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1 Derivatives of Principal Stretches

Let C denote the right Cauchy-Green tensor C = FtF, where F is the deformation gradient. Here we
restrict considerations to the two-dimensional setting, noting that an extension to three dimensions
is straightforward through kinematic assumptions 1. We express C in terms of principal stretches
(eigenvalues) λi and corresponding principal directions (eigenvectors) Ni as

C =
∑
i

λiNiN
t
i , where λi = Nt

iCNi . (1)

Without loss of generality, we assume that N1 corresponds to the direction of maximum stretch λ1.
In our two-dimensional setting, the unit-length vector N1 can be parametrized by a single scalar α as

N1(α) = (cos(α), sin(α))t (2)

The second eigenvector N2 of C is orthogonal to N1

N2(α) = (− sin(α), cos(α))t . (3)

We note that

N2 =
∂N1

∂α
and N1 = −∂N2

∂α
. (4)

For computing the derivatives of the principal stretches, we will focus on λ1 for the sake of concise-
ness. Analogous expressions hold for λ2. The first derivative of the maximum stretch is determined
as

∂λ1
∂x

=
∂

∂x
(Nt

1CN1) (5)

=
∂Nt

1

∂x
CN1 + Nt

1

∂C

∂x
N1 + Nt

1C
∂N1

∂x
(6)

=

(
∂N1

∂α

∂α

∂x

)t
CN1 + Nt

1

∂C

∂x
N1 + Nt

1C

(
∂N1

∂α

∂α

∂x

)
(7)

=
∂α

∂x

t

Nt
2CN1 + Nt

1

∂C

∂x
N1 + Nt

1CN2
∂α

∂x
(8)

= Nt
1

∂C

∂x
N1 , (9)

1the stretch in the thickness direction is inferred from in-plane stretches assuming constant volume, i.e., detC = 1.
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where the last transformation follows from the fact that CN1 = λ1N1 and Nt
2N1 = 0. It is evident

from these expressions that the only derivatives required are those of C, which are easily computed2.
The second derivative follows as

∂2λ1
∂x2

=
∂

∂x
(Nt

1

∂C

∂x
N1) (10)

=
∂Nt

1

∂x

∂C

∂x
N1 + Nt

1

∂2C

∂x2
N1 + Nt

1

∂C

∂x

∂Nt
1

∂x
(11)

=

(
∂N1

∂α

∂α

∂x

)t
∂C

∂x
N1 + Nt

1

∂2C

∂x2
N1 + Nt

1

∂C

∂x

(
∂N1

∂α

∂α

∂x

)
(12)

=
∂α

∂x

t

N2
∂C

∂x
N1 + Nt

1

∂2C

∂x2
N1 + Nt

1

∂C

∂x
N2

∂α

∂x
. (13)

The first and last term of (13) can be further simplified. Using the fact that Nt
1CN2 = 0 we have

∂

∂x
(Nt

2CN1) = Nt
2

∂C

∂x
N1 +

∂N2

∂x

t

CN1 + Nt
2C

∂N1

∂x
= 0 , (14)

and therefore

Nt
2

∂C

∂x
N1 = −

(
∂N2

∂α

∂α

∂x

)t
CN1 −Nt

2C

(
∂N1

∂α

∂α

∂x

)
(15)

=
∂α

∂x

t

N1CN1 −Nt
2CN2

∂α

∂x
(16)

= (λ1 − λ2)
∂α

∂x

t

. (17)

Using (17) in (13), we have

∂2λ1
∂x2

= 2(λ1 − λ2)
∂α

∂x

∂α

∂x

t

+ Nt
1

∂2C

∂x2
N1 . (18)

Finally, by using (17) in (15) we obtain

∂α

∂x

t

=
1

λ1 − λ2
Nt

2

∂C

∂x
N1 (19)

and can thus compute the second derivative of λ1.

Remarks

It should be noted that (17) and (19) are not well-defined when λ1 = λ2, in which case the eigen-
decomposition of C becomes non-unique anyways. For the application described in the main article,
however, this problem does not arise since the case of λ1 = λ2 is handled by the original energy density

ψ(λ1, λ2) = κ

(
λ1 + λ2 +

1

λ1λ2
− 3

)
= κ

(
tr(C) +

1

detC
− 3

)
, (20)

which does not require eigenvalues.

2Using Constant Strain Triangles for discretization, the deformation gradient F is a linear function of x such that C
is quadratic in positions.
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Figure 1: Landscape of the relaxed energy derivatives. Discontinuity lines (red) are clearly visible at
the transition between the different regimes.

2 Smoothing the Modified Energy Density Derivatives

The original energy density defined by (20) leads to numerical problems when elements are compressed.
Following tension field theory, the macroscopic behavior of wrinkled regions can be captured using a
relaxed energy density formulation defined as

ψ̃(λ1, λ2) =


ψ̃sl(λ1, λ2) = 0 λ1 < 1, λ2 < 1

ψ̃tf(λ1, λ2) = ψ(λ1, λ̃2(λ1)) λ1 ≥ 1, λ2 < λ̃2(λ1)

ψ̃fm(λ1, λ2) = ψ(λ1, λ2) λ1 ≥ 1, λ2 ≥ λ̃2(λ1)

, (21)

where λ̃2 is the energetic minimum of λ2,

λ̃2(λ1) = argmin
λ2

ψ(λ1, λ2) =
1√
λ1

. (22)

This relaxed energy density can then be explicitly written as

ψ̃(λ1, λ2) =


ψ̃sl(λ1, λ2) = 0 λ1 < 1, λ2 < 1

ψ̃tf(λ1, λ2) = κ
(
λ1 + 2√

λ1
− 3
)

λ1 ≥ 1, λ2 <
1√
λ1

ψ̃fm(λ1, λ2) = κ
(
λ1 + λ2 + 1

λ1λ2
− 3
)

λ1 ≥ 1, λ2 ≥ 1√
λ1

. (23)

The energy density ψ̃ is convex but only C1 continuous and the discontinuities in the second derivatives
are clearly visible in Fig. 1.

While we did not experience any adverse effects when solving for equilibrium states, the dis-
continuous force derivatives pose a significant problem for optimization since the formulation of the
constraints directly depends on these forces. Instead of turning toward sophisticated methods for
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Figure 2: Landscape of the relaxed energy derivatives after smoothing. Discontinuities have been
replaced by interpolating transition zones (red) using quadratic functions.

nonsmooth optimization, we preferred to smooth the transitions between the different regimes using
quadratic interpolation as illustrated on Fig. 2 and detailed below.

We start by considering the simple one-dimensional problem shown in Fig. 3, where c is a constant,
ε > 0 and g1 and g2 are two scalar functions defined by

g1 : x 7→ 0 and g2 : x 7→ cx . (24)

It is possible to define a quadratic transition function h over [−ε,+ε] interpolating g1 and g2 and their
first derivatives such that

g1(−ε) = h(−ε) ,
g′1(−ε) = h′(−ε) ,
g2(ε) = h(ε) ,
g′2(ε) = h′(ε) .

(25)

This function is defined by

h : x 7→ c

4ε
x2 +

c

2
x+

cε

4
, x ∈ [−ε, ε]. (26)

This result can be applied with little modification to the slightly more general case where g1 and
g2 are defined by

g1 : x 7→ a and g2 : x 7→ cx+ d , (27)

with a, d and c 6= 0 given constant parameters.
Let xI = a−d

c denote the abscissa of the intersection between the graphs of g1 and g2. We can
now define the transition function h over [xI − ε, xI + ε] which interpolates g1 and g2 at {xI − ε} and
{xI + ε} by

h : x 7→ c

4ε
t2 +

c

2
t+

cε

4
+ a, t = x− xI , x ∈ [xI − ε, xI + ε]. (28)
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Figure 3: Illustration for the construction of a transition function h interpolating the two scalar
functions g1 and g2 of equation (24) and their first derivatives.

We can now focus on our original problem, i.e. the smoothing of the derivatives of the relaxed

energy ψ̃. The discontinuities in its second derivatives appears between ∂ψ̃sl

∂λ1
and ∂ψ̃tf

∂λ1
, ∂ψ̃tf

∂λ1
and ∂ψ̃fm

∂λ1
,

and ∂ψ̃tf

∂λ2
and ∂ψ̃fm

∂λ2
. In what follows, we detail the construction of the transition function between ∂ψ̃sl

∂λ1

and ∂ψ̃tf

∂λ1
. The approach can be directly adapted to smooth out the two other discontinuity lines.

For every λ2, we keep λ2 fixed and smooth the first derivative of the univariate function ψ̃λ2 : λ1 7→
ψ̃(λ1, λ2). In order to make the size of the transition interval converge to 0 as λ1 and λ2 converge to
(1, 1), we start by defining its upper bound u by

u = 1 + δ(1− λ2) , (29)

where δ is a given parameter.
We finally define the function interpolating ψ̃λ2

using the previous result (equation 28) with

a = ∂ψ̃sl

∂λ1
(1, λ2) ,

c = ∂2ψ̃sl

∂λ2
1

(u, λ2) ,

ε = 1
c
∂ψ̃tf

∂λ1
(u, λ2) ,

xI = u− ε,

(30)

as illustrated in Fig. 4.
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Figure 4: Illustration for the construction of a transition function h smoothing the first derivative of
the univariate function ψ̃λ2 .
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