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Andreas Gumann†

Institut für Theoretische Physik,
Universität Tübingen
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Figure 1: Interleaved simulation snapshots and magnetic field renderings. A toy magnet, carrying small permanent magnets in its ends, is
moved towards a sphere into which it induces a magnetization. As the magnet approaches the sphere, the induced field and thus the attracting
forces increase until they exceed the gravitational force and pull the sphere towards the magnet.

Abstract

We introduce magnetic interaction for rigid body simulation. Our
approach is based on an equivalent dipole method and as such it
is discrete from the ground up. Our approach is symmetric as we
base both field and force computations on dipole interactions. En-
riching rigid body simulation with magnetism allows for many new
and interesting possibilities in computer animation and special ef-
fects. Our method also allows the accurate computation of magnetic
fields for arbitrarily shaped objects, which is especially interesting
for pedagogy as it allows the user to visually discover properties of
magnetism which would otherwise be difficult to grasp. We demon-
strate our method on a variety of problems and our results reflect
intuitive as well as surprising effects. Our method is fast and can be
coupled with any rigid body solver to simulate dozens of magnetic
objects at interactive rates.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;
Keywords: Magnetic fields and forces, rigid body dynamics

1 Introduction

Simulating the dynamic behavior of rigid bodies began to attract the
interest of computer graphics researchers more than twenty years
ago [Hahn 1988; Baraff 1989]. Given that rigid bodies are often
made of metal, a notable lack is that magnetic forces have not yet
been considered in this context.
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Integrating magnetic forces into rigid body dynamics (RBD)
greatly enriches the range of possible applications: an animator
(artist) can create a plethora of new, stunning effects that cannot
easily be reproduced using the standard approach of artificial forces
and inverse kinematics. Similarly, video games can benefit from
magnetics at real time frame rates. Furthermore, the visualization
of magnetic field lines, which is customarily done using iron filings,
could be greatly improved using computer graphics techniques.

1.1 Goals and Contributions

The purpose of this work is to develop a model for discrete mag-
netic interaction that is simple and fast while reproducing all macro-
scopic magnetic effects in a faithful way. Our contributions are:

Symmetric Equivalent Magnetic Dipole Approach We pose
magnetic force and torque computation as discrete magnetic dipole
interaction and provide explicit formulae for all quantities. The
essence of our approach is the decomposition of magnetic objects
into aggregates of magnetic dipole cells. In the limit of an infinite
number of dipoles, the magnetization in the interior of the original
object and the magnetic field outside it are equivalent to those of
the original object. In the same way, the total forces and torques
converge to those of the original object with increasing number of
cells. Using a finite number of cells means an approximation whose
accuracy depends on the ratio of the cells’ diameters to the inter-
object distance. Hence, the accuracy can be effectively controlled
by the number of cells, i.e., the sampling density. Unlike previous
approaches our method is symmetric since we use dipoles for com-
puting both magnetic force and field. This symmetry automatically
ensures preservation of linear and angular momenta.

Adaptive Refinement We present an adaptive algorithm for
computing magnetic properties based on a hierarchical multi-
resolution sampling. The magnetic field decays very rapidly away
from its source and so do force and torque acting on a distant ob-
ject. In fact, the magnetic field of any magnet resembles a dipole
field for large enough distances. We can therefore save computation
time using fewer cells in regions where the magnetic field is weak
and adapt cell resolution as a function of inter-object distance.
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Figure 2: Inhomogeneous induced magnetization. Top: toy magnets have identically oriented homogeneous magnetization (indicated by the
coloring) and hence attract each other. The sphere is magnetized homogeneously according to the external field. Bottom: magnets have
opposite magnetization and therefore repel each other. As the left toy magnet is moved rightwards its magnetic field induces a magnetization
in the sphere (middle). Continuing this motion, the repelling forces increase but, at the same time, the attracting field induced in the sphere
grows up to the point, where the resulting attraction forces exceed the repelling forces and the toy magnet snaps to the sphere (right).

Magnetic Materials For our simulations, we physically describe
a variety of different materials with very different magnetic prop-
erties and include them in our computation scheme. The materials
covered comprise hard ferromagnets or permanent magnets, soft
ferromagnets, paramagnets, diamagnets and even superconductors.

Validation We assess the accuracy of our method using a problem
with known analytical solution and compare simulation results to
real-world experiments. Additionally, we investigate the influence
of the cell sampling density on approximation quality by compar-
ison with exact results and within the scope of several simulations
of real-world experiments.

Our method is very fast and, when coupled with a standard RBD
solver, allows for interactive simulation of magnetic interactions
for dozens of objects. As an example, toy magnets (see Fig, 1)
can be used to explore magnetism in its different forms and to ex-
periment with parameters like magnetization. In doing so, the user
can recognize many familiar interactions between magnets but also
experience magnetic effects, which do not necessarily follow intu-
ition, see Fig. 2.

2 Related Work

Computing magnetic fields and forces on magnetized objects is
a common problem in electric and mechanical engineering appli-
cations. Existing approaches include the virtual work method,
Maxwell’s stress tensor method and equivalent source methods.
The latter category comprises the equivalent magnetic charge
method, the equivalent magnetizing current method and the equiv-
alent magnetic dipole method, which is the most similar to the
approach presented in this work. These methods are mainly used
for static analysis of magneto-mechanical systems within engineer-
ing tasks. Comparative studies of these methods can be found in
[Delfino et al. 2001; de Medeiros et al. 1998]. Most of these meth-
ods resort in some way to finite element (FE) computations - at least
for the computation of the external magnetic field. For interactive
simulation, however, such an approach is unfeasible due to the as-
sociated numerical costs.

Terzopoulos et al. [1987] pioneered physical simulation in com-
puter graphics. Foundations of rigid body dynamics were laid in
[Hahn 1988] and [Baraff 1989] and subsequent developments have
led to substantial progress in time stepping algorithms [Stewart and
Trinkle 1996] and handling of contact [Baraff 1994; Guendelman
et al. 2003; Pauly et al. 2004] and friction [Baraff 1991; Kaufman
et al. 2005] to name just a few.

To the best of our knowledge, no attempt to model magnetic inter-
action between rigid bodies has been reported in computer graph-
ics so far. Remotely related is the work of [Kim and Lin 2004],
who model lightning and electrical arcs using a physically based
approach. They use a simplified version of the Helmholtz equation
for propagating electromagnetical waves. Our method bears some
similarity to the Barnes-Hut algorithm [1986], which made the sim-
ulation of complex, self-gravitating N -body systems tractable in
terms of computation time. Using a hierarchical approach based on
spatial decomposition, O(NlogN ) run time complexity is achieved.

Finally, most of the concepts from magnetostatics used in this work
are well-known and in-depth explanations can be found, e.g., in the
textbooks [Landau et al. 1984; Jackson 1999]

3 Physical Modeling

To simulate the dynamic behavior of permanently as well as non-
permanently magnetized rigid bodies, we must calculate the forces
and torques acting between a large number of objects. To this end,
we have to determine the total magnetic field in every time step.

3.1 Magnetostatics

Our approach is based on an approximate solution for the magnetic
field of an object with a given magnetization, and, on a correspond-
ing approximation for the calculation of the forces and torques.
These approximations make use of a subdivision of objects into
cells and their accuracy is effectively controllable by the number of
cells. Both approximations lend themselves readily to an adaptive
adjustment of the number of cells in order to assure the required
level of accuracy (see 4.2). At the same time, the combination of
the approximations is such that linear as well as angular momentum
are preserved. For an infinite number of cells, the continuous limit
is attained and the way to calculate the forces and torques used in
our method coincides with the above-mentioned equivalent mag-
netic dipole method.

In order to calculate the total magnetic field, taking into account the
magnetic properties of the different materials, an appropriate de-
scription has to be found for the two groups of materials considered
in this work: those with permanent magnetization and those with
a magnetization induced by an external magnetic field. The first
group mainly comprises ferromagnets with a strong remanence, i.e.,
residual magnetism. The second group covers diamagnets, para-
magnets, ferromagnets with a weak remanence as well as supercon-
ductors. Since we assume the magnetized objects to be uncharged,
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electric fields can be neglected. Accordingly, the interaction of the
magnetized objects poses a magneto-static problem.

The relevant portion of Maxwell’s equations for the description of
magneto-static problems reads (in SI units)

∇ ·B = 0, ∇×H = J , (1)

H =
1

µ0
B−M , (2)

together with a constitutive relation which links B and H. In these
equations, B denotes the magnetic flux density or magnetic induc-
tion, H the magnetic field, J the current density and M the magne-
tization or density of the magnetic moment.

For a given current distribution J we define the associated magnetic
moment m as

m =
1

2

∫
V

d3s(s− rO)× J(s− rO) (3)

where rO is an arbitrary point inside the volume V occupied by J.
We consider m to be positioned at rO . The magnetic induction can
be obtained by a series expansion of the magnetic vector potential
for distances r large compared to the spatial extent of the magne-
tized volume V [Jackson 1999]. The leading term of the magnetic
induction for a magnetic moment m located at position rO reads

B(r) =
µ0

4π

[
3n(n ·m)−m

|r− rO|3

]
(4)

with n = (r − rO)/|r − rO|. The distribution described by this
expression is usually called the field of a dipole. For the special case
of a sphere with homogeneous magnetization M = 1

2
[r × J(r)],

(4) represents the exact solution for all r.

If a magnetized object is considered as an aggregate of magnetic
dipoles, its total magnetic induction can be obtained by a linear
superposition of the individual dipole fields. For i = 1 . . . N mag-
netic moments mi located at positions ri

B(r) =
µ0

4π

N∑
i=1

[
3ni(ni ·mi)−mi

|r− ri|3

]
(5)

with ni = (r − ri)/|r − ri|. If we assume the magnetization to
be given, the exact solution for the total magnetic induction of the
magnetized object is obtained in the continuous limit N → ∞.
However, for finite N , this superposition can be used to effectively
calculate the magnetic induction with controllable accuracy. As-
suming that an object with magnetization M and volume V is sub-
divided into N cells with a fraction of the volume V/N , each of
the cells carries a magnetic moment MV/N . The total magnetic
induction of these N cells, calculated using (5), is valid for dis-
tances larger than the spatial extent of the cells, which is V/N .
Accordingly, with growing number of cells, the range of validity is
increased to smaller and smaller distances from the object. At the
same time, the subdivision into cells together with the linear super-
position (5) allows for an inhomogeneous magnetization as well as
for complex geometries of the objects under consideration.

The convergence of the total magnetic induction with increasing
number of cells is demonstrated in Fig. 3. For this figure, a cuboidal
test object with a homogeneous magnetization has been used. The
distribution of the magnetic induction rapidly converges to the final
configuration, which is reached for a large number of cells. Be-
tween the subfigure for 10 × 5 cells and the one for 20 × 10 cells,
changes are already very small. For more than 40×20 cells, hardly

1� 1 10� 5

20�10 40�20

Figure 3: Magnetic induction B(r) for an object with homoge-
neous magnetization. The number of cells in x/y direction used for
the calculation is indicated in the upper left corner of each figure.
The shade of the vectors is proportional to their magnitude.

any changes of the magnetic induction are noticeable except for
very short distances from the object. For distances in the range of
the spatial extent of the object, a few cells are already sufficient for
a very good accuracy.

3.2 Forces and Torques

If a current distribution is subject to an external magnetic field, both
forces and torques are exerted according to Ampère’s law. The lead-
ing terms can be obtained by a Taylor series expansion of the mag-
netic induction around the center of the current distribution. The
lowest non-vanishing terms in the expansion of the force and torque
on the magnetic moment m are

F = ∇(m ·B) (6)
T = m×B (7)

The total force and torque acting on a magnetized object, consid-
ered as an aggregate of M magnetic dipoles cells, can now be de-
termined: plugging the magnetic induction (5) into (6) and (7), we
find explicit expressions for the resulting force Fk acting on the
magnetic moment mk of a single cell located at position rk, which
is placed in the field of the N cells of another object with corre-
sponding magnetic moments mi located at positions ri,

Fk =
µ0

4π

N∑
i=1

1

|rk − ri|4
[
− 15nik

(
(mk · nik)(mi · nik)

)
+ 3nik(mk ·mi) + 3

(
mk(mi · nik) + mi(mk · nik)

)]
(8)

with nik = (rk − ri)/|rk − ri|, and accordingly the torque Tk,

Tk =
µ0

4π

N∑
i=1

[
3(mk × nik)(mi · nik)−mk ×mi

|rk − ri|3
]
. (9)
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Note that with increasing distance, force decreases more rapidly
than torque, by a factor of 1/|rk − ri|. Thus, for large distances,
the interaction is largely dominated by torque.

In order to obtain the total force F and torque T acting on the ob-
ject, (8) and (9) have to be evaluated for all cells (k = 1 . . .M )
and summed up appropriately. For the total force, the positions of
the cells rk relative to the center of mass of the object have to be
respected in the summation. In the case of the total torque, we sim-
ply find T =

∑M

k=1
Tk for rigid objects. In the continuous limit

M →∞, the force and the torque coincide with the expressions of
the equivalent magnetic dipole method and the exact solution is ob-
tained. However, the calculation of the total force and torque gives
accurate and reliable results even with a small number of cells per
object. This robustness concerning mesh refinement has also been
observed in [Delfino et al. 2001] in the context of their FE equiva-
lent magnetic dipole method calculations.

3.3 Interpretation and Proof of Conservation

This section gives a detailed interpretation of all terms involved in
(8) and (9) and also shows how to prove preservation of linear and
angular momenta. The reader can safely skip this part when reading
the paper for the first time.

In order to illustrate the contribution of the different terms of the
expressions for the force (8) and torque (9) we investigate six ex-
emplary arrangements of two bar magnets depicted in Fig. 4. For
this illustration, the bar magnets are modeled as simple magnetic
dipoles with a single cell. Only the force and torque terms acting
on the second bar magnet are listed in the following; the ones acting
on the first one follow from interchanging m1 and m2 and inverting
n12 = −n21.

In the first arrangement A1, the two bar magnets are aligned in par-
allel and positioned side by side. The first term of (8) vanishes since
both (m2 · n12) and (m1 · n12) vanish. The second term of (8)
(proportional to 3n12(m2 ·m1)) contributes (yellow arrow in the
sketch, labeled 2). The third term of (8) vanishes for the same rea-
son as the first one. The first term of (9) vanishes since (m1 · n12)
vanishes, and the second term of (9) vanishes since m2 ×m1 = 0.
Accordingly, the only relevant contribution is given by the second
term of the expression for the force and the total force is repulsive.

In the second arrangement A2, we encounter the same situation as in
A1, this time with an antiparallel alignment.Consequently, the total
force, given by the second term of the expression (8), is attractive.

In the third arrangement B1, all three terms (labeled 1 to 3) con-
tribute to the total force, which is attractive. The first term has the
largest prefactor (see (8)) and dominates the total force. The situ-
ation in the fourth arrangement B2 is the same as in B1, but with
m2 reversed. Accordingly, all the contributions to the total force
change sign and the total force is repulsive. In both B1 and B2, the
torque vanishes since (m2 × n12) = 0 and (m2 ×m1) = 0.

The torque comes into play in the last two arrangements C1 and C2.
Here, only the third term of the force (8) contributes. The first term
of the torque (9), which is proportional to 3(m2×n12)(m1 ·n12),
acts only on m1 (labeled 4). The second term of (9) contributes for
both m1 and m2 and is proportional to −(m2 ×m1) (labeled 5).
The reversion of m2 from C1 to C2 leads to a changing of the sign
of all contributions. In C1, the total torque tends to align the two
bar magnets as in B1. In C2, the total torque also tends to align the
two bar magnets, but in the opposite direction.

From these illustrations, we see that the sum of all forces vanishes
in all arrangements shown here. For the sum of all torques, this is
less obvious. The general case will be discussed subsequently.
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Figure 4: Six exemplary arrangements of two bar magnets with
forces and torques depicted by yellow and blue arrows. Black ar-
rows indicate the magnetic dipole moments m1 and m2, “north”
and “south” poles of the magnets are shown in red and blue.

It should be stressed that the approximations for the magnetic in-
duction, forces and torques are formulated in such a way that both
linear and angular momentum are preserved. Conservation of mo-
mentum is an inherent property of the physical system, but it is not
obvious that an approximate description preserves momentum as
well. To prove the conservation, it has to be shown that both the
total force and the total torque (summed over all cells of all objects)
vanish. For the total force, this can easily be seen from (8) by in-
terchanging mk and mi as well as their positions. Then, the force
acting on mk is exactly the negative of the force acting on mi and
the sum of the two vanishes. For the total torque, the derivation
involves both forces and torques. The third term of the force (8)
as well as the torque (9) contribute to the total torque. A correct
combination of the two via R× F + T with the center of mass R
leads to a vanishing total torque.

3.4 Permanently Magnetized Objects

We will now turn to the physical description of magnetic materi-
als. Permanent magnets, the first group of materials covered in the
present work, are usually ferromagnets with a strong remanence or
residual magnetism. More precisely, their constitutive relation be-
tween B and H is given by a hysteresis curve B[H] which exhibits
a large remanent value of B for vanishing H. This implies that
these materials feature a strong permanent magnetization even after
the removal of the (strong) magnetic field used in order to mag-
netize them. As a second implication, the magnetic field of other
magnetic objects, usually much weaker than the field used for the
excitation of the permanent magnetization, does not change their
magnetization considerably. In the present work, we assume the
magnetization of the permanently magnetized objects to be con-
stant (hard ferromagnets).

3.5 Induced Magnetization

The second group of magnetic materials exhibits a magnetization
only in the presence of an external magnetic field. This group
includes diamagnets, paramagnets as well as ferromagnets with a
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weak remanence. Superconductors will also be treated within the
scope of this group.

In the case of isotropic diamagnets and paramagnets, the linear con-
stitutive relation

B = µ0(1 + χ)H (10)

with the magnetic susceptibility of the material χ holds. In the case
of a diamagnet, we have χ < 0, whereas in the case of a paramag-
net, χ > 0. For the most common diamagnetic and paramagnetic
materials, however, the absolute value of the susceptibility is of the
order of 10−6 and the resulting magnetization as well as the forces
and torques are very weak.

As mentioned above, ferromagnets have to be described by a hys-
teresis curve connecting B and H. Nevertheless, for the special
case of ferromagnets with a weak remanence (soft ferromagnets)
subject to weak external magnetic fields, a linear approximation in
the form of (10) with χ > 0 is adequate. In the case of soft fer-
romagnets, the magnetic susceptibility varies by several orders of
magnitude. Steel, for example, exhibits a value of about χ ' 700
whereas χ ' 20, 000 for mu-metal, which is a is a nickel-iron alloy.

In general, the magneto-static Maxwell equations (1) and (2) have
to be solved together with the constitutive relation, i.e., (10) in the
present case. For arbitrary geometries, this is a very complicated
task because of the boundary conditions that have to be respected.
Computationally most efficient are explicit analytic solutions, but
they can only be obtained for highly symmetric situations. Fortu-
nately, if we subdivide the objects with an induced magnetization
into cells and approximately assume the cells to be spherical, an
explicit solution is accessible. Additionally neglecting the coupling
between the cells, we obtain an explicit expression for the induced
magnetization Mi of a cell located at position ri:

Mi =
3

µ0

χ

1 + χ
B(ri) . (11)

In the present work, we use (5) to compute the magnetic induction
due to permanently magnetized objects. Having computed this first
contribution, we can then determine the induced magnetization of
diamagnets, paramagnets and soft ferromagnets using (11) to obtain
the final magnetic induction.

From (11), it is obvious that the sign of the magnetic susceptibility
χ determines the general behavior of the material. In the case of a
positive (negative) value, the induced magnetization is oriented par-
allel (anti-parallel) to the magnetic induction. Accordingly, a para-
magnet is attracted by a permanent magnet, whereas a diamagnet
is repelled. Soft ferromagnets with χ > 0 behave like paramag-
nets, but the resulting force and torque are much stronger due to the
usually much higher value of χ.

Superconductors expel any external magnetic field from their in-
terior – a phenomenon called Meißner-Ochsenfeld effect. The ex-
pulsion of the external magnetic field is achieved by screening cur-
rents flowing on the surface of the superconducting material. In
the interior of the superconductor, these screening currents gener-
ate a magnetic field which exactly balances the external one. Thus,
in a very simple physical picture, the magnetic induction vanishes
completely inside the superconductor, B = 0. Combining the van-
ishing magnetic induction with (2), we find M = −H inside the
superconductor (perfect diamagnetism). If we now approximate the
magnetic field H by the vacuum field, we have H = B/µ0 and thus

Mi = − 1

µ0
B(ri) (12)

for every cell of the superconductor. Because of the strong induced
magnetization which is oriented anti-parallel to the magnetic induc-
tion, superconductors are repelled from permanent magnets.

4 Implementation

This section describes some implementational aspects of our
method including the computation of magnetic force and torque as
well as the adaptive cell hierarchy.

4.1 Algorithm

Algorithm 1 provides an overview of the steps involved in the com-
putation of magnetic force and torque. The magnetization of in-
duced magnets changes according to the magnetic field in their
surrounding and has to be recomputed in every time step. This
amounts to evaluating the magnetic field of all permanent magnets
in the scene at the induced magnets’ cell positions (l.3). The fol-
lowing code then computes the magnetic interaction between all
magnets in the scene. Note that the bound for the second loop (l.7)
is different due to the symmetry of magnetic interaction. For every
pair of magnets, we compute force and torque exerted by all cells of
one object onto all cells of the other object and vice versa according
to (8) and (9) (ll.11-12).

Algorithm 1 Magnetic force and torque computation

1: //Compute magnetization for induced magnets
2: for all induced magnets do
3: computeInducedMagnetization();
4: end for
5: //Compute magnetic force and torque
6: for i = 1 to nmag do
7: for j = i to nmag do
8: for k = 1 to ncells,i do
9: for l = 1 to ncells,j do

10: ck=cell(k), cl = cell(l);
11: applyForce(i,ck,cl), applyTorque(i,ck, cl);
12: applyForce(j,cl,ck), applyTorque(j,cl, ck);
13: end for
14: end for
15: end for
16: end for

Once forces and torques between two dipoles are computed, they
can either be fed directly into the RBD solver (ll.11-12) or be ac-
cumulated first. The latter is typically more efficient, especially
in a parallel implementation where thread-safety of the RBD code
might be an issue. The actual parallelization is simple and efficient
since all operations for one iteration are independent of other itera-
tions.

For reasonable magnetization densities, the forces can be safely
time stepped using explicit integration, since the distance between
two dipole cells cannot fall below one cell diameter and the force is
thus limited. However, we cannot rely on the collision code to al-
ways guarantee an intersection-free state such that cells may in fact
become arbitrarily close. This problem can be dealt with by limit-
ing force and torque to the maximum values corresponding to the
closest possible distance between two cells without intersections.

Algorithm 1 has quadratic complexity with respect to the total num-
ber of cells in the scene, just as the costs for collision detection
scales quadratically with the number of primitives. An adaptive ap-
proach is therefore mandatory in order to guarantee sufficient res-
olution where necessary and yet remain computationally efficient.

5



To appear in the ACM SIGGRAPH conference proceedings

Fortunately, we can exploit the controllable accuracy of magnetic
induction (5), force (8) and torque (9). For this purpose, we use an
adaptive multi-resolution cell hierarchy as described next.

4.2 Adaptive Refinement

As indicated in Section 3, a higher cell density increases the ap-
proximation quality of field, force and torque. For complex scenes,
however, using a uniformly high cell resolution is prohibitively ex-
pensive and we therefore need to decrease the average computation
time. The following observation is key to our adaptive strategy: the
magnetic field B(r) of a dipole is proportional to 1/r3, r being the
distance to the dipole. If we prescribe a sufficient ratio between
magnetic field B and spatial cell density ρ as B/ρ = c0 = const.
we obtain a means for adapting the number of cells in a region of
space to the local magnetic field. The remainder of this section
describes the adaptive framework that builds upon this measure.

Cell Hierarchy The basis for the adaptive refinement scheme is
formed by a multi-resolution hierarchy of cells, which is similar to
the octree stucture used in [Barnes and Hut 1986]. However, in-
stead of partitioning space we construct hierarchies on a per-object
basis. The hierarchy for an object is created starting with a sin-
gle cell at level zero, corresponding to its bounding box. A cell
itself has only volume and no shape but we associate with it the
bounding box of the geometry that it represents. The cells on level
i + 1 are then obtained through bisection of the cells on level i
along their longest axis. We prefer bisection over octasection as
it leads to slower growth in the number of cells per level. If we
find that a newly created cell lies completely outside the object, it
is immediately discarded. The process stops when the cell density
of the finest level reaches a prescribed value ρ0. This value can
be determined using, e.g., Fig. 6 which indicates that for an inter-
object distance of 0.5 cm it is sufficient to have eight cells per cubic
centimeter. Subsequently, we eliminate all those leaf cells whose
positions (i.e., their mid-points) lie outside the object or which are
closer to the object boundary than half their diameter. This process
is applied to each level in order to remove all empty cells with-
out children. Finally, we rescale all cell magnetizations (using the
same factor) such that their sum matches the total magnetization of
the original object. This step is necessary to guarantee that force
and torque computations are consistent among the levels: for suffi-
ciently large distances, a dipole will thus experience the same force
and torque from any level of a magnetized object.

Cell Front As mentioned in Section 4.1, force, torque and field
are always computed for pairs of magnets. Given such a pair, we
have to select a resolution level based on the geometric distance be-
tween the two objects. Using a single hierarchy level would mean
fixing cell density throughout the entire objects, which is very inef-
ficient if only small regions are close, but large parts are far away
from each other (see Fig. 5, bottom). Instead we compute an
adapted cell sampling or cell front for each of the two objects as
follows: starting with the top level cell of one object, we first de-
termine the distance that would be sufficiently large for the current
cell density ρc = 1/vc, with vc being the current cell’s volume. By
construction we have ρ0/ρc = r3c/r

3
0 and, hence, the sufficiently

large distance is rc = 3
√

ρ0
ρc
r0 . We then check whether the ge-

ometric distance d of the cell to the other object is smaller than
rc. To this end, we first check the corresponding bounding spheres
for intersection. If they intersect, d is computed using a GJK-test
[Gilbert et al. 1988] on the oriented bounding boxes. The current
cell density is sufficient if d >= r. Otherwise, we apply the same
process recursively to all children of the current cell until a suffi-
cient density is reached. The result of this process is a cell front for

Figure 5: Top: schematic view of the proximity-based adaptive
refinement. Bottom: cell front obtained for a dragon model with
respect to the blue box.

every object, which reflects the continuous geometric distance to
the other object (see Fig. 5). Note that the hierarchy needs only be
constructed once at the beginning of the simulation. Additionally,
algorithm 1 requires only small changes to ll.8-9 in order to support
adaptive refinement.

5 Validation

Analytical Comparison In order to verify its validity, we apply
our method to a test configuration consisting of two cube-shaped
ferromagnets with volume V = (1cm)3 exhibiting a homogeneous
remanent magnetic induction Br of 1 Tesla (see Fig. 6). Using (2),
the corresponding magnetization is found to be M = Br/µ0. This
test configuration has been used in [de Medeiros et al. 1998] for
the comparison of several of the aforementioned alternative force
calculation methods. An analytical solution for this case has been
presented in [Akoun and Yonnet 1984]. Since this solution is based
on equivalent magnetic charges, which are located on the surface,
it is valid only for finite distances d > 0. By contrast, our method
is also valid for the contact case, i.e., d = 0, since the magnetic
dipoles cells are always located in the interior of the objects.

The results shown in Fig. 6 were obtained using N3 uniformly dis-
tributed cells for each cube. For the fixed distance of d = 0.5 cm
used in [de Medeiros et al. 1998], our method reproduces the cor-
rect result for the attractive force already with a very low number
of cells. For lower distances, the results of our method converge to
the exact solution as the number of cells is increased.

The results for the total force as given in Fig. 6 further emphasize
the usefulness of adaptivity: for close proximity a high cell res-
olution is mandatory in order to obtain good accuracy. However,
the number of cells necessary for maintaining good approximation
quality rapidly decreases with growing inter-object distance.

Momentum Conservation The conservation of linear and angu-
lar momentum is an important property of the symmetric equiva-
lent magnetic dipole approach presented in this work. Additionally,
it also provides a simple way to check the implementation. For
testing purposes, linear and angular momentum are readily com-
puted during the simulation. If the implementation is correct, the
sum of both quantities over all objects has to be time-invariant.
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Figure 6: Comparison of the total force calculated using our
method with exact results for a test configuration consisting of two
ferromagnetic cubes with homogeneous magnetization. With in-
creasing number of cells per object, (given by N3 with N as in-
dicated), the results for the force converge to the exact solution.

We verified this for our code on a number of simulations and ob-
tained very good conservation behavior for the frictionless and non-
contact case. During and after contact situations, the conservation
deteriorates even for completely elastic collisions. However, this is
a peculiarity of the RBD solver and not a defect of our method.

6 Results

This section presents some exemplary results obtained with our
method. For our implementation we used the freely available RBD
library ODE [Smith 2006].

Many of our examples use toy magnets, consisting of a plastic-
coated cylinder with two small permanent magnets at the ends (see
Figs. 1, 2, 7 and accompanying video). Simulated toy magnets can
easily be compared to their real-world counterparts using simple
experiments and offer a great potential for fascinating magnetic in-
teraction. The magnetic field of a toy magnet is visualized in Fig. 1.

Examples The example shown in Fig. 2 demonstrates the effect
of inhomogeneous induced magnetization. A magnetized sphere is
held in contact with a toy magnet, while a second toy magnet is
placed at some distance. In the first case, the toy magnets have the
same magnetization and are therefore attracted uniformly to each
other (Fig. 2, top). Similarly, the sphere is magnetized homo-
geneously (identical direction) according to the external field and
attracts the left toy magnet as well. In the second and more inter-
esting case, the toy magnets have opposite magnetizations leading
to a point of zero resulting magnetic field, clearly distinguishable in
the left-most figure of the bottom row. Initially, the sphere assumes
the magnetization of the right toy magnet, to which it is attached.
As the left toy magnet is gradually moved to the right, its magnetic
field starts to induce a corresponding magnetization in the sphere,
resulting in a directionally inhomogeneous magnetization. How-
ever, the left toy magnet is still repelled from the right one. Forcing
it to move further rightwards, the repelling forces increase but, at
the same time, the attracting field induced in the sphere grows up to
the point, where the resulting attraction forces exceed the repelling
forces and the toy magnet snaps to the sphere. This fascinating ef-
fect, which can be thought of as passing a potential barrier, is clearly
perceptible in reality and faithfully reproduced by our method. Note
that, although the final geometries of the top and bottom sequences
are identical, the resulting fields exhibit subtle local differences.

Figure 7: Snapshots of an interactive simulation in which soft-
ferromagnetic spheres are lifted by a permanent magnet.

The next test case shows another example for complex behavior ob-
tained with multiple induced magnets. Fig. 7 shows a sequence of
four images taken from a simulation of a permanent magnet lifting
several soft-ferromagnetic spheres out of a bowl. As the permanent
magnet is moved downwards it starts to induce a magnetization in
the spheres. At a certain distance, one of the spheres is picked up
by the permanent magnet (see upper two images of Fig. 7). Sub-
sequently, the other spheres are further drawn towards the magnet
and are lifted as well. Finally, five spheres are attached to the per-
manent magnet and lifted above the bowl (lower two figures). In
the final position, only one of the spheres is directly attached to the
permanent magnet whereas the other four spheres are hanging be-
low the first one forming a symmetric configuration. As can be seen
in the accompanying video the same behavior can be observed in a
real-world experiment.

In two further examples we demonstrate that our method is capa-
ble of handling a large number of objects as well as magnets with
arbitrary non-convex geometry. Fig. 8 shows a sequence of images
from a simulation in which a rectangular permanent magnet lifts
four soft-ferromagnetic characters out of a pool of non-magnetic
spheres.

Figure 8: A strong permanent magnet lifts four soft-ferromagnetic
characters out of a pool of non-magnetic spheres.

7
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Figure 9: Simulation scene consisting of a permanently magnetized
simple dragon model and a large number of soft-ferromagnetic
spheres, 250 in the complete simulation. The spheres are initially
dropped into the scene from above the dragon and some of them
stick to the surface of the dragon, held by magnetic interaction.

Fig. 9 shows an image of a scene in which 250 soft-ferromagnetic
spheres are dropped onto a simple dragon model. As soon as they
approach the dragon, a magnetization is induced in the spheres and
they start to interact magnetically with each other and the dragon.

If a superconductor is placed in the vicinity of a hard ferromag-
net, the induced magnetization within the superconductor is ori-
ented anti-parallel to the field of the ferromagnet. According to
(12), the induced magnetization exactly balances the external field
and can thus be of considerable strength. With a sufficiently strong
magnetization of the ferromagnet the repelling forces on the super-
conductor can be large enough to overcome gravity. The simulation
shown in Fig. 10 consists of a ferromagnetic ring and a supercon-
ducting cube levitating above it. The toroidal shape of the ferro-
magnet leads to an equilibrium position above the center of the ring
for the superconducting cube. As can be seen in the right hand side
image of Fig. 10, the ferromagnetic ring is magnetized in the verti-
cal direction. In two points above and below the center of the ring,
the magnetic field vanishes. Since the superconductor is repelled
from the field, positions close to these two points are energetically
favorable. Once put into the upper of the two, the superconducting
cube remains in this stable position. From the right hand side im-
age of Fig. 10, one can see that the field lines are repelled from the
interior of the superconductor and literally flow around it. This is
the Meißner-Ochsenfeld effect mentioned above.

Figure 10: A superconducting cube levitating above a ferromag-
netic ring. Simulation scene on the left and a snapshot of the mag-
netic field lines on the right.

Figure 11: Our method can be used to compute detailed visualiza-
tions of magnetic fields using standard streamline techniques.

Apart from dynamic simulation, our method can also be used as
a tool for computing magnetic fields for arbitrary objects. Using
this technique, we can visually discover such fascinating aspects
of magnetic fields as, e.g., the relation between field structure and
geometric shape (see Fig. 11).

6.1 Performance

The computational impact of our method is determined by the num-
ber of cells used to compute magnetic force and torque. Compared
to the worst case performance, which scales quadratically with the
number of cells, the average run time is greatly reduced using the
adaptive sampling described in section 4.2. The benefit of adaptiv-
ity depends, however, on the scene under consideration and is gen-
erally not constant over time. For the examples described above,
the average reduction in computation time due to adaptivity ranges
from 1.3 for the scene described in Fig. 2 to 11.1 for the simulation
shown in Fig. 9.

Table 1 summarizes computation times for the examples used in
this work, showing total computation times and the time spent for
computing magnetic forces and torques. To allow easier interpre-
tation we report the computation times without any parallelization,
although many parts of the algorithm lend themselves to easy par-
allelization strategies and our first results showed nearly optimal
speedup on a workstation with four CPUs. As expected, computing
the magnetic interaction takes up most of the simulation time. De-
pending on the nature of the individual scenes, however, the rigid
body dynamics and especially the collision handling can also re-
quire a considerable amount of the total computation time. Still,
simulations with dozens of magnets and up to several hundreds of
cells run at interactive rates.

7 Conclusion

Limitations Our treatment of induced magnetization is approxi-
mate as we do not account for the fact that induced fields act back
on the external field. The correct treatment of the problem requires
a solution of the Maxwell equations including boundary conditions.
A solution could be to reiterate the magnetic field computation, in-
cluding induced fields, until convergence. Our first experiments
in this direction indicated that additional effort is necessary to en-
sure convergence, which seems very sensitive to the strength of the
magnetic field as well as the magnetic susceptibility of the material.
Also, the dipole approximation is a possible point of improvement
when considering the mutual influence of the induced magnets.

8



To appear in the ACM SIGGRAPH conference proceedings

Example #cells Tmag Trbd Ttot Gain fps

TST 48 0.29 0.09 0.38 1.30 65
BowlSpheres 256 3.9 0.25 4.16 3.76 6
Bowl2008 128 1.65 2.39 4.05 1.97 6.2
SuperCube 142 0.33 0.02 0.35 5.97 71.4
DragonLow 1824 53.1 2.76 55.85 6.72 0.45
DragonHigh 3628 57.6 2.92 60.5 11.1 0.41

Table 1: Average computation times in milliseconds for one time-
step of 1ms on an Intel Core2Duo 2.4GHz CPU (using only one
core). Computation times for magnetic forces (Tmag) and time
spent in the RBD code (Trbd) are listed separately. #cells refers to
the total number of cells in the scene and Gain denotes the speed-up
for magnetic force computations due to adaptivity, which was used
in all examples. TST is the scene described in Fig. 2 with two toy
magnets and a soft-ferromagnetic sphere. BowlSpheres is the sim-
ulation shown in Fig. 7. Bowl2008 is shown in Fig. 8, SuperCube
refers to the simulation of a superconducting cube shown in Fig. 10.
DragonLow and DragonHigh are simulations of a magnetic dragon
model and 250 soft-ferromagnetic spheres (Fig. 9) using different
cell resolutions.

Our method preserves linear and angular momenta, but this does
not imply energy conservation for which a theoretical analysis is
difficult because of the energy accumulated in the magnetic field.
The rigid body solver used in our implementation does not pre-
serve energy, which is why we did not try to assess this behavior
experimentally. It would therefore be interesting to carry out fur-
ther tests using, e.g., symplectic solvers [Hairer et al. 2006], which
are known for their excellent energy preservation behavior.

Future Work Since our approach exhibits good approximation
quality and robustness already with a low cell density, it could be
used as a fast preview stage to heavy-weight FEM simulations in
engineering applications. In this regard, it could be a very inter-
esting extension to include DC or even AC currents as sources of
magnetic field and to include force and torque acting on the same
currents. This would for example allow to model a virtual electric
motor and simulate the interplay of electric, mechanical and mag-
netic parts.

Finally, with hindsight to educational applications, the integration
of a haptic interface would further increase the usefulness of our
method.
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