either fixed in space or
moving, e.g., to enable user interaction with the simulated object.

Collisions. A similar strategy is employed to handle collisions. If
we detect inter-penetrations, we first project the collided vertices to
their closest surface point as in PBD [Müller et al. 2007]. However,
this strategy can lead to oscillations if the projected vertices im-
mediately try to return back to their penetrated states. We prevent
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these oscillations by temporarily including the following “collision
potential” similar to repulsion springs [McAdams et al. 2011] which
repels the projected vertices from the penetrated configuration:

Ecol(x) =

{
−((Sx − xsurf)Tn)3 (Sx − xsurf)Tn < 0
0 otherwise

where S is a selector matrix extracting the colliding vertex from
x, xsurf ∈ R3 is the surface point where the colliding vertex was
projected and n ∈ R3 is the surface normal at xsurf. We then include
Ecol into our total energy function H (xn , vn ) so that our projection
is aware of the collisions. Ecol can be interpreted as a cubic penalty
function for inequality constraint (Sx − xsurf)Tn ≥ 0. We chose a
cubic penalty because it yields a C2-continuous function Ecol. See
Figure 4 for an example of collision handling.

Fig. 4. A piece of draping cloth colliding with a torus.

Damping. Our method can be combined with a variety of damp-
ing models. In a similar way as [Bridson et al. 2003] who proposed
to integrate elastic and damping forces in separate integration steps,
we apply damping in a separate integration step executed after
FEPR. After damping, we can also add forcing, such as changing
the potential by moving attachment constraints. After this damp-
ing/forcing, we then recompute H (xn , vn ), P(vn ), L(xn , vn ) and use
these updated values in the subsequent FEPR step. This way, the
subsequent FEPR step will not “undo” the intentional, explicitly
added damping – by recomputing H (xn , vn ), P(vn ), and L(xn , vn )
using the updated damped values (xn , vn ), the subsequent FEPR
will respect the energy and momenta after the explicit damping
(and forcing, if present).

A simple yet useful example is “ether drag”, which corresponds to
multiplying all velocities by a coefficient less than one, potentially
spatially varying. This slows down all motion, including rigid-body
modes. If we want to model damping only due to internal friction,
rigid-body modes of motion should not be affected. This can be
achieved by more sophisticated momentum-conserving damping
models such as [Baraff and Witkin 1998] and [Kharevych et al.
2006] integrated in a separate implicit step [Bridson et al. 2003].
However, the computing overhead of these approaches may be too
high for real-time physics. Instead, we implemented the simple
yet fast momentum-conserving damping method used in Position
Based Dynamics [Müller et al. 2007] which explicitly factors out
global linear and angular velocities and damps out only the residual
velocities corresponding to non-rigid motion.

4 RESULTS
Performance. Table 1 summarizes our testing scenarios and run
times for both 1) an iterative solver of an integration rule and 2)
our fast energy-projection (FEPR) algorithm. All experiments were
executed on an Intel i7-6700HQ CPU at 2.6 GHz. All scenarios are

simulated using a fixed time step h = 1/30 seconds. We tested dif-
ferent iterative solvers for the nonlinear optimization problem (see
the Appendix for implementation details). In summary, we exper-
imented with an L-BFGS-accelerated Projective Dynamics solver
[Liu et al. 2017], eXtended Position Based Dynamics (XPBD) [Mack-
lin et al. 2016] and a linearized solve analogous to one iteration
of Newton’s method [Baraff and Witkin 1998]. With implicit mid-
point we also tried to compute a fully converged solution because
we wanted to test whether the implicit midpoint instabilities are
caused by an approximate solve. We found this was not the case –
implicit midpoint explodes even if the update rules are resolved to
machine-precision accuracy.
Our fast energy projection adds only a small computing over-

head, typically around 10%. There are a few exceptions, for example,
stiffer systems require more iterations resulting in longer runtimes.
However, even these challenging examples are still faster than the
solve of the integration rule.
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Fig. 5. We compare the effect that applying FEPR has to the order of accu-
racy (local and global error). Our method is consistent and does not change
the order of accuracy of the underlying integrator.

Accuracy. To evaluate how FEPR affects the order of accuracy,
we ran a test simulation of a pre-stretched cube and computed the
accuracy of implicit midpoint without FEPR and implicit midpoint
with FEPR, shown in Figure 5. We evaluated the local error by com-
puting a ground truth solution x∗n+1 every frame starting at xn and
comparing it to our solution xn+1 using an absolute error metric
| |x∗n+1 − xn+1 | |. Figure 5 shows the average local error over the
course of the simulation. To compute the global error, we compared
the positions x1.65 at a specific time (1.65s) to a ground-truth simu-
lation x∗1.65 and plotted the absolute error | |x

∗
1.65−x1.65 | | in Figure 5.

We computed the implicit midpoint solution using Projective Dy-
namics with 100 iterations, corrected with our fast approximate
energy projection (FEPR, Eq. 8).

From this numerical experiment we can see that FEPR shares the
order of accuracy of the underlying integrator and that the method
is consistent. This is not surprising: as we reduce the time step,
the result of any consistent integrator converges to the ground-
truth solution, which is energy-momentum conserving. An energy-
momentum conserving state is a trivial solution to the optimization
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Example #Verts. #Elems. Material Integration Nonlinear Integration FEPR FEPR.
Method Solver Time #Iters. Time

Human (Figure 17) 571 1886 Neo-Hookean IM PD (20 iter.) 30 ms 3.0 3 ms
Cube (Figure 18) 602 1668 Corot IM PD (10 iter.) 18 ms 5.2 7 ms
Ball (Figure 16) 889 1772 Corot IM PD (20 iter.) 30 ms 16.3 24 ms
Squirrel (Figure 14) 1507 5330 Corot IM PD (20 iter.) 71 ms 2.7 11 ms
Hippo (Figure 11) 2387 8879 St.VK BE Linearized (1 iter.) 190 ms 8.9 28 ms
Hippo (Figure 12) 2387 8879 St.VK BDF-2 Linearized (1 iter.) 208 ms 11.2 35 ms
Trampoline (Figure 7) 3721 18120 Mass-Spring BE XPBD (40 iter.) 21 ms 4.8 7 ms
Trampoline (Figure 8) 3721 18120 Mass-Spring BE PD (20 iter.) 53 ms 9.1 14 ms
Cloth (Figure 4) 3721 18120 Mass-Spring BE PD (40 iter.) 92 ms 4.1 6 ms
Cactus (Figure 13) 5261 17631 Corot IM Converged Solution 211 ms 2.0 21 ms
Jelly (Figure 6) 6073 22054 Corot BE PD (20 iter.) 350 ms 9.2 119 ms
Octopus (Figure 17) 7502 30010 Corot IM Converged Solution 1864 ms 5.1 120 ms
Rabbit (Figure 10) 14261 52090 Corot BDF-2 PD (40 iter.) 1868 ms 4.2 180 ms

Table 1. Statistics for all our testing scenarios. The reported times and numbers of iterations are averages over the entire simulation run. Both the “Integration
Time” and the “FEPR Time” columns report total time, i.e., time for all iterations.

Frame 0 Frame 13 Frame 19 Frame 38
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Fig. 6. A simulation of a serving of Jell-O being shaken. Themotion produced
by backward Euler (BE) looks rigid; adding our method (FEPR) produces
vivid motion.

problem in Eq. 1 as the value of the objective is zero and all of the
constraints are satisfied.
Artificial damping. Many integrators commonly used in real-

time simulations are dissipative, i.e., introduce artificial numerical
damping, such as backward Euler. While this improves stability, a
side-effect is that the resulting motions can appear very damped.
Figure 6 shows a simulation where we shook a plate that had a
delicious serving of Jell-O. Running this simulation using backward
Euler resulted in a very rigid-looking snack, even though we did
not add any damping to the simulation – all of the damping is due
to backward Euler. When we applied our FEPR post-processing, we
managed to restore the natural wiggling of the gelatin. In fact we
added a small amount of damping using the PBD damping method
(see Section 3.2), because real-worldmaterials dissipate energy. How-
ever, aided by FEPR, this dissipation is user-controllable, which is
not the case of backward Euler where the artificial damping is due
to the integration rule itself and depends on the time step size and
other simulation parameters.
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Fig. 7. FEPR (our method) applied on top of eXtended Position Based Dy-
namics leads to improved wrinkle formation.

A very popular method to simulate deformable objects is Position-
Based Dynamics (PBD) [Müller et al. 2007]. Recently, Macklin et
al. [2016] introduced a small but powerful modification called eX-
tended Position-Based Dynamics (XPBD) which correctly accounts
for material stiffness and can thus theoretically converge to an ex-
act backward Euler solution. However, in practice, XPBD is rarely
iterated until convergence. Interestingly, numerical dissipation is
not the main issue of early-terminated XPBD. Instead, XPBD can
produce motion with artificially increased flexibility of the simu-
lated object, as we can see in the trampoline example in Figure 7.
Applying FEPR after XPBD results in improved wrinkle formation.
It is important to note that our method cannot correct all of the
errors introduced by an underlying simulator such as XPBD. In the
trampoline example, the increased “stretchiness” caused by under-
solved XPBD is still present even after FEPR, even though we make
the cloth more wrinkled and its motion more vivid.

Projective Dynamics (PD) [Bouaziz et al. 2014] is another approx-
imate solver for backward Euler specifically designed for real-time
simulations. Just like XPBD, PD is also usually terminated after a
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PD

Fig. 8. FEPR fixes the damping of Projective Dynamics. Reducing the time
step (as shown in the middle row) also alleviates this problem, but is much
more expensive to compute than our method.
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Fig. 9. Energy plot of Figure 8. Our method conserves the total energy, while
backward Euler solved by Projective Dynamics damps a lot. Reducing time
step helps but does not completely resolve the problem.

fixed number of iterations, regardless of convergence. Unfortunately,
this early termination seems to exacerbate the numerical damping
of dissipative integrators. We ran the same trampoline example with
Projective Dynamics, using the Quasi-Newton formulation of PD
enhanced with L-BFGS [Liu et al. 2017]. The oscillations of the
trampoline were very quickly damped out by PD, as shown in the
top row of Figure 8, leading to the trampoline looking very still.
Applying FEPR to PD kept the trampoline oscillating, as shown in
the bottom row of Figure 8. A graph plotting the total energy in the
simulation over time can be seen in Figure 9. Indeed, our energy
projection ensures the total energy is perfectly constant over the
entire duration of the simulation run.

The artificial numerical damping of backward Euler can be miti-
gated by its second order version, BDF-2, which produces more vivid
motion than backward Euler, but still contains numerical damping.
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Fig. 10. Even though BDF-2 produces a nice-looking animation, adding
FEPR makes it even more lively and humorous.

In Figure 10, we took a comical rabbit character and tortured it by
pelting it with a cannonball. While BDF-2 produced a nicely swing-
ing rabbit, adding FEPR resulted in much more vivid animation and
created a very panicked-looking rabbit.

Explosions. Instabilities are potentially even more problematic
than numerical damping, especially in real-time simulations. Even
though integrators such as backward Euler are very stable due to
their dissipative properties discussed above, this is not guaranteed if
the implicit time stepping rules (nonlinear equations) are not solved
exactly. A classical approximate solve of implicit integration is lin-
earization of the non-linear equations, analogous to an undamped
step of Newton’s method. This approach is common in off-line sim-
ulators [Baraff and Witkin 1998], but also in real-time applications
such as games [Parker and O’Brien 2009]. Unfortunately, this ap-
proach can introduce instabilities (“explosions”), as demonstrated
on a hippo example in Figure 11. The simulation explodes due to the
nonlinear backward Euler equations not being accurately solved.
Applying FEPR stabilizes the simulation due to energy conservation
and the hippo survives. The situation is even worse if instead of
backward Euler we use BDF-2, because this integrator is less stable.
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Fig. 11. A swaying hippo simulated with linearized backward Euler explodes
due to linearization errors. FEPR prevents the explosions and produces
plausible motion.
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Fig. 12. Linearized BDF-2 explodes even faster than backward Euler. FEPR
is still able to prevent the explosions and produce nice motion.

Indeed, we found this to be true: we ran the same hippo simulation
using linearized BDF-2 (see Figure 12) and the simulation exploded
even earlier. However, our FEPR post-processing still succeeded in
preventing explosions and produced a nice hippo animation.
Things get even worse when using non-dissipative integrators,

such as implicit midpoint. In this case, even machine-precision-
accurate solution (fully-converged) of the implicit equations can
lead to “explosions”. Figure 13 shows a pre-deformed cactus simu-
lated using fully converged implicit midpoint integration. Running
implicit midpoint with a fixed time step h = 33ms causes the cactus
to explode, while adding our energy projection stabilizes the motion
while keeping the vivid character of implicit midpoint.
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Fig. 13. Implicit midpoint explodes even when solved to full convergence.
FEPR can be used to stabilize implicit midpoint and produce vivid jiggling.

Reducing the time step. Time-step reduction is the silver bullet
of physics-based simulation – most problems tend to go away with
smaller time steps. We simulated the trampoline model in Figure 8
with a time step of h = 6.6 ms, and sure enough the simulation
looked much more lively, as shown in the middle row. However,
this is much more expensive, taking 255 ms of computing time to
advance the simulation by 1/30 second (our video frame rate). Our
method produces results of similar visual quality, but costs only 67
ms of computing time per frame. Note that reducing the time step
mitigates but does not fully eliminate the artificial damping prob-
lems of backward Euler, as we can see in the last column of Figure 8.
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Fig. 14. Energy-conservation enforced using Lagrange multipliers [Hughes
et al. 1978] eventually stops the global motion and produces high frequency
vibrations that conserve energy. With our method the object continues to
swing naturally.

Although producing more wrinkles, the trampoline simulated with
reduced time steps (middle) still lags behind the one simulated with
our method (bottom).
Sufficiently small time steps can also prevent numerical explo-

sions. We found that a time step of at least h = 6.6ms was necessary
to stabilize Figure 11, totaling to a computing time of 919 ms per
frame. Our method is much faster, taking only 218 ms per frame.
Similarly, the critical time step for Figure 12 was h = 2.2 ms, and
Figure 13 required h = 5.5 ms to survive the entire simulation run,
costing 2543ms (hippo) and 8278ms (cactus) per frame. Our method
only requires 212 ms (hippo) and 232 ms (cactus) to stabilize the
simulations and produces animations which are qualitatively similar
to the results obtained with smaller time steps.

Previous energy-conserving methods. One of the early ap-
proaches for energy conservation was due to Hughes [1978], who
added an energy-conserving constraint to the variational formula-
tion of an implicit integrator and solved the resulting optimization
problem using Lagrange multipliers. While this method perfectly
conserves the energy, angular momentum is not conserved and
visible artifacts may occur. In the example in Figure 14, this method
loses angular momentum, but total energy is forced to be constant.
This leads to non-physical transformation of the energy from global
rotational motion into unnatural high-frequency vibrations, such
as the oscillations in the ears and the teeth, while the global mo-
tion slows down and eventually stops. It is a well-known fact that
preserving momentum in addition to energy helps [Hairer et al.
2006] and indeed, our method keeps the squirrel head swinging as
expected.
Discrete gradient methods preserve energy and momentum by

construction. There are several variants of these methods; for sim-
ulations of deformable objects, the most common is the midpoint
discrete gradient ([Gonzalez 1996, 2000]). The midpoint discrete
gradient has found use in mechanical engineering and can produce
good results. Unfortunately, this is only the case with sufficiently
small time steps, because the midpoint discrete gradient requires
solving a root-finding problem g(x, v) = 0. With larger time steps,
the root finder can get stuck at a local minimum, failing to find a
root. This can be observed even in a didactic one dimensional exam-
ple similar to harmonic oscillator. Specifically, we ran a simulation
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Fig. 15. A contour plot of themerit function for the discrete gradient method
for a time step of 33 ms (left), where the root solver got stuck at a local
minimum.With time step reduced to 6.6ms (right) the root solver succeeded.
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Fig. 16. The root solver used to evaluate a midpoint discrete gradient update
rule can get stuck at a local minimum and produce incorrect results. This
eventually happens even with ten times smaller time steps (middle row). Our
method works even with large time steps and produces plausible animation
(bottom).

using a quartic potential E(x) = 128x4 using a time step of h = 33
ms and found a time step where the root solver failed. Figure 15
shows a contour plot of the merit function g(x, v)Tg(x, v). The goal
of the root finder is to find zero values of the merit function, cor-
responding to roots g(x, v) = 0. Unfortunately, depending on the
initial guess, the root solver can get stuck at a local minimum of the
merit function and fail. With the standard initial guess for implicit
midpoint, yn = xn + hvn for the position and vn for the velocity,
the root finder fails as illustrated in Figure 15 (left). This problem
can be avoided by reducing the time step five times, to h = 6.6 ms,
as shown in Figure 15 (right). Intuitively, this helps because with
smaller time steps, the equations of the implicit update rule are “less
non-linear” and local minima problems are less likely to happen.

Converging towards a local minimum produces a failure on find-
ing the root for g(x, v) = 0 for discrete gradient methods, therefore
destroys the energy conservation property. The error of a failed

step immediately gets accumulated into the dynamic system that
produces significant visual artifacts in practical simulations. Our
projection step cannot avoid local minima either. However, the
energy constraint is guaranteed to be satisfied even in a local min-
imum using our optimization form in Eq. 1. We demonstrate this
in Figure 16, showing a ball falling under gravity, evaluated using
our method and the midpoint discrete gradient. At a time step of
h = 33 ms, our method results in the ball bouncing up and down
without any issues. The midpoint discrete gradient at the same time
step runs into local minimum issues early on in the simulation and
produces implausible results. Decreasing the time step by a factor of
ten to h = 3.3 ms helps, but the midpoint discrete gradient still runs
into trouble towards the end of the simulation run, see Figure 16
(middle row).
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Fig. 17. Octopus hanging under gravity. Previous energy-projection meth-
ods [Simo et al. 1992; Su et al. 2013] help but can still explode. Our method
produces stable and vivid motion.

Another previously explored strategy is adding an explicit pro-
jection step to enforce energy conservation by modifying only the
velocities [Simo et al. 1992; Su et al. 2013]. This explicit projection
is very fast, but large modifications of velocities may be needed
because the positions are fixed. Also, the kinetic energy cannot de-
crease below zero, in which case the method fails to conserve energy
and can explode. We demonstrate this on an octopus dangling from
a fixed point, where we integrate it using a fully converged implicit
midpoint integrator. Even though the velocity modification helps,
energy can erroneously accumulate in the potential and the simula-
tion explodes, see Figure 17. FEPR modifies both the positions and
velocities to conserve energy, avoiding explosions. Note that even
though it may seem dangerous to be modifying positions especially
with stiff materials, where small changes of positions can produce
large changes of potential energy, this is not a problem with our
method. In such cases, FEPR changes the positions only slightly in
order to achieve the desired energy level because it tries to depart
from the initial guess as little as possible.
Dinev et al. [2018] proposed a method to correct the implicit

midpoint result by blending it with a step of backward or forward
Euler. This helps, but visible damping from backward Euler can creep
in. We demonstrate this on a spinning cube example in Figure 18.
In this example, we can see that when implicit midpoint overshoots
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the total energy, explosion is prevented by blending with backward
Euler, which removes the excessive energy due to its numerical
damping properties. Unfortunately, as a side effect, the blending
of backward Euler also reduces the angular momentum and slows
down the global motion. Our method is an add-on on top of any
integrator and avoids this problem by exactly projecting energy
while also carefully taking into account both linear and angular
momentum.
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Fig. 18. Angular momentum of a spinning cube around its spinning axis.
Unlike [Dinev et al. 2018], ourmethod preserves the global rotationalmotion.

5 LIMITATIONS AND FUTURE WORK
While our method produces more visually plausible motion, we do
not claim to produce a more numerically accurate solution to the
underlying ODEs. Our method inherits some aspects of the integra-
tor we apply it to. For example, even though our method produces
more vivid motion in Figure 8, we do not obtain the same wrinkles
as with a simulation with reduced time step. When added to non-
dissipative integrators such as implicit midpoint, our method does
not always eliminate the high-frequency oscillations introduced by
implicit midpoint at large time steps. An energy-momentum pro-
jection capable of controlling frequencies of the resulting motion
would be an interesting direction for future work.

Since this work focused on real-time simulation of deformable
objects, we did not explore how our energy-momentum projection
scheme would perform in other simulation settings such as celestial
mechanics. In the future, we plan to explore additional applications
areas of fast numerical methods for energy-momentum projections,
e.g., correcting the “energy drift” problem in molecular dynamics
[Engle et al. 2005].

6 CONCLUSION
Real-time simulations impose a strict computation budget for solv-
ing the equations of motion which in practice usually translates
to large time steps and numerical approximations of implicit in-
tegration rules. This can lead to visual artifacts, such as artificial
numerical damping or numerical “explosions”. In this paper, we
proposed a post-processing energy-projection method that corrects
these artifacts, producing vivid yet stable motion. Our projection

can be applied to many different physics-based simulation methods
and our experiments show that it improves the visual quality of the
resulting simulations. We proposed a fast numerical algorithm for
energy-momentum projection which makes the method appealing
for real-time simulations in applications such as games or training
simulators.
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APPENDIX
Optimization Form for Time Integration Methods.Many pop-
ular implicit integration schemes can be expressed as special cases
of the following optimization problem:

д(x) =
1
2
| |x − y| |2M + αh

2E(βx + z) (15)

where h is the time step size, | |x| |2M = xTMx stands for the mass-
weighted norm and E is the potential energy of the system. Two
scalars α , β and two vectors y, z are time-integrator-dependent con-
stants. The goal is to minimize д(x) to find the next state position
xn+1 := argminx д(x) (local minimum is sufficient). Once the po-
sitions xn+1 are found, we compute the velocities vn+1 explicitly
based on the update rules of the specific integrator. The specific
integrator-dependent constants and update rules are as follows.

For backward Euler (BDF-1), we have:

α = 1 β = 1
y = xn + hvn z = 0

vn+1 :=
1
h
(xn+1 − xn )

For BDF-2, we have:

α =
4
9

β = 1

y =
4xn − xn−1

3
+ h

8vn − 2vn−1
9

z = 0

vn+1 :=
3
2h

(xn+1 −
4xn − xn−1

3
)

For implicit midpoint, we have:

α = 1 β =
1
2

y = xn + hvn z =
xn
2

vn+1 :=
2
h
(xn+1 − xn ) − vn
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