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José A. Canabal1 Robert Sumner2 Miguel A. Otaduy1

1URJC Madrid 2Disney Research Zurich 3Carnegie Mellon University 4IST Austria

Figure 1: Our computational design method allows us to fabricate a deformable hat with a desired deformation behavior. The two left
columns show a hat with the default rod mesh, which does not deform as desired (shown in transparent gray). The two right columns show
that, by optimizing the radii and rest-shape of the rod mesh, we can fabricate in one piece a deformable hat that deforms as desired.

Abstract

We present a computational tool for fabrication-oriented design of
flexible rod meshes. Given a deformable surface and a set of de-
formed poses as input, our method automatically computes a print-
able rod mesh that, once manufactured, closely matches the input
poses under the same boundary conditions. The core of our method
is formed by an optimization scheme that adjusts the cross-sectional
profiles of the rods and their rest centerline in order to best approx-
imate the target deformations. This approach allows us to locally
control the bending and stretching resistance of the surface with a
single material, yielding high design flexibility and low fabrication
cost.
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1 Introduction

Digital fabrication enables an extremely fast transition from vir-
tual prototypes to their physical realization. Originally limited to
rigid materials, 3D printers have now opened the door for fast pro-
totyping of deformable objects. But while rigid designs merely
required the specification of geometry, deformable printing tech-
nology poses a grand challenge on computer-aided design: how to
specify the desired deformation properties of the target object. The
simplest approach could be to specify local material parameters at

each point in the target object, and then map these parameters to
the closest available material. Unfortunately, it is highly non-trivial
to understand what combination of local material parameters will
produce a desired global deformation behavior.

We explore the use of flexible rod meshes as an implementation
of deformable surfaces. Rod meshes are ideal for building light-
weight and cost-efficient physical shapes. The mesh provides a
truss structure for a deformable surface and can even be filled with
foam or dressed with fabric that is allowed to slide. But most im-
portantly, the global deformation properties of a rod mesh can be
adjusted simply by locally varying the cross-sectional parameters of
the rods. As a result, a heterogeneous deformable object can be fab-
ricated in one piece and from a single base material using a variety
of rapid prototyping technologies. We can find instances of flex-
ible rod meshes in furniture, apparel, architecture or accessories,
for which even a standalone rod mesh might be found aesthetically
pleasing. There are many other applications of rod meshes as sup-
porting structures, which include but are not limited to toys, pup-
peteering, costumes, animatronics and robotics. Those use cases
would potentially need volume to accommodate internal compo-
nents and/or actuators, what encourages even further the use of de-
formable surfaces.

In this paper, we propose a computational tool for the design and
fabrication of flexible rod meshes. As shown in Fig. 1, our method
takes as input several poses of a deformable surface with known po-
sition and/or force constraints and automatically computes a print-
able representation of a rod mesh that best approximates the shapes.
One of the main features of our method is the choice of design
space. We use rod meshes dominated by hexagonal faces, because
hexagons can stretch, shear and bend by deforming their edges.
Given such a mesh, its design space consists of the rest-shape and
two orthogonal radii describing the ellipsoidal cross section at each
point of the rods. By adjusting two orthogonal radii conveniently
oriented, we manage to control in-plane deformations (stretch and
shear) and out-of-plane deformations (bending) of the surface inde-
pendently. In order to estimate the design parameters, we propose
a simulation-based optimization approach. To this end, we extend



the discrete elastic rod model [Bergou et al. 2008; Bergou et al.
2010] to handle connections between multiple rods. We follow a
co-rotational approach to estimate the orientations of connections
kinematically from incident rods and show how to transmit bending
and twist forces between connected rods. In addition, we propose
an optimization framework that determines design parameters by
minimizing the approximation error with respect to the input poses
while satisfying static equilibrium constraints. In order to handle
these constraints efficiently, we compute gradients of the objective
function that satisfy the constraints implicitly.

We have applied our design and fabrication method to a variety
of examples. In particular, we have explored the potential of the
method for toy and apparel design. In order to validate the behavior
of our designs in practice, we additionally fabricated three physical
prototypes.

2 Related Work

Computational Design and Fabrication Designing physical
objects whose appearance, motions or deformation behaviors can
be intuitively specified and controlled is an important research chal-
lenge that is quickly gaining interest in the computer graphics com-
munity. Consequently, a variety of methods that investigate com-
putational aspects of fabrication have been proposed. For exam-
ple, design methods for creating objects that can stand on their
own [Prévost et al. 2013] or spin stably [Bacher et al. 2014] have
been presented. Thanks to recent work, it is also now possible to
create articulated, 3D printable representations of virtual charac-
ters [Bächer et al. 2012; Calı̀ et al. 2012], and to design mechanical
characters capable of interesting motions [Coros et al. 2013; Ceylan
et al. 2013; Thomaszewski et al. 2014].

Our work is most related to methods that control the deforma-
tion behavior of elastic objects—a problem that has received in-
creased attention from the research community over the last few
years. For instance, Chen et al. [2013] proposed a unified frame-
work to fabricate objects with different controllable properties, in-
cluding deformation, while Vidimče et al. [2013] proposed a frame-
work for the fabrication of objects composed of multiple materials.
Bickel et al. [2010] showed how to fabricate objects whose force-
deformation response matches measurements of real objects. A
small set of template materials with different deformation behaviors
was used for this purpose. Skouras and her colleagues [2013] de-
scribed an optimization method for computing an inhomogeneous
distribution of material parameters to control the way in which fab-
ricated elastic objects deform under the influence of external forces.
The rest configuration of elastic objects can also be computed us-
ing automated methods. For instance, Skouras et al. [2012] showed
that the shape of inflatable balloons can be controlled to match in-
put targets by optimizing the rest state of membrane-based models.
Similarly, the rest state of volumetric objects can be modified to
control the deformation behavior of skin for robotic faces [Bickel
et al. 2012], or to specify the way in which elastic objects deform
under gravity [Chen et al. 2014]. Our work shares a similar goal to
this class of methods. However, the types of objects we consider
are represented using rod meshes, whose rest configurations and
material properties are optimized.

Our rod meshes share some similarity with truss structures, which
have also received attention from the computer graphics commu-
nity. Wang et al. [2013], for instance, have recently proposed a
computational design method that optimizes a truss structure to
minimize the amount of printing material used in the fabrication of
rigid objects, while Song and coauthors [2013] introduced an inter-
active design tool for creating stable networks of interleaved rods
(known as reciprocal frames). Also related is the recent work of

Garg et al. [2014], who develop techniques for designing wire-mesh
structures with prescribed shapes. However, while these methods
aim to create structures that are statically stable and self-supporting,
the method we describe allows us to explicitly control the way in
which our rod meshes deform under the influence of external forces.

Material and rest-shape Optimization The problem of optimiz-
ing material parameters and rest-shapes has also been explored in
the context of animation. For instance, Kondo et al. [2005] control
the deformation of elastic objects by keyframing rest-shapes. Twigg
and Kacic-Alesic [2011] compute rest lengths for mass springs
systems in order to achieve desired garment drapes under gravity.
Coros and his colleagues [2012] show that it is possible to create au-
tonomous characters modeled as elastic objects by optimizing their
rest-shapes as a function of high-level motion goals. By adding a
potential energy term specified relative to a set of input example
shapes, the methods described by Martin et al. [2011] and Schu-
macher et al. [2012] are also related to the problem of modulating
rest-shapes in order to effect the behavior of dynamic simulations.
More recently, Li et al.[2014] have demonstrated the use of material
parameter optimization within a space-time method, and Xu et al.
[2015] have proposed an interactive method based on optimization
to assist users in the design of deformable materials. The method
we propose is inspired by this body of work, but our aim is to design
physical objects with interesting deformation behaviors. As a fur-
ther departure from previous work, we represent our objects using
rod meshes.

Rod Simulation A variety of rod simulation methods have been
presented in the literature, based, for example, on mass-spring sys-
tems [Rosenblum et al. 1991; Selle et al. 2008; Iben et al. 2013],
Cosserat models [Pai 2002; Bertails et al. 2006; Spillmann and
Teschner 2007], or articulated rigid body systems [Hadap 2006].
The discrete elastic rod model described by Bergou et al. [2008;
2010], however, constitutes a better starting point for our work, as it
is experimentally validated, and it lends itself well to numerical op-
timization, as we demonstrate in this paper. Other approaches, such
as the model introduced by Spillmann and Teschner [2009], which
can handle rod meshes, albeit at the expense of using constraints, or
the implicit centerline representation used by Casati and Bertails-
Descoubes [2013], could in principle be used as well, but at the
expense of increasing the complexity of the optimization method.

In addition to forward simulation, the problem of finding a rest-
shape in order to obtain desired deformations has been investigated
for a number of different curve and rod models, including articu-
lated rigid body chains [Hadap 2006], 2D elastic curves [Derouet-
Jourdan et al. 2010], and the super helices rod model [Derouet-
Jourdan et al. 2013]. These methods are designed for systems of
individual strands, possibly with intermittent contacts, but they do
not directly extend to the globally-coupled rod networks that we
consider in this work.

3 Rod Networks

Our design tool builds on physics-based simulation in order to pre-
dict the deformation of rod networks in response to applied forces.
Among the many existing computational approaches, we choose
the discrete elastic rod model by Bergou et al. [2008; 2010], due to
its compact curve-angle representation with explicit centerline. We
note, however, that other approaches based on reduced coordinates
[Bertails et al. 2006] or full coordinates with constraints [Spillmann
and Teschner 2007] would, in principle, be possible as well.

In order to identify the design parameters that we expose to our
optimization routine, we briefly summarize the relevant part of the



theory here. Since the model by Bergou et al. does not account for
coupling among rods, we propose a model for rod connections, for-
mulate elastic energy terms, and describe how to correctly transmit
bending and twist forces across connections.

3.1 Discrete Elastic Rods

Thin Kirchhoff rods are conveniently modeled as adapted framed
curves with an arc-length parameterized centerline γ(s) ∈ R3 and
an orthonormal material frame m(s) = [t(s)b(s)n(s)] ∈ SO(3),
where t is the tangent and b, n span the cross-sectional plane
of the rod. In the curve-angle representation, the material frame
is expressed through a twist angle θ(s) from a reference frame
r(s) = [t(s) u(s) v(s)] ∈ SO(3). In the method of Bergou et
al. [2010], which we adopt, this reference frame is constructed by
parallel transport over time of a frame initialized to the material
frame in rest state.

In the discrete setting, the centerline of the rod is represented as
a piece-wise linear curve defined by a set of n nodes {xi}. The
material frames are represented by a set of twist angles {θi} that
pertain to the edges of the centerline.

We can generally expect bending to be the dominant deformation
mode in rod networks, and it is the one that we control most through
our optimization tool. Although we also account for stretching and
twisting, we therefore focus on the bending energy here, which is
defined as

Eb =
1

2 l0
(κ− κ0)TB(κ− κ0) , (1)

where κ and κ0 are discrete curvatures in the deformed and un-
deformed configurations, respectively, and B ∈ R2×2 models the
material’s anisotropic bending stiffness. It should be noted that κ is
defined per vertex as a function of the incident edges and their ma-
terial frames. Hence, κ depends on both, centerline positions and
twist angles. Please see [Bergou et al. 2008] for details.

Material Parameterization To simplify the fabrication of our rod
meshes, we assume that the entire network is built from a single
material. In order to still control the deformation properties of the
resulting surface locally, we adjust the cross-sectional geometry of
the rods. Assuming elliptical cross sections, we can adjust the two
radii in order to independently control bending of rods in the tan-
gent plane of the resulting surface or bending out-of-plane (Fig. 3).
To this end, the anisotropic bending model of Bergou provides the
appropriate flexibility.

We define the elliptical cross-section at rod nodes with major and
minor radii a and b. Knowing the Young modulus E, and with a
cross-section area A = π a b, bending stiffness can be computed
as [Bergou et al. 2010]:

B =
EA

4

(
a2 0
0 b2

)
. (2)

Simulation In our optimizations we solve static equilibria of rod
meshes using dynamic relaxation with kinetic damping [Volino and
Magnenat-Thalmann 2007], with adaptive time stepping for higher
efficiency. To advance the configuration of rods over time, we fol-
low the dynamic simulation approach described in [Bergou et al.
2010].

3.2 Rod Networks

In order to simulate the deformations of rod networks, we must
model the coupling at connections such as to correctly transmit
bending and twist forces between different rod segments.

Figure 2: This example depicts force transfer at rod connections
with our connection model. The axis of a windmill is twisted, and
upon release its twist transfers into bending of the blades. A thinner
axis (left) produces less momentum than a thicker one (right), as
one would expect. The centerline of the axis was kept fixed.

Coupling Energy For each rod incident in a given connection,
we seek to define an energy that captures its deformation relative to
all other incident rods. We follow a corotational approach, measur-
ing deformation potentials w.r.t. rigidly transformed connections.
Specifically, for each rod incident in a connection, we condense the
effect of the remaining rods into a single connection edge whose
orientation is determined kinematically using best-fit rigid transfor-
mations. Another possibility would be to define pairwise energies
for the segments incident in a connection, as done in the Cosserat
Nets framework [Spillmann and Teschner 2009], but we found it
more difficult to weight pair energy contributions to ensure a cor-
rect integration volume.

We consider the set of rod edges incident in a connection, with rest-
shape material frames {mi,0}. In the deformed setting, we esti-
mate a rotation R of the rest-shape connection that best matches
the deformed connection. Then, for each incident edge, we de-
fine a connection edge with material frame m̄i = Rmi,0, i.e.,
the rigidly rotated rest-shape material frame. Reference frames of
connection edges, r̄, are initialized as their corresponding material
frames, and then parallel transported over time, just as for regu-
lar rod edges. Based on the material normal n̄ and the reference
normal v̄, the twist angle at a connection edge can be defined as
θ̄i = arccos(n̄T v̄).

Given material and reference frames of incident edges and their
connection edges, we can formulate bending and twist energies at
the connections based on the deviations between incident edges and
their corresponding connection edges. By summing up energies
for all edges incident in a connection, we obtain the total coupling
energy at a connection:

V =
∑
i

1

2
Vi(ti, θi, t̄i, θ̄i). (3)

Here, Vi represents the sum of bending and twist energies of the dis-
crete elastic rods model, between the i-th incident edge and its cor-
responding connection edge. The multiplication by 1/2 accounts
for the difference in the domain of integration D. For connections,
D is half the sum of lengths of the incident edges.

In practice, we estimate the rotation R of a connection by minimiz-
ing the deformation of material frames of all incident edges. We
measure the deviation of the material tangent t and the material nor-
mal n. We first estimate the linear transformation that minimizes
the least-squares geometric error:

A = arg min
∑
i

αi‖ti −Ati,0‖2∑
j αj

+
βi‖ni −Ani,0‖2∑

j βj
, (4)

and then extract the rotation by computing the polar decomposition
A = RS. Here, α = tr(B) and β refers to the respective twist



Figure 3: Dynamics of a sphere mesh that is fixed at the bottom and
deforms under gravity. The highly anisotropic bending behavior
favors tangent-plane over out-of-plane deformation, causing twist
around the vertical axis to accommodate compression.

stiffness. By weighting the deformations of tangents and normals
with each edge’s bending and twist stiffness, we favor the alignment
of thicker, and hence, stiffer edges. Note that weights are normal-
ized to avoid any bias towards the set of tangents or normals.

Coupling Forces To compute the bending and twist forces at
connections, the respective energy terms need to be differentiated
w.r.t. the degrees of freedom of incident rod edges. The difficulty
stems from the fact that the material frame at connection edges is
kinematically defined by the best-fit rigid transformation. Thus, it
depends through rotation on all material frames of incident edges.
Therefore, the coupling energy of an edge pair formed by an inci-
dent edge and its connection edge produces non-zero bending and
twist forces in all other incident edges. This is actually the expected
behavior, because bending of one incident edge may produce twist
on other incident edges and vice versa (Fig. 2).

Let us denote as fti and fθi the coupling forces on the i-th incident
edge and twist angle respectively. By differentiating (3), we obtain
the coupling force on a generic scalar degree of freedom wi of the
i-th incident rod:

fwi = − ∂Vi
∂wi
−
∑
j

∂Vj
∂t̄j

∂t̄j
∂wi

+
∂Vj
∂n̄j

∂n̄j
∂wi

. (5)

The partial derivatives of individual bending and twist energies,
∂V/∂wi, ∂V/∂t̄, and ∂V/∂n̄ are obtained easily from the discrete
elastic rods energy expressions. To this end, recall that the twist at
the connection edge can be linked to the material normal through
θ̄i = arccos(n̄T v̄).

To complete the definition of coupling forces in (5), we must com-
pute the differentials of material tangents and normals at connection
edges from m̄ = Rm0. By the chain rule, the differential of the
j-th rotated rest-shape tangent or normal q̄j is:

∂q̄j
∂wi

=
∑
k

∂R

∂ak

(
∂ak
∂ti

∂ti
∂wi

+
∂ak
∂ni

∂ni
∂wi

)
qj,0, (6)

where {ak} represent the elements of the linear transformation of
the connection, A. In the expression above, the terms ∂R/∂ak
correspond to derivatives of polar decomposition [Barbic and Zhao
2011], while ∂ak/∂ti and ∂ak/∂ni are constant and easily com-
puted from the linear expression that defines A from (4) [Müller
et al. 2005]. Derivatives of the material tangent and normal w.r.t.
the edge and the twist angle can be deduced from the definition of
the material frame in discrete elastic rods. Note that ∂n/∂e is not
zero, as we must account for the implicit dependence of the normal
on the tangent due to parallel transport.

Figure 4: With the same material and mesh density, a hexagonal
mesh is more compliant to stretch and shear deformations than
a triangle or quad mesh, thereby increasing the range of target
shapes that can be achieved using our optimization method. In this
example we show meshes with approximately the same number of
cells, in their rest configuration (top), and after hanging from them
the same weight (bottom).

Stable implicit integration requires the computation of energy Hes-
sians, i.e., force Jacobians. Other than straightforward derivatives,
or already present in the original formulation, our rod networks re-
quire the computation of second derivatives of polar decomposi-
tions. Barbic and Zhao [2011] derived the scalar second derivative
of polar decomposition, but we require a matrix of second deriva-
tives with mixed terms, shown in Appendix A.

Fig. 3 shows the application of our connection model to the dy-
namic simulation of a sphere-shaped rod mesh. When the sphere is
compressed under gravity, it also twists around its vertical axis, as
the highly anisotropic bending behavior of its rods favors tangent-
plane over out-of-plane deformations.

4 Optimization

Our optimization framework takes as input a few deformed poses
of a rod mesh under known boundary conditions. Then, it automat-
ically computes the rest-shape and cross-section of the rods such
that the mesh best matches the input poses under the same bound-
ary conditions. The resulting rod mesh geometry is finally used as
input for an automatic fabrication process.

In this section, we first discuss our choice of design space. Next,
we describe the general optimization framework. We use a Newton
optimization method subject to boundary conditions, design con-
straints, and static equilibrium constraints, which are enforced im-
plicitly. To conclude, we describe an optimization scheme to opti-
mize both the material (i.e., radii) and rest-shape of the rod mesh.

4.1 Design Space

One of the main features of our approach is the choice of design
space, which aims at minimizing fabrication complexity while max-
imizing design flexibility. There are three major design decisions in
our approach that make this possible.

Rod Mesh Using a rod mesh to model a deformable object allows
us to obtain different mechanical properties with a single material,
simply by adjusting the radii of rod cross-sections. This decision
simplifies the fabrication process.



Figure 5: A hat mesh is optimized to reach the target deforma-
tion (shown in light gray) with three different meshings. All three
meshes were obtained through centroidal Voronoi tessellation; the
first two with 64 cells and different initializations, and the third one
with 128 cells.

Hexagonal Mesh Topology We have opted for a mesh topology
that minimizes structural stiffness, thus enabling a larger range of
feasible designs under the same magnitude of external forces. Rods
are radically more compliant in bending than stretch, hence the
topology of the mesh should be one that enables deformations in
all directions simply by bending rods. We have opted for a mesh
topology dominated by hexagonal faces, as hexagons can deform
in all directions by bending their edges. Fig. 4 compares the struc-
tural stiffness of a triangle-mesh, a quad-mesh, and a hexagon-mesh
of rods. The hexagon-mesh can stretch and shear in all directions,
the quad-mesh resists stretch in directions aligned with quad edges,
and the triangle-mesh is almost inextensible.

To construct a mostly hexagonal mesh, we have explored two op-
tions in our examples. One is building the dual mesh of an input tri-
angle mesh. The other one is to initialize a number of samples on a
surface and then compute a centroidal Voronoi tessellation [Valette
and Chassery 2004]. With hexagon meshes, we have observed that
our optimization method is largely insensitive to the specific mesh
topology. Fig. 5 shows an optimization result that is matched using
three different meshes.

Parameterization Our design space consists of the rest-shape of
the rod mesh and two orthogonal radii at each point of rod cross sec-
tions. By adjusting two orthogonal radii independently, we manage
to control in-plane deformations of the surface (stretch and shear)
and out-of-plane deformations (bending) independently.

Both for radii and rest positions, we set as design parameters control
points along the rods. We place four control points per rod, two at
the end connections and two evenly spaced, and smooth their values
using cubic Hermite interpolation.

To further improve the visual appearance of the resulting rod
meshes, we also enforce continuity and alignment of cross-section
at connections. First, we share control points among all rods in-
cident in a connection, such that radii magnitude smoothly varies
throughout the rod mesh. Plus, we keep material and reference
frames at connections aligned in the rest configuration. Whenever
the rest-shape changes, we fit a plane to the incident edges of each
connection. We use the normal of this plane as the normal axis
of rest-shape frames of incident edges. This typically defines the
first and the last rest frames of each rod in the mesh; the alignment
of the other frames of the rod is linearly interpolated from the ex-
tremal values. We span the orthogonal cross-section radii at each
point in the rod mesh using material frames. Thus, as an additional
effect of frame alignment, we increase the range of target poses that
can be achieved with the optimization. Adjusting the two orthogo-
nal radii is guaranteed to independently control tangent plane and
out-of-plane deformations.

4.2 Numerical Optimization

Let us denote by q the vector of positions of all nodes in a rod
mesh. Our optimization framework receives as input a set of N
target poses {q̄k} in static equilibrium, and for each pose a subset
of nodes q̂k = Sk q̄k specified as boundary conditions. Here Sk is
a per-pose selection matrix. The method also supports using forces
as boundary conditions.

We denote as p a generic set of P design parameters, which could
be shape parameters (i.e., rest-shape coordinates of rod nodes)
and/or material parameters (i.e., radii of rod cross-sections). We
formulate the objective as the squared error between rod node posi-
tions and the input poses:

f(p, {q̄k}, {q̂k}) =
1

2

N∑
k=1

wk‖qk(p, q̂k)− q̄k‖2. (7)

And we pose a constrained optimization that minimizes this ob-
jective function, subject to static equilibrium, box-constraints on
design parameters and the input boundary conditions:

p = arg min f(p, {q̄k}, {q̂k}), (8)
s.t. Fk(qk,p, q̂k) = 0, ∀k.
pm ≤ p ≤ pM (9)

Fk denotes a vector that concatenates the forces on all rod nodes
for the kth pose, wk is a scalar used to weight target poses and pm,
pM are minimum and maximum constraints on design parameters.

To solve the constrained optimization problem, we iterate updates
of the design parameters using a quasi-newton method with con-
straint projection. In each update of the parameter vector we need
to handle two types of constraints: (i) design constraints and (ii)
static equilibrium constraints.

Our design constraints are maximum and minimum radii imposed
by 3D printing limitations. These are easy to handle, as they con-
stitute box constraints on the parameter space. We simply project
the gradient for those radii that have reached a limit.

We enforce static equilibrium constraints implicitly. Similarly to
others [Bickel et al. 2009; Umetani et al. 2011; Miguel et al. 2012],
we apply the implicit function theorem and differentiate the equi-
librium constraint for each pose. In this way we obtain the Jacobian
of rod node positions w.r.t. design parameters:

∂Fk
∂p

+
∂Fk
∂qk

∂qk
∂p

= 0 ⇒ ∂qk
∂p

= −∂Fk
∂qk

−1 ∂Fk
∂p

. (10)

And as a result we reach a gradient of the objective function that
locally satisfies static equilibrium constraints on all target poses:

∂f

∂p
=

N∑
k=1

wk (qk − q̄k)
∂qk
∂p

. (11)

In practice, we compute the force Jacobian ∂Fk/∂qk analytically,
but evaluate ∂Fk/∂p using finite differences to allow for arbitrary
design parameters. After every update of the parameter vector p,
a static equilibrium problem must be solved on all poses to ensure
that the constraints are enforced.

By handling equilibrium constraints implicitly, the minimization in
(8) turns into a nonlinear least-squares problem. Computing the
full Hessian of the problem is prohibitive, as it would require too
many Jacobian estimations using finite differences. In addition, we
have observed that the full Hessian occasionally becomes indefi-
nite. In such cases, typical approximations (e.g., Gauss-Newton,



Levenberg-Marquardt, or BFGS) become ill-conditioned and bring
the optimization to a halt. In practice, we have observed best per-
formance using BFGS with line-search. When the new search di-
rection fails to reduce the objective function, we switch to steepest
descent. Thus, controlling the step-length is key to the performance
of our method and so we enforce a maximum step-length which is
adaptively refined depending on success.

Finally, to apply position boundary conditions {q̂k}, we found
that fixing simulation nodes increases excessively the error on free
nodes. Instead, we enforce boundary conditions using a penalty
force, and we progressively adjust the penalty stiffness such that
the error at constrained nodes is similar to elsewhere in the mesh.

4.3 Optimization Scheme

As already mentioned, the vector of design parameters p may be
formed by material parameters (i.e., rod cross-section radii) and/or
shape parameters (i.e., rest-shape coordinates of rod nodes). We
have observed that adjusting cross-section radii has the largest ef-
fect on the bulk fitting error, while adjusting rest-shape coordinates
increases fitting quality for designs that are close to the optimum
and have to deal with opposing objectives. For this reason, we pro-
pose the following optimization scheme.

We start with a multiresolution optimization of the material of the
rod mesh. We first optimize only the radii control points at con-
nections, linearly interpolated along rods; then we add radii control
points in the middle of rods, with quadratic interpolation; and we
finally optimize for all radii control points with cubic interpolation.
In our examples, we did not find necessary to use higher order inter-
polations as obtained solutions were not any better. Once the ma-
terial optimization alone has converged, we start iterating steps of
material and shape optimization directly on all control points. Af-
ter each rest-shape optimization step, we reinitialize the rest-shape
material and reference frames. Please see Fig. 10 for examples of
convergence with our optimization scheme.

5 Results

Design Pipeline In all our examples we follow a similar design
pipeline, with small variations. We start with a surface description
of the deformable object to be fabricated, typically a high-res tri-
angle mesh H. At this point, we define the connectivity of the rod
mesh R to be optimized. If the user does not enforce a specific
topology, we automatically compute one that is close to a hexag-
onal mesh using a centroidal Voronoi tessellation as described in
Section 4.1. We project the resulting connections ontoH, and con-
struct rods connecting them by following shortest geodesic paths.
For each vertex of R, we store a mapping to its projection triangle
inH.

To create the target poses, we apply some deformation to H. In
our examples, we have explored different deformations, mainly di-
rect artist manipulation and embedding in a another physical model.
Given a target deformation defined onH, we can determine the tar-
get configuration of the rod mesh by its stored mapping.

Table 1 summarizes the rod mesh size, complexity, continuum ma-
terial parameters and radii constraints for all our benchmarks. We
have printed some of the obtained results to serve as a validation of
both the simulation model and the optimization procedure. In all
the cases, we have used laser sintering technology with the material
TPU 92A.

Sheet Our first example consists of a simple sheet (Fig. 6), show-
ing the capability of hexagonal rod meshes of exhibiting varied be-

Model Sheet Hat Dino Smiley
Nodes 693 1727 3219 2663
Edges 710 1790 3330 2892
Rods 71 179 333 723
Connections 54 116 222 494
Material Params. 392 948 1776 2664
Rest-shape Params. 588 1422 2664 3663
Young mod. (MPa) 32 32 32 10.0
Poisson ratio 0.48 0.48 0.48 0.48
Density (Kg/m3) 1200.0 1200.0 1200.0 1000.0
Size (m) 0.2 0.23 0.20 0.25
Max. Radius (mm) 5 3 3 4
Min. Radius (mm) 1 1 1 1
RMS Error (mm) 1.03 1.13 0.56 0.41
Computation Time 35min 1h45min 2h20min 3h10min

Table 1: Statistics of benchmarks: model discretization, optimiza-
tion complexity, mechanical parameters, design constraints, RMS
error of the results and computation time.

haviors. The rod mesh is a square with 0.2m side, and consists of
71 rods and 54 connections forming a regular hexagonal pattern,
with a total of 693 nodes.

Four target poses are defined by computing the static equilibrium of
the rod mesh for different radii configurations and boundary con-
ditions (fixed points and weights). These targets are designed to
be opposing: the first pair (first and second row) impose bending
anisotropy; the second pair (third and forth row), impose stretching
isotropy. The optimized rod mesh effectively captures all required
behaviors.

The images in Fig. 6 show in semi-transparent gray the target
configurations of the rod mesh. The default behavior at the be-
ginning of the optimization is shown in red against the deforma-
tions obtained with our optimization framework in green. Cross-
sectional radii optimization is capable of reducing the RMS error
to 1.4756mm per node. We achieve an overall fitting of 1.0322mm
upon convergence of rest-shape optimization.

Simulated results has been validated by testing physical printed re-
alizations, which closely match the behavior predicted by the sim-
ulation. Although low frequency deformations are perfectly repli-
cated, small differences appear which may be caused by inaccura-
cies in the validation process.

Hat Our second example is a hat of approximately 0.23m in
length, shown in Fig. 7 and Fig. 1. The connectivity of the rod mesh
is automatically computed using a centroidal Voronoi tesselation on
a high-res triangle mesh. This results in an almost hexagonal mesh
consisting of 179 rods, 116 connections, and a total of 1727 nodes.

Five target poses (four of them as rows in Fig. 7) are defined using
a thin-shell model on the triangle mesh. We have designed several
material distributions and used them to create target deformations.
Target poses 1, 2 and 3, use a material for which the front side of the
hat is much softer than the back side. Target pose 4 uses a material
for which the left side of the hat is clearly softer than the right side.
And additional pose was considered using a homogeneous mate-
rial intended to make the hat maintain its rest-shape under gravity.
We fix some points and pull from handles using forces to achieve
interesting deformations. The deformed position of each handle is
considered a boundary condition for our simulated rod mesh.

As shown in Fig. 7, our optimization framework is capable of com-
bining all behaviors into a single hat. The first column shows in
blue the target deformation of the rod mesh, according to the thin-



Figure 6: Resulting deformations for each of the four target poses of the sheet demo. Default deformations (in red) are compared against the
optimized results obtained using our framework (in green). Last column shows the physical printed sheet matching the behavior predicted by
the simulation model. Target configurations of the rod mesh are shown in light transparent gray.

shell model. The second column shows in red the deformation of
the rod mesh with default parameters. The third column shows in
green the final optimized mesh given by our method. We achieve
an overall fitting RMS error of 1.3482mm per node, solely by opti-
mizing cross-section radii. In this benchmark, optimizing the rest-
shape does not improve the solution dramatically, reducing it down
to 1.1128mm.

The images in Fig. 1 provide a visual validation of obtained results,

for two of the target poses considered. Both default and optimized
configurations of the rod mesh have been printed and fixed to a
supporting structure. We tie wires to the constrained points in our
simulated rod mesh and pull from them until approximately reach-
ing their deformed position. The resulting deformation is visually
appealing and resembles our model prediction for both default and
optimal configurations.



Figure 7: Resulting deformations for four of the target poses of the hat demo (shown in blue). Default deformations (in red) are compared
against the results obtained using optimization (in green). An overlay in transparent gray is added to help understand how far the solution
is from the target deformation. Note that the rod mesh is capable of combining all behaviors into a single hat, even though target poses have
been generated using different heterogeneous material distributions.

Dinosaur This example consists of a dinosaur toy of approxi-
mately 0.21m in length, shown in Fig. 8. The connectivity of the
rod mesh is semi-automatically computed from a high-res triangle
mesh. We apply mesh decimation to obtain a low-res version L,
in the order of hundreds of triangles, and construct its dual mesh.
That is, we place a rod connection at the centroid of each triangle
in L and project it into H. Then, we set a rod between two con-
nections if their corresponding triangles in L share an edge. This
results in a mesh consisting of 333 rods with 222 connections and
3219 nodes.

Five target poses are defined using a FEM deformation on H. We
have designed a heterogeneous FEM model, where the tail and the
joints between the legs and the body are notably softer. The head is
heavier and it should tip the dinosaur under gravity. To set boundary
conditions during posing, we select a handle on the mesh and pull
using forces. Using forces instead of translating the handle keeps
the deformations plausible and easier to reproduce with real-world
materials.

The images in Fig. 8 show both simulated and real results. Semi-
transparent gray represents the target pose, as defined by the high-
res meshH deformation using FEM. The first column shows in red
the behavior of the rod mesh for the default parameters. The second
column shows in green the performance of our method. The third
column in Fig. 8 shows the resulting deformation of the real printed
dinosaur. For this demo, we follow the same validation methodol-
ogy described above for the hat, obtaining similar results. Cross-
section radii optimization achieves an already low fitting RMS er-
ror of 0.8622mm. Alternating rest-shape and full resolution ma-
terial optimization is capable of further improving the solution to
0.5564mm.

Smiley Our last result (Fig. 9) is intended to demonstrate the per-
formance of our method for an arbitrary user-defined target pose.
For this demo, we apply a centroidal Voronoi tessellation to a high-
res triangle mesh of a sheet of 0.25m. We use a serious smiley
texture as a biasing weight for face areas. This creates a hexagonal
mesh where cell distribution is determined by the color of the tex-



Figure 8: Resulting deformations for each of the five target poses of the dinosaur demo. Default deformations (in red) are compared against
optimized results (in green). An overlay in transparent gray represents the target surface generated by the FEM model. The right column
shows our visual validation of obtained results, being pulled with wires from constrained points.

ture. In particular, the density is incrementally higher at the face,
mouth and eyes of the figure. The resulting rod mesh is formed by
723 rods, 494 connections, and a total of 2663 nodes.

The single target is manually defined by an artist, geometrically
deforming the original texture. We map each point in the rod mesh
with a texture coordinate and apply the same displacement to create
the target mesh pose. Our intention is to make the character smile
when stretched in one direction; this simple setup entails two main

difficulties. First, for homogeneous radii throughout the mesh, vari-
able rod densities tend to create heterogeneous deformations that
might not match the target texture. Second, artist deformations are
not based on any physical model and so the target pose might not
be reachable at all by a mesh deformed using simple stretch forces.

The images in Fig. 9 compare default and optimized deformations
to the warped texture. An overlay with the typical smiley colors
is added to help understanding how the texture has been deformed



Figure 9: This example shows a planar rod mesh that, when
stretched, produces a smiley. In this example we combine the use
of a mesh with an aesthetic design (i.e., higher rod density in the
mouth and eyes) and an artist-painted target (i.e., the smiley drawn
behind the meshes). On the left, we show the default mesh. When
stretched, its deformation is nearly uniform. On the right, we show
the optimized rod mesh. When stretched, it produces a smiley.

in each case. Our optimization framework is capable of closely
matching the smile with almost no rest-shape deformation close to
the mouth, by placing thick rods below and thin rods above it. Plus,
it approximates the overall shape of the deformed texture much bet-
ter compared to the default configuration. We achieve an overall
fitting RMS error of 0.4854mm.

Simulation Performance We integrate rod dynamics using a
backward Euler integrator with Newton iteration and adaptive time-
stepping. Our rod structure model introduces additional computa-
tional complexity to the discrete elastic rods approach. Computing
the energy gradient and Hessian at connections is costly and in-
volves a reduction in performance. However, we are aiming for
sparse rod structures and so we can expect the overall complexity
to grow linearly on the number of rods. The dynamic simulation is
robust and remains stable using reasonable time steps, despite the
existence of buckling effects.

Table 2 summarizes our performance evaluation of dynamic step
solving for three of our examples. All tests have been performed
using a desktop machine with an Intel i7 4470K processor and 16
GB DDR3-2133 RAM. Here, N denotes the total number of de-
grees of freedom, including both node positions and frame orienta-
tions; dt is the average time step used during dynamic relaxation,
which is subject to adaptivity; t and T indicate the time required,
on average, for a single dynamic step and a static solve respectively.

Optimization Performance Our optimization scheme considers
implicit constraints for each target pose, which are independent
from each other. The step is broken into a set of individual problems
which can be solved separately, and the complexity grows linearly
in the number of target poses. As a counterpart, two operations

Figure 10: Convergence of the optimization for the three printed
results, showing the evolution of RMS error (in log scale). White
dots indicate the iteration from which the optimization alternates
updating radii and rest-shape parameters.

are costly: performing the sensitivity analysis and computing static
equilibriums. This has to be done, at least, once in a step per pose.

The cost of the sensitivity analysis is partially alleviated by incre-
mentally adding resolution to the parametrization. As shown in
Fig. 10, error is greatly reduced in the first steps of the optimiza-
tion, when only one control point per connection is used. However,
the improvement gained by subsequently refining the parametriza-
tion and iterating radii and rest-shape optimization steps is still sig-
nificant. At this stage of the optimization, steps are more time-
consuming so a trade-off must be considered between computation
time and the quality of the solution.

The cost of computing the static equilibrium is highly dependent on
the size of the parameter update, as each computation is initialized
to the previous equilibrium configuration. If the parameter change
is large, it is convenient to start the static solve from the rest con-
figuration instead. Moreover, convergence problems may activate
line-search bisections, leading to additional static solves. Adap-
tively controlling the maximum allowed update length, along with
using the quasi-Newton update, has an important positive impact on
performance. Table 1 shows an approximation of the time needed
to converge to the optimal solution for each presented result.

6 Discussion and Future Work

We have described a computational design method that allows fab-
ricating flexible objects with a desired deformation behavior. We
opt to represent such flexible objects using meshes of deformable
rods, and we show that a key component of our method is a dy-
namic simulation algorithm for rod meshes. Using this simulation
algorithm, we have designed an optimization scheme that allows us
to estimate the material and rest-shape of rods such that the result-

Model N dt (s) t(ms) T (s)
Hat 6971 0.0078 62.956 21.06
Dinosaur 12987 0.0138 108.78 19.321
Sphere 10076 0.0082 118.40 45.321

Table 2: Summary of dynamic simulation performance.



ing object approximates a set of input poses.

While there is no guarantee that the global optimum will always
be found, we have observed that our alternating multiresolution
scheme increases the chances of finding good solutions. Indeed,
we did not encounter a case of objectionable solutions correspond-
ing to local minima in the examples that we considered.

Our technique is currently limited on the range of deformation be-
haviors that it can replicate. Target poses should be physically plau-
sible, and they should not differ much under similar boundary con-
ditions. These limitations could be alleviated by providing the final
user with tools to explore the feasible design space.

We have also seen the importance of selecting an adequate topol-
ogy for the structure; one which does not impose a strong constraint
on in-plane stretch. Both the quality of the results and the applica-
bility of the method could be improved by incorporating topology
optimization. This may require a new definition of the objective
function to appropriately evaluate surface deviation under arbitrary
rod sampling.

To conclude, flexible rod meshes might provide a supporting struc-
ture to be filled or dressed with other materials. Although we ex-
pect the structure to generally dominate the mechanical behavior,
in some cases the filling or dressing material might affect this be-
havior. Capturing the coupling between different materials during
the inverse design process constitutes also an interesting direction
for future investigation.
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BICKEL, B., BÄCHER, M., OTADUY, M. A., LEE, H. R., PFIS-
TER, H., GROSS, M., AND MATUSIK, W. 2010. Design and
fabrication of materials with desired deformation behavior. ACM
Trans. Graph. 29, 4, 63:1–63:10.

BICKEL, B., KAUFMANN, P., SKOURAS, M., THOMASZEWSKI,
B., BRADLEY, D., BEELER, T., JACKSON, P., MARSCHNER,
S., MATUSIK, W., AND GROSS, M. 2012. Physical face
cloning. ACM Trans. Graph. 31, 4, 118:1–118:10.
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A Second Derivatives of Polar Decomposi-
tion

We follow a very similar derivation to the one by Barbic and
Zhao [2011]. We denote with sk(ω) the 3 × 3 skew-symmetric
matrix of a vector ω ∈ R3, i.e., sk(ω)x = ω×x,∀x ∈ R3. Sim-
ilarly, we denote with sk−1(A) the unique skew-vector ω ∈ R3,
such that sk(ω) = 1

2
(A−AT ).

Given a polar decomposition A = RS, its first derivative is:

∂R

∂u
= sk(ω(u))R,

∂S

∂u
= RT

(
∂A

∂u
− ∂R

∂u
S

)
, (12)

with ω(u) = 2G−1 sk−1

(
RT ∂A

∂u

)
,

and G = (tr(S)I− S)RT .

The mixed second derivative of the rotation matrix is:

∂2R

∂u∂v
= sk

(
∂ω(u)
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)
R + sk(ω(u)) sk(ω(v))R, (13)

with
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