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Figure 1: Plastic deformation of a toy. On the second model the plastic strain is visualised. The two models on the right show the approxi-
mation with the quadratic finite elements.

Abstract

We present an alternative approach to standard geometric shape
editing using physically-based simulation. With our technique, the
user can deform complex objects in real-time. The basis of our
method is formed by a fast and accurate finite element implemen-
tation of an elasto-plastic material model, specifically designed for
interactive shape manipulation. Using quadratic shape functions,
we reduce approximation errors inherent to methods based on lin-
ear finite elements. The physical simulation uses a volume mesh
comprised of quadratic tetrahedra, which are constructed from a
coarser approximation of the detailed surface. In order to guarantee
stability and real-time frame rates during the simulation, we cast the
elasto-plastic problem into a linear formulation. For this purpose,
we present a corotational formulation for quadratic finite elements.
We demonstrate the versatility of our approach in interactive manip-
ulation sessions and show that our animation system can be coupled
with further physics-based animations like, e.g. fluids and cloth, in
a bi-directional way.
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1 Introduction

With the advent of 3D data acquisition devices such as structured
light scanners, highly detailed geometric surface models are now
easily available. The last ten years have seen many approaches for
editing such surfaces with the common goal of achieving globally
smooth deformations while preserving surface details and shape
volume. Most of the recent methods depart from a purely geomet-
ric view of this task leading to approaches which are rather detached
from the actual problem. Instead of taking such a circuitous route,
we propose to consider this problem as one of elasto-plastic mod-
elling, which means resorting to physically-based simulation – a
simple and direct approach.

For physical simulation, mass-spring systems remain the most
widely used technique in the computer graphics community. Al-
though they allow for efficient implementations, it is a well known
fact that they are inherently unable to reproduce even simple
isotropic materials correctly and fail to preserve volume. In con-
trast, (higher order) finite elements excel at these challenges. How-
ever, it is commonly believed that finite elements interchangeably
stand for high computation times. In this work, we show that even
a highly accurate non-linear approach can run at interactive rates.



1.1 Contributions

We present a new approach to shape editing using physically-based
simulation which allows intuitive interaction. A dedicated plas-
ticity model accounts for permanent deformations, which we think
approximates the real problem of shape manipulation best. We em-
phasise that no artificial enforcing of volume preservation is needed
since this property directly follows from the physical approach.
Additionally, there is no need for explicitly distributing deforma-
tions induced by handles. Deformation automatically propagates
through the body according to the forces applied by the user with
different interaction tools. We are the first to use quadratic finite
element shape functions in the context of shape editing. In compar-
ison to linear elements they not only offer better numerical accu-
racy but also superior geometric approximation, even with a much
smaller number of elements. To guarantee stability and real-time
frame rates during simulation, a corotational formulation is com-
bined with implicit integration. Due to the physical nature of our
approach, the integration of shape manipulation within complex an-
imations comes at no extra cost. As we show in our examples, the
soft body simulation and manipulation can directly be combined
with fluid or cloth simulation.

1.2 Related Work

Geometric Mesh Editing The problem of mesh editing can most
simply be formulated as finding ways to create globally smooth
and visually pleasing deformations while preserving surface details.
Disturbing artefacts like surface distortion or significant change in
volume have to be avoided. As a further requirement, a practically
useful shape deformation algorithm has to be fast enough to deliver
real-time frame rates and must offer intuitive interaction facilities
[Botsch and Kobbelt 2004].

The first methods for mesh editing relied on multi-resolution rep-
resentations, decomposing a model into low frequency components
and detail displacements [Zorin et al. 1997; Kobbelt et al. 1998]. A
more recent approach to preserving surface details under global de-
formations is based on differential coordinates [Alexa 2003]. In this
context, detail preservation can be formulated as the minimization
of an energy functional which is related to the change in differential
coordinates after deformation [Sorkine et al. 2004; Yu et al. 2004].
The deformation (i.e. the editing objective) itself is incorporated as
a set of positional constraints on the solution of the linear system
arising from the minimization problem. Unfortunately, differential
coordinates are not rotation-invariant, which means that large rota-
tional deformations lead to disturbing surface distortions.

In the case of shape blending these rotations can be factored out
locally [Alexa et al. 2000]. However, for general shape editing the
problem is significantly harder since the final state is not known in
advance. Pyramid coordinates [Sheffer and Kraevoy 2004] offer in-
variance under rigid body transformations but lead to a non-linear
equation system with the associated computational and stability re-
lated problems. As an alternative, the rotation-invariant differential
coordinates proposed by Lipman et al.[Lipman et al. 2005] only re-
quire the successive solution of two linear systems. A quasi-linear
approach removes surface and volume distortion for large deforma-
tions [Lipman et al. 2007]. For a comparison of differential meth-
ods and their variational formulation we recommend the overview
by Botsch and Sorkine [Botsch and Sorkine 2008].

Another important deformation constraint is the preservation of
volume [Rappaport et al. 1996]. Combining differential coordi-
nates with an approach for explicit volume preservation, Zhou et
al. [Zhou et al. 2005] minimise both the change in surface details
and shape volume. The skeleton constraint [Huang et al. 2006] is

Figure 2: Visualisation of pressure in a soft toy exposed to grav-
ity, simulated with 1,200 linear (left) and 234 quadratic tetrahedra
(right) using our new approach. Both simulations are real-time,
but the linear model suffers from significant locking and bad shape
approximation.

of interest when manipulating articulated shapes. Dedicated met-
rics in shape space are proposed by Kilian et al. [Kilian et al. 2007]
to obtain isometric deformations. By introducing path line integra-
tion on divergence-free vector fields, von Funck et al. [von Funck
et al. 2006; von Funck et al. 2007] obtain volume-preserving and
intersection-free deformations. The adaptive volumetric discretisa-
tion by Botsch et al. [Botsch et al. 2007] is reminiscent of finite
element models, but is not based on continuum mechanics and re-
quires non-linear solvers. They show the importance of preserv-
ing the volume both globally and locally for deformations of bulky
models.

Real-time Physically-based Simulation
Physically-based simulation of deformable objects in real-time has
first been investigated in the context of general animation [James
and Pai 1999]. As another important application, virtual surgery
simulation poses most stringent requirements on both speed and
accuracy. This has spurred the development of approaches based
on continuum mechanics [Picinbono et al. 2000]. A finite element
approach which uses a Bernstein-Bézier formulation focussing on
highest possible accuracy rather than speed was presented by Roth
et al. [Roth et al. 1998]. The simulation of clay-like materials [De-
waele and Cani 2003] or large plastic flow [Bargteil et al. 2007] can
be useful for virtual sculpting rather than for shape editing where
details have to be preserved during deformation. We also do not
want to force the user to construct a skeleton first in order to deform
the model [Capell et al. 2002]. Mesh-free finite element methods
become feasible for real-time simulations if dedicated techniques
like the visibility graph by Steinemann et al. [Steinemann et al.
2006] are used to speed-up the stiffness matrix and surface mesh
updates. Since in our work we rather focus on the avoidance of
topological changes, we stick to classic finite elements with fixed
discretisation. In order to reduce the computational complexity the
problem is usually recast into a linear formulation using linear fi-
nite elements and a small strain measure coupled with methods for
extracting rotations [Hauth and Strasser 2004; Müller and Gross
2004]. Unfortunately, linear finite elements are very susceptible to
numerical locking (see Fig. 2), which degrades accuracy substan-
tially and lets soft objects appear overly rigid. This problem can
be greatly alleviated using higher order basis functions as demon-
strated in [Mezger and Straßer 2006]. The latter approach, however,
uses Newton iterations to handle geometric non-linearities and can
fail in finding a solution within a given period of time. Therefore,
we additionally use a corotational formulation which we apply dur-
ing the volume integration.



Plasticity The existing literature on mathematical and numer-
ical plasticity is abundant and we refer the interested reader to
[Zienkiewicz and Taylor 2000] and the references therein. In com-
puter graphics, Terzopoulos et al. [Terzopoulos and Fleischer 1988]
were the first to incorporate plasticity and fracture effects into de-
formable object simulation. O’Brien et al. [O’Brien et al. 2002]
resorted to the more accurate continuum-mechanics setting, using
the von-Mises yield criterion with linear plasticity and a second
elastic regime which limits the plastic strain. They used an ex-
plicit integration scheme, which greatly simplifies implementation
but leads to high computation times and only conditional stabil-
ity. In [Müller and Gross 2004] Müller et al. account for plasticity
effects using a model similar to [O’Brien et al. 2002]. However,
since only tetrahedra with linear shape functions are used, curved
surfaces are coarsely approximated, and nearly incompressible ma-
terials are likely to suffer from locking. For the plasticity model,
we basically draw on the same idea and combine it with kinematic
hardening and a prediction step for the elastic strain.

2 Background of Physical Soft
Body Simulation

This section briefly outlines some mathematical and physical no-
tions underlying our soft body simulator. For more details on solid
mechanics we refer to [Zienkiewicz and Taylor 2000].

2.1 Continuum Mechanics

In the most abstract view of continuum mechanics, there are three
important concepts: the strain εεε, which is a dimensionless defor-
mation measure, the stress σσσ, which is a force per unit area, and a
material law relating the two to each other as σσσ = C(εεε) , where
C is the elasticity tensor. For the simplest case of linear isotropic
elasticity, this tensor has only two independent entries which are re-
lated to the well known Lamé constants λ and µ. Alternatively, the
Young modulus E and the Poisson ratio ν can be employed instead.
Quantities in relation to the deformed state of the body (e.g. strain)
are commonly expressed in terms of a fixed reference configuration
Ω ⊂ R3. The configuration mapping ϕϕϕ : Ω × [0, T ] transform-
ing material particles from their reference positions x0 to current
positions x can be written as

x(t) = ϕϕϕ(x0, t) = id+u(x0, t) ,

where u is a displacement field from the initial configuration. For
later use, we define the deformation gradient∇ϕϕϕ and the non-linear
strain tensor εεε as

∇ϕϕϕ =
∂ϕϕϕ

∂x0
and εεε =

1

2
(∇ϕϕϕ

T∇ϕϕϕ− I), I = diag(1)3×3 ,

leading to the strain energy of the deformed configuration,

W =

∫
Ω

εεε(u) : σσσ(u) dΩ .1

Including viscous stress contributions with the damping tensor σσσv

and inertia with the mass density ρ, the total energy Π follows as

Π(u) =

∫
Ω

εεε(u) : σσσ(u) + ε̇εε(u̇) : σσσv(u̇) dΩ + 1
2
|ü2|ρ dΩ .

Carrying out a variation of the above expression and taking into
account external forces acting on the body, an equilibrium equation
is obtained, which is the starting point for numerical discretisation.

1In this context the inner tensor product denoted by ”:” reads
εεε : σσσ = tr(εεεTσσσ).

2.2 Finite Element Discretisation

In a Ritz-Galerkin finite element method, the discretisation arises
from a continuous partitioning of the domain into tetrahedra with
locally defined shape functions N that interpolate the vertices P
and their displacements U, e.g.

ϕϕϕ(x) =

N−1∑
i=0

PiNi(x) with
N−1∑
i=0

Ni = 1, Ni(Pj) = δij ,

(1)
and

∇ϕϕϕ(x) = ∇u(x) + I = U ∇N(x) + I .

Choosing isoparametric basis functions N, they further interpolate
force and mass densities and yield the ODE

F(U) + Fv(U̇) + MÜ = Fext (2)

with elastic forces F (Sec. 3.3), viscous forces Fv(U̇), dead exter-
nal forces Fext and the mass matrix

M =

∫
V

ρ NNT dV . (3)

The accuracy of this approximation strongly depends on the choice
of the shape functions N and the size h of the elements. In engi-
neering applications it is usually avoided to use linear basis func-
tions as they achieve a convergence which is only linear in 1/h.
This weak convergence is caused by∇ϕϕϕ being constant and conse-
quently also F being constant on the whole element.

Especially in the case of almost incompressible materials the linear
elements suffer from numerical locking effects, i.e. solving (2) re-
sults in significantly smaller displacements than expected (Fig. 2).
Moreover, many small elements have to be placed at the object
boundaries in order to approximate irregular shapes. The approach
presented in the following exploits the benefits of quadratic basis
functions regarding the demands of interactive shape deformation,
namely good approximation of shape and fast convergence in the
presence of plastic, nearly incompressible materials.

3 Real-time Soft Body Simulation

In order to achieve real-time shape editing performance, we focus
on efficiently updating the stiffness matrix which is needed for im-
plicit time integration with arbitrarily large step sizes.

3.1 Quadratic Shape Functions

Representing the N shape functions, 4 ≤ N ≤ 10, by using the
general form

Ni([x, y, z]T ) =

N−1∑
j=0

αij xej1yej2zej3 , i = 0..N−1,

with quadratic exponents ejk = 0..2, the conditions (1) define a
linear system with N2 equations that is solved for the shape coef-
ficients αij . This is performed once for the (unstressed) reference
state of the object, storing the shape coefficients for later use (confer
[Mezger and Straßer 2006]).

The number of nodes and shape functions respectively can be cho-
sen arbitrarily from four up to ten. For any N > 4 additional nodes
are placed on the edges of the (linear) standard tetrahedron (Fig. 3).
We construct the nodal positions P0 of the reference state as de-
picted later in Sec. 5.



Figure 3: Curved quadratic 10-node tetrahedron with curvilinear
coordinates.

3.2 Volume Integration

Choosing N = 10, each component Ni of the vector of shape
functions is a complete quadratic polynomial and the error of this
Galerkin approximation is bounded to O(h3) [Zienkiewicz and
Taylor 2000]. It is crucial to preserve this quadratic convergence
by accurately integrating the matrices of (2) over the volume of the
tetrahedron. This is achieved by a three-dimensional quadrature
(cubature) using the four-point Gauss-Legendre rule at the curvi-
linear coordinates

ζζζ1 = [r, r, r]T , ζζζ2 = [s, r, r]T , ζζζ3 = [r, s, r]T , ζζζ4 = [r, r, s]T

with r = 1
4
− 1

20

√
5 and s = 1

4
+ 3

20

√
5 [Stroud 1971] .

Thus e.g. the consistent mass matrix (3) of a tetrahedron with ver-
tices P0 is precomputed using

M =

1∫
0

(1−ξξξ1)∫
0

(1−ξξξ1−ξξξ2)∫
0

det(P0 ∇N̂) ρ N̂ N̂T dξξξ3 dξξξ2 dξξξ1

≈ 1

4 · 6

4∑
i=1

det(P0 ∇N̂) ρ N̂(ζζζi) N̂(ζζζi)
T . (4)

The integration is performed in curvilinear coordinates ξξξi, where
the determinant accounts for the volume transformation and the fac-
tor 1/6 is the volume of the unit tetrahedron.

3.3 Corotated Quadratic Tetrahedra

The elastic forces F(U) generally depend non-linearly on U due
to the geometric non-linearity of the strain tensor even if C is linear.
Simply using the linear Cauchy strain tensor

εεε
C = 1

2
(∇ϕϕϕ +∇ϕϕϕ

T )− I (5)

does not produce satisfying results as soon as significant deforma-
tions occur. A corotational formulation linearises (2) by first apply-
ing element-wise rotations R to the displacement vector and then
solving the linear system

F(RU) RT + Fv(U̇) + MÜ = Fext .

Unfortunately, a single rotation matrix R is not enough to rotate
a quadratic tetrahedron into a configuration that leaves a rotation-
free deformation gradient R∇ϕϕϕ. Hence, we apply a separate polar

decomposition of∇ϕϕϕ at each cubature point to obtain the corotated
strain tensor

εεε
CR = 1

2
(R∇ϕϕϕ +∇ϕϕϕ

T RT )− I (6)

and the rotation-invariant stress tensor σσσCR = C(εεεCR)RT . The
polar decomposition is obtained by applying a QR factorisation first
as described in [Hauth and Strasser 2004]. The linear elastic forces
at the cubature points simply become

F(RU) RT = ∇N σσσCR

and are calculated efficiently with precomputed ∇N. Furthermore,
because of the constant gradient εεεCR

,U the element stiffness matrix

F,U =
∂F

∂U
= R FC

,U RT ,

depends only on the current rotation R and a constant matrix FC
,U.

For the viscous forces no corotation is applied. Instead, simple
linear damping is achieved with the time-derivative of the Cauchy
strain tensor using

Fv(U̇) = ∇N D(ε̇εεC) ,

since the damping is only used to remove oscillations from the ma-
terial and not to model exact viscoelastic behaviour or energy dis-
sipation.

3.4 Lazy Corotation

A significant speed-up in the solution of the ODE (2) is achieved
by a ”lazy” update of the rotation matrices. It is motivated by the
observation that small changes of the stiffness matrix lead to imper-
ceptible changes of the static equilibrium and that slightly deferred
revaluations of the stiffness matrix are not noticeable at all in a dy-
namic simulation.

We roughly estimate the change of the corotation R of an element
between the last evaluation at time t1 and the current time t by
means of the maximum absolute row sum norm

d(t) = ‖∇ϕϕϕ(t)−∇ϕϕϕ(t1)‖∞

with respect to the difference of the two deformation gradients.
This expression can be evaluated efficiently, and the polar factor-
ization is not necessary in order to determine whether the rotation
changed significantly. Empirically, the stiffness matrix should be
recomputed if d(t) exceeds a tolerance value of 0.1 in at least one
cubature point.

3.5 Guaranteed Framerate

While explicit time integration methods require adaptive time step-
ping to enforce stability for stiff problems, unconditionally stable
implicit rules allow constant step sizes. In order to safely limit the
computation time of a single large time step, we solve the corotated
problem with a direct linear solver. Thus, the update rate during the
modelling does not depend on the current deformation and can be
kept constant. In the worst case, the simulation will require recom-
puting the corotations, refactoring the system matrix, and solving
the linear system. With our implementation, current CPU cores
perform this task within 40 milliseconds for more than 1500 linear
tetrahedra or more than 300 quadratic tetrahedra, allowing a frame
rate of 25Hz. The lazy corotation further serves for reducing the
CPU load, but of course does not increase the lower bound of the
frame rate.



4 Implicit Time Integration of
Elasto-Plastic Material

The constitutive law addressed in the previous sections leads to ma-
terial behaviour independent of the deformation history (also called
a hyperelastic material). Once the loading is removed the defor-
mation will (possibly delayed by viscous effects) recover a state
of zero deformation. This assumption of ideal elasticity is only
a rough approximation and real world materials do not obey this
model. In fact, every solid material will fail, i.e. undergo irre-
versible deformation or even fracture, if the applied loading exceeds
a certain threshold. The effect of irreversible deformation actually
is the most general definition of plasticity, which we will use as
the basic mechanism for conveying permanent shape deformation
in the following.

4.1 Plasticity and Hardening

In order to extend the elastic model to account for plasticity effects
we first introduce the decomposition of the total strain εεεtot as

εεε
tot = εεε

el + εεε
pl .

The total strain can be interpreted as the true geometric strain,
which is readily evaluated using the finite element approximation
(see Eq. (6)). As a result, the elastic stress can always be expressed
as

σσσ = C : εεε
el = C : (εεεtot − εεε

pl) . (7)

We will generally assume that the material behaves ideally elastic
up to a certain point of stress where the plastic deformation regime
begins. Using a yield function F , this criterion can be expressed as
F (σσσ) = 0 which, depending on the current state of stress, indicates
whether plastic deformation occurs or not. Similar to [O’Brien et al.
2002] we will restrict our considerations to an isotropic von-Mises
yielding model, which is particularly simple. In this case F does
not depend on the hydrostatic (i.e. volumetric) part of the stress ten-
sor and, hence, plastic deformation does not affect the volume. As
a consequence, e.g. twisting of a mesh will not result in unrealistic
loss of volume – an important aspect which is hard to achieve with
previous surface based shape editing methods.

(a) (b)

Figure 4: With kinematic hardening the yield surface F is allowed
to translate by the backstress κκκ (a). In the exemplary uni-axial
loading cycle (b) the sense of traversal is indicated by arrows. Un-
loading is always elastic and reveals the stored plastic strain when
the stress vanishes.

The condition F = 0 can best be pictured as an implicit (yield)
surface in stress space (circles in Fig. 4a), where the radius of the
surface is a material property. Inside the yield surface the material
behaves entirely elastic. Once the elastic stress reaches the yield
surface, it cannot further increase and any additional deformation

will result in plastic deformation. In the simplest model, the loca-
tion of the surface (i.e. the centre and radius) stays fixed and as a
consequence the plastic strain will increase while the elastic stress
stays constant. Because this is impractical for our application, we
include the effect of kinematic hardening. Here, the centre of the
yield surface is allowed to move along the direction of the devia-
toric strain.

With the linear kinematic hardening, a resilient plastic strain can be
cancelled by a corresponding deformation in the opposite direction,
leading to the stress-strain relationship depicted in Fig. 4b. The
slope in the plastic phase is subject to

κ̇κκ = Hε̇εε
pl

with the kinematic hardening factor H . However, it would still
be possible to achieve arbitrarily large plastic deformation which
turned out to be inconvenient for the user. For this reason we limit
the range of plastic deformation by another, user-defined threshold,
producing the rightmost branch of the curve. Beyond, purely elastic
behaviour is regained. The curve corresponds to a rate independent
material, i.e. effects due to viscosity are not considered. Taking
into account viscous stress contributions (3.3) the sharp transitions
are actually smoothed according to the strain rate ε̇εεel.

4.2 Time Integration

With an explicit integration scheme, the time stepping of Eq. (7)
is straightforward, since it requires only quantities from the current
state, which are trivially known. Using implicit integration is more
involved because the unknown strains εεεtot(t+∆t) and εεεpl(t+∆t)
are required. We solve this problem using a return map algorithm
similar to [Auricchio and da Veiga 2003]. Assuming that the time
step will be entirely elastic, we predict the total strain ε̃εεtot at time
t + ∆t in an explicit manner using the current strain rate εεεtot(t) by

ε̃εε
tot = εεε

tot(t) + ∆t ε̇εε
tot(t) , (8)

where the tilde denotes trial quantities. The predicted elastic strain
is computed as

ε̃εε
el = ε̃εε

tot − εεε
pl(t) ,

and the deviatoric strain follows as

ε̃εε
dev = ε̃εε

el − 1
3

tr(ε̃εεel) I .

If we further assume that the plastic strain εεεpl remains constant we
can evaluate the yield function,

F (C : ε̃εε
dev) = ||2µ ε̃εε

dev − κκκ(t)|| − σy = 0 ,

where σy is the yield stress (cf. Fig. 4). If the yield function signals
that in the next step there will be no transition to the plastic range,
the assumption holds and we can safely use the standard implicit
formulation to integrate the elastic forces. Otherwise, the plastic
strain for the end of the time step is computed as

εεε
pl(t + ∆t) = εεε

pl(t) + λ
2µ ε̃εεdev − κκκ(t)

||2µ ε̃εεdev − κκκ(t)||

The consistency parameter λ ensures that the yield condition is met
after the time step and reads

λ =
||2µ ε̃εεdev − κκκ(t)|| − σy

2µ ε̃εεdev + H
.



To limit the norm of the plastic stress components by σz, the plastic
strain is clamped to σz

/2µ (cf. O’Brien et al. [O’Brien et al. 2002]).
Finally, we have to compute the new backstress using

κκκ(t + ∆t) = H ·
(
εεε
pl(t + ∆t)− εεε

pl(t)
)

.

Similar to Müller et al. [Müller and Gross 2004] we obtain a linear
system of equations which, for the sake of simplicity, we abbreviate
as (

M−R ∇FFF RT
)
Y = Fconst ,

where the state vector Y is the concatenation of nodal positions
and velocities. Because of the prediction step (8) the plastic strain
does not depend on Y and can be considered as a dead load dur-
ing the time step. Hence, we are able to keep the stiffness matrix
∇FFF constant over time. Note that in contrast to explicit time in-
tegration schemes the mass matrix M does not have to be inverted
and we can use the non-diagonal consistent mass matrix (4) without
computational drawbacks.

4.3 Annealing

In the course of repeated deformation and sculpting by the user,
substantial plastic strains can accumulate. While the simulation
always remains stable, very large deformations are likely to de-
grade computational efficiency and accuracy. This problem can be
avoided by annealing the solid from time to time. When the user
stops deforming the object for a moment, its rest state is recom-
puted from the current deformation and the geometric as well as
the plastic strains are reset. This procedure can be carried out as
a background operation without the user taking notice of it, or, as
shown in the accompanying video, by manually clicking a button
to ”commit” the current plastic state and to continue with further
manipulations.

5 Geometric Model Reduction
and Detail Preservation

In order to provide the user with as much freedom as possible we
do not make specific assumptions on the size and resolution of the
input model. We do, however, assume a closed manifold surface
mesh of the object to be deformed. Such meshes can be obtained,
e.g. using a geometry acquisition device like a structured light scan-
ner and a subsequent post-processing step (i.e. reconstruction and
triangulation). The resolution of meshes obtained in this way is
usually very high. Since globally smooth deformations can be cap-
tured on a much coarser level it is common practice to treat high
frequency surface details apart from possibly large low frequency
deformations.

5.1 Geometric Model Reduction

We adopt this strategy and combine geometric model reduction
techniques with an elegant detail preservation algorithm which
arises in a natural way from our finite element approach. Low res-
olution tetrahedral meshes like the ones in Fig. 5 (bottom row) are
created following a three-step algorithm:

Coarse Surface Generation For the initial mesh simplification
we employ standard triangle mesh reduction techniques available
for polygonal modelling software (e.g. MeshLab), producing ap-
proximate Delaunay triangulations (Fig. 5 top row).

(a)

(b) (c)

Figure 5: Automatic generation of quadratic tetrahedral meshes in
two resolutions (b, c) from a detailed triangle mesh (a). The top
row shows the result of the surface mesh simplification, the bottom
row the boundary of the conformed quadratic FE meshes.

Linear Tetrahedral Meshing The Delaunay property alleviates
the subsequent generation of tetrahedral volume meshes, which is
achieved using standard mesh generators. In our experience they
often fail in generating coarse quadratic meshes for a given smooth
surface. For this reason, a standard meshing first produces an FE
model with linear 4-node tetrahedra.

Quadratic Surface Conforming Afterwards, each tetrahedron
of the coarse tetrahedral mesh is completed by the missing nodes
on the six edges. All surface nodes are adjusted to lie on the initial
high resolution surface (Fig. 6a). For this purpose, the closest sur-
face face in the normal direction is found. If its distance exceeds a
specific limit or if the surfaces turn out to be too spiky to determine
a consistent normal direction, the surrounding area is searched for
a closer face (Fig. 6b). Care is taken not to invert surface elements
if the detailed surface lies inwards (Fig. 6c). In such rare cases the
node must not be moved and it is advisable to increase the FE mesh
resolution in the critical region.

(a) (b) (c)

Figure 6: In the conforming step the surface nodes of the quadratic
tetrahedral mesh are adjusted to lie on the detailed surface. (Sim-
plified 2D drawing.)

While the whole reduction algorithm is rather simple, it turned out
to be extremely effective and does not demand any FE modelling
knowledge from the user. Curved element edges are preliminarily
created at the FE mesh boundaries, but do of course also emerge in
the inside during deformations. Hence, the full degrees of freedom
of the quadratic tetrahedra are exploited by the simulation.



5.2 Detail Preservation

Since the plastic deformations are computed on the coarse FE mesh,
the simulation does not affect surface details. To interpolate de-
tailed surface features, we map the initial surface points by the
isoparametric shape functions of the associated deformed tetrahe-
dron, which provides the necessary smoothness and affine invari-
ance. That is, at any time t, by

St = ϕϕϕ(S0, t) =

N−1∑
i=0

Pt
i Ni(S

0) .

the interpolated detailed surface point St is calculated from the ini-
tial position S0 of the vertex. The shape functions Ni interpolate
the nodes Pt of the tetrahedron as defined in (1). Cracks at the
transitions from one quadratic tetrahedron to the next are avoided
because the FE surface nodes lie on the detailed surface which is
further interpolated smoothly by the curved edges. During anneal-
ing the rest positions S0 are reset to the current coordinates.

The colours c(x, t) for stress visualisations on the detailed surface
first are linearly extrapolated from the cubature points to the nodes
P0

i of the reference state. Afterwards, the colours c(St, t) for the
detailed surface are mapped again by the precomputed shape func-
tions using

c(St, t) =

N−1∑
i=0

c(P0
i , t) Ni(S

0) .

This is an intuitive and computationally efficient way of stress visu-
alisation, which, to our knowledge, was not addressed in literature
so far.

6 Results

The described techniques were applied successfully to perform sev-
eral shape editing tasks on a Dual Xeon 5140, where only one core
was used by our implementation. An implicit second order BDF
(backward differentiation formula) solver ensured stable time inte-
gration. Reasonably stiff materials (λ > 5kPa) and a moderate
kinematic hardening (H ≈ 0.1µ) produced a precise perception of
the resistance to deformations. The choice of the Poisson ratio ν,
which controls the compressibility and hence the volume preserva-
tion of the material, did not have a visually significant influence on
the results. Using ν = 0.4 similar to clay was sufficient for all
editing examples.2

6.1 Examples

The examples were created in interactive sessions with a time step
size of 40 milliseconds. Only the simulation of the first example,
the twisting and bending of a bar, was scripted to allow for compar-
ison with linear element shape functions. The accompanying video
demonstrates the feasibility of individual shape manipulation tasks
ranging from large-scale deformations to tweaks of fine features.

Twisting and Bending In order to provide a better comparison to
previous work we use a standard example to show the advances of
our method. A bar with a square profile is exposed to heavy twist-
ing (Fig. 7) and bending (Fig. 8). Due to the regularity of the unde-
formed shape, artefacts of the deformation process become clearly
visible in the result. The simulation is performed first using 2,212
linear tetrahedra and second using 298 tetrahedra with quadratic

2ν = 0.5 would denote incompressibility. Real materials have
−1 < ν < 0.5.

Figure 7: Twisting of a bar with 19,802 surface vertices, simulated
with 2,212 linear tetrahedra (left) and 298 quadratic ones (right).
While the computation times are almost identical, the quality of the
quadratic simulation is noticeably better.

shape functions. In general, a computation with quadratic tetrahe-
dra takes about 8 times longer than the computation with the same
number of linear tetrahedra. Hence, in this case both simulations
approximately have the same running time.

However, the linear tetrahedra fail completely in representing both
the twisted and the bent bar. In Fig. 7 the left picture shows the
surface mesh (19,802 vertices) of the twisted bar with visible arte-
facts from the underlying, distorted linear tetrahedra. The colours
visualise the volumetric pressure at the surface, red denoting maxi-
mal values. The second picture reveals that the FEM discretisation
with the linear tetrahedra is not able to sufficiently approximate the
solution of the PDE. The third and the fourth rendering show the
respective results with quadratic tetrahedra, which achieve signifi-
cantly lower distortions and a much better approximation.

For the bending (Fig. 8) we added two more pictures which show
the surface mesh as viewed from the bottom. Blue colours denote
zero pressure, i.e. regions without volume change. Since the posi-
tion of the caps of the bar is preset, the locking of the linear tetra-
hedra does not result in reduced deformation, but causes distortions
where the material bulges. The renderings use orthographic projec-
tions to show the effects of volume preservation.

As long as the Poisson ratio ν is greater than 0.2, it does not have a
significant influence on the final shape. Pictured are the results for
E = 10kPa and ν = 0.49, which gives a volume loss of 11.6%
(linear tetrahedra) and 9.0% (quadratic) for the extreme twisting,
and 4.0% and 3.0% respectively for the bending.

Editing of High-Resolution Meshes For interactive shape edit-
ing, our modelling interface lets the user mark regions on the sur-
face mesh which should be fixed, and others which should follow
the mouse pointer by applying surface forces depending on the dis-
tance from the pointer. This technique allows an intuitive modelling
without the need to assign handles to the regions. The forces are
distributed equally to the selected region, and the surface force vec-
tors point to the same direction. Hence, within the selected region
the surface details only change in response to internal elastic forces,
e.g. if the material is being bulged or stretched.

The ability of the real-time simulation to preserve volume and to
correctly handle situations of extremely large deformation can be
observed in Fig. 9. The surface meshes are coloured based on the



Figure 8: Bending of the bar from Fig. 7, again with linear tetra-
hedra on the left and quadratic ones on the right. The surface mesh
is shown at the top and the FE surface in the middle. Another per-
spective is used at the bottom to show the bulges emerging from the
volume conservation.

norm of the plastic strain, red denoting that the plastic stress com-
ponent is close to the limit σz. To the right hand side the surface
of the tetrahedral meshes is visualised. Fig. 1 demonstrates that
a complex surface (60,000 vertices) with rich features is interpo-
lated smoothly by the quadratic basis functions (229 tetrahedra).
The mesh conforming is capable of creating quadratic tetrahedral
meshes within a wide range of resolutions (Fig. 10). While the
lower resolutions are dedicated for the fast modelling of global de-
formations, the higher resolutions provide still interactive editing
of the global as well as the local shape. Even with comparably few
finite elements, a high quality surface interpolation and interactive,
volume preserving deformations are obtained (Fig. 11).

A drawback of our method is that excessive deformations could
cause some tetrahedra to become inverted and that they usually
cannot recover from this state due to the corotational formulation.
However, in this rare case the simulation still stays stable since
the combination of QR and polar decomposition always produces a
valid corotation. An adoption of the diagonalisation used by Irving
et al. [Irving et al. 2004] could offer additional potential to handle
the problem, which we leave as an option for future work.

Integration with Other Simulators A bi-directional integration
with other physics based animation techniques, namely a grid-
based fluid simulation and a cloth simulation based on finite ele-
ments (Fig. 12), is possible in a straightforward manner. This pro-
vides the animator with the opportunity to model complex environ-
ments which would be impossible to animate in the traditional way.
We employ a simple method which treats each simulator as a black
box and couples them by updating the boundary conditions in ev-
ery time step. Wind forces from the fluid simulation are applied to
surface triangles in the vicinity of the grid node. Vice versa, the
particles are reflected at the surface. Repulsion forces between de-
formable solids and clothes are transferred in response to detected
proximities or intersections of the surfaces. Both techniques work

Figure 9: Physically correct shape editing with at least 40 fps.
Bunny: 1,379 surface vertices / 101 quadratic tetrahedra. Ele-
phant: 2,578 / 234, respectively.

sufficiently well for animation purposes, but of course would be less
suited for applications where e.g. momentum transfer and energy
conservation are important.

6.2 Benchmarks

Table 1 shows the computation times for two exemplary deforma-
tion tasks: repeatedly dragging one arm of the armadillo (Fig. 1)
up and down, and stretching and bending the upper part of the
dragon model (Fig. 10). For the armadillo model, surface meshes
with 20,000 and 60,000 vertices, and volume meshes with 146 and
1,051 quadratic tetrahedra were tested. The dragon model is dis-
cretised with up to 1,005 quadratic tetrahedra and 100,000 vertices.
Computation times per frame (not considering lazy corotation) are
separated into corotation with stiffness matrix update (Tmat), ma-
trix re-factorisation (Tfac), solution of the linear system (Tsolve) and
update time of the interpolated surface mesh (Tdef ). From the to-
tal time (Ttot) it is evident that time-step sizes from 146ms for the
largest model down to 19ms for the smallest model can be used to
achieve real-time. Additionally, in more than half of the frames lazy
corotation was active, leaving only Tsolve and Tdef for the respec-
tive frames, and therefore significantly reducing the average com-
putation time per frame. Actually, in our experiments the frame
rate was limited mostly by the modelling environment, which acted
as a bottleneck when huge surface meshes had to be updated for
rendering.



Figure 10: Dragon: 100,000 surface vertices with 173 quadratic tetrahedra (left) and 1,005 quadratic tetrahedra (right). The surface colours
visualise the mapping of the boundary tetrahedra to the surface points.

Surface mesh Tetra-
hedra

Tmat Tfac Tsolve Tdef Ttot

Arm 20k 146 10 3.9 2.5 1.9 18
Arm 60k ” ” ” ” 5.3 22
Arm 20k 1,051 73 43 23 2.0 141
Arm 60k ” ” ” ” 5.4 146
Dragon 20k 173 13 3.3 2.7 1.9 21
Dragon 100k ” ” ” ” 8.7 28
Dragon 20k 1,005 74 29 15 2.3 120
Dragon 100k ” ” ” ” 8.8 127

Table 1: Computation times in milliseconds for one implicit time-
step with the armadillo and the dragon model in different resolu-
tions up to 100,000 vertices. The surface mesh resolution only
marginally affects the computation time (not considering the ren-
dering).

6.3 Conclusions and Future Work

We introduced a new approach to shape editing, which is applica-
ble to complex surface meshes, but still takes the elastic properties
of volumetric bodies into account. The main advantages of our
approach are intuitive deformations and the potential to easily com-
bine plastic shape modelling with other simulations or animations.
From the continuum mechanics formulation we automatically ob-
tain physically accurate results. The quadratic shape functions al-
low for smooth mesh interpolation even with a small number of
tetrahedra. Together with a dedicated linearisation this provides the
necessary performance for interactive modelling.

Although our approach does not directly support skeleton driven
deformations, similar effects can be achieved by changing local ma-
terial properties in an appropriate way: assigning a stiff material to
the limbs and a comparably soft one to the joints yields the desired
behaviour. However, in future work we hope to extend our sys-
tem to account for totally rigid regions and with a more convenient

user interface for specifying skeleton constraints like in the work of
[Zhou et al. 2005].
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