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Abstract
Wrinkles and folds play an important role in the appearance of real textiles. The way in which they form depends
mainly on the bending properties of the specific material type. Existing approaches fail to reliably reproduce
characteristic behaviour like folding and buckling for different material types or resolutions. It is therefore crucial
for the realistic simulation of cloth to model bending energy in a physically accurate and consistent way. In this
paper we present a new method based on a corotational formulation of subdivision finite elements. Due to the
non-local nature of the employed subdivision basis functions a C1-continuous displacement field can be defined.
In this way, it is possible to use the governing equations of thin shell analysis leading to physically accurate
bending behaviour. Using a corotated strain tensor allows the large displacement analysis of cloth while retaining
a linear system of equations. Hence, known convergence properties and computational efficiency are preserved
while convincing and detailed folding behaviour is obtained in the simualtion.

Categories and Subject Descriptors(according to ACM CCS):
I.3.5 [Computer Graphics]: Physically based modelling

Keywords: Cloth simulation, polar decomposition, thin shells, subdivision surfaces, finite elements

1. Introduction

Physically-based modelling has become the de facto stan-
dard in cloth simulation. For dynamically deformable sur-
faces, mass-spring systems continue to be the most widely
used simulation technique in computer graphics due to the
low computational cost and easy implementation. While this
method already provides some parameters with physical in-
terpretation, homogeneous materials cannot be simulated
consistently. For authentic material mapping and hence re-
alistic and reliable draping behaviour of cloth, as required
e.g. by the textile community, one must necessarily resort to
continuum mechanics. In doing so, material behaviour can
be reproduced accurately and independent of discretisation
throughout a broad range of resolutions. Generally speaking,
each continuum formulation results in a set of partial differ-
ential equations (PDEs) which has to be discretised in space
and time. The spatial discretisation is usually carried out by
means of finite differences (FDM) or finite element meth-
ods (FEM). While a remarkable amount of effort has been
spent on precisely reproducing the in-plane forces, few ex-

Figure 1: Typical folding patterns on real and simulated fab-
ric using different methods.Left: Buckling due to compres-
sive deformation on a real fabric sample.Middle: same com-
pression state simulated with our method (red). The folds
and specifically the size of the diamond-shaped buckling pat-
tern are reproduced accurately.Right: a standard approach
using simple bending with the same mesh (2232 vertices)
does not yield convincing results (blue). Moreover, using a
finer mesh (5856 vertices) the result does not get qualita-
tively better although it visually changes substantially.
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isting models are concerned with an accurate and consistent
way of modelling bending energy. Nevertheless, the charac-
teristic folding and buckling behaviour of cloth (see Fig.1)
highly depends on bending properties. From the field of en-
gineering, the thin plate equations are known to be an ad-
equate approach to this problem. However, they have not
yet been successfully applied to dynamic cloth simulation.
This is due to the fact that the associated minimisation prob-
lem includes 4th order derivatives with respect to the dis-
placements. A corresponding finite element approach there-
fore requires aC1-continuous displacement field (to be ex-
act the shape functions have to be inH2). The main problem
with this requirement is guaranteeing continuity across ele-
ments which usually necessitates the use of additional vari-
ables (e.g. slopes). Recently, Cirak et al. [COS00] elegantly
solved this problem through the introduction of subdivision
basis functions to finite element analysis. This approach was
originally intendend for static analysis only and we therefore
extend it to fully dynamic textile simulations. This also im-
plies that the frames are not only calculated as a sequence
of quasistatic rest shapes. Instead, we solve the full time de-
pendent differential equations (cf. eq. (28)). In order to keep
the convergence properties of a linear approach and at the
same time account for arbitrarily large rigid body transfor-
mations we use a corotated strain measure. Unlike in for-
mer approaches the physically accurate treatment of bending
leads to an energy minimisation including both membrane
and bending contributions. This, coupled with an implicit
time integration scheme stability ensures that stability issues
never arise.

2. Related Work

Throughout the last two decades there has been a lot of in-
terest in cloth simulation and animation. A complete discus-
sion of the relevant work is beyond the scope of this paper
and the reader is therefore referred to the textbook by House
and Breen [HB00], Volino and Thalmann [VMT00] or the
overview compiled by Ng and Grimsdale [NG96] and Volino
et al. [VCMT05]. In the following, we classify the previous
work relevant to the presented approach into different cate-
gories.

FEM Finite element methods have not yet seen much at-
tention in cloth simulation – at least not in computer graph-
ics. While we only mention the most relevant work here an
extensive list can be found in [HB00]. Most of the exist-
ing FE-approaches are based on the geometrically exact thin
shell formulation presented by Simo et al. [SF89]. Eischen et
al. [EDC96] depart from the fully nonlinear theory and ap-
ply it to cloth simulation using quadrilateral, curvilinear ele-
ments. Because of the buckling behaviour of cloth which can
lead to divergence in the algorithm an adaptive arc-length
control is used. Etzmuss et al. [EKS03] presented a linear
FE-approach based on a plane-stress assumption. Bending is
treated separately from in-plane deformation while a corota-

tional strain formulation is used to account for arbitrary rigid
body transformations. Cirak et al. [COS00] use the formula-
tion of [SF89] to derive equilibrium equations. They intro-
duce a new kind of element based on subdivision basis func-
tions. Unlike former FE-formulationsC1-continuity is en-
sured by the nonlocal nature of the element shape functions
while retaining linearity in the displacements. The method
was later extended to the finite deformation range using non-
linear theory [CO01,GCSO99].

Corotational Formulation The extraction of the rotational
part from the displacement field used in [EKS03] was first
addressed by Müller et al [MDM+02] who used a warping
heuristics. However, due to the inaccuracy of this method
occuringghost forceshave to be treated separately. A more
precise method was presented by Hauth et al. [HS04] who
used the polar decomposition of the deformation gradient.
While the latter work proposes an iterative solution for the
3D case, Etzmuss et al. [EKS03] take a direct way for the
simpler 2D problem. In our approach, the rotation field is
extracted in a similar way. This allows stable treatment of
arbitrarily large rigid body transformations and strict sepa-
ration of curvature and membrane strains.

Bending Models Most of the existing cloth simulation tech-
niques use an angular expression to model bending energy
or forces. Breen et al. [BHW94] use the linear beam the-
ory relating bending moment to curvature. Curvature is ap-
proximated by fitting a circle to the three points defined by
two incident edges. A biphasic expression in terms of the
enclosed angle is then used for approximation. Volino et
al. [VCMT95] use a similar approach but rely on the di-
hedral angle formed by two neighbouring triangles. Choi
and Ko [CK02] propose a bending model simultaneously
accounting for compression and buckling. Specific assump-
tions on the post-buckling state and associated energy lead
to the derivation of bending forces. Bridson et al [BMF03]
identify an independent bending mode where the require-
ment is to not affect rigid body motions and in-plane de-
formations. Thus, they derive directions and relative mag-
nitudes for the bending forces of a basic bending ele-
ment consisting of two neighbouring triangles. Grinspun et
al. [GH+03] use a discrete mean curvature approximation
for a sound definition of bending energy for flexible shell-
like objects. Because the necessary gradient computation is
intricate the use of automatic differentiation is suggested.
A method to use thin shell dynamics with point sampled
surfaces for efficient animation was recently proposed by
Wicke et al. [WSG05]. This approach is particularly useful
for scenes where the topology changes due to cutting or tear-
ing. However, the method is limited to explicit time integra-
tion and the accuracy of the computational framework (e.g.
boundedness of the solution) is not clear.

In most of the above mentioned approaches, the treatment
of bending is physically motivated but not accurate. This
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means that realistic material mapping and resolution inde-
pendence cannot be expected. Since implicit time integra-
tion is mandatory for stable and efficient cloth simulation
(see [BW98]) the approach by Wicke et al. is not an option.
The methods by Bridson et al. and Grinspun et al. (which
have in fact some aspects in common) are more promising.
An implicit treatment of bending, however remains difficult
as second order derivatives of the bending energy are then
required. For this reason Bridson et al. use explicit integra-
tion for their directly derived bending forces. This works
well with small enough time steps and materials without
too strong a resistance to bending deformation. However,
this method is not unconditionally stable anymore. On the
contrary, Grinspun et al. treat bending implicitly and com-
pute the required derivatives using automatic differentiation.
Their method works well for inextensible rigid shells where
the bending energy is largely predominant. For physically
accurate cloth simulation, however, significant in-plane de-
formations can also occur and the interplay between bend-
ing and membrane energy needs to be treated consistently.
Furthermore, their method is not founded on continuum me-
chanics. Therefore curvature and membrane strains are not
explicitly available and modelling anisotropic materials be-
comes difficult. Additionally, independence of discretisation
and convergence with higher resolution to the continuous
equivalent at the same time is not given.

2.1. Overview and Contributions

We present an approach to cloth simulation which mod-
els both membrane and bending energy in a consistent
and unified way. The physical basis for this method are
the Kirchhoff-Love thin shell equations which essentially
combine the theory of elastic membranes with the Kirch-
hoff thin plate analysis. The approach proposed by Cirak
et al. [COS00] is extended to the fully dynamic case, and
moreover we are able to account for arbitrary rigid body
transformations. This is achieved through the use of a coro-
tational strain formulation while preserving the linearity of
the approach and thus retaining the associated advantages in
convergence and computational efficiency. In addition, we
present a simple method to incorporate various boundary
conditions in the context of an implicit numerical solver. Fi-
nally, we compare the computational cost of our method to
commonly used approaches.

3. Physical and Mathematical Modelling

In this section we will briefly describe the physical and
mathematical background necessary for an understanding of
our method. Throughout the remainder of this work Greek
indices will take the values 1 and 2, Latin indices range from
1 to 3 and a comma denotes partial differentiation with re-
spect to the subsequent variable. Additionally, the summa-
tion convention is assumed [Bar89].

3.1. Basics from Continuum Mechanics

A deformable solid in its current state is described by its
configuration mapping

ϕ = ϕ̄+u = id +u : Ω→ R3 , (1)

whereΩ⊆R3 is its parameter domain,̄ϕ the rest state andu
the displacement field. Here, we assumed that the rest state
mapping is simply the identity. Let̄v1 · v̄2 be the scalar prod-
uct of two elemental vectors̄vi = p̄i− q̄ in the rest state with
material points̄pi andq̄. Note that these vectors are related
to their counterparts in the current configuration via

vi = ϕ(v̄i) = ϕ(p̄i)−ϕ(q̄) . (2)

A general deformation measure can now be derived as the
difference of scalar products in the rest and current state:

v1 ·v2− v̄1 · v̄2 = v̄1 · (∇ϕT∇ϕ− id) · v̄2. (3)

Using eq. (1) we can identify from eq. (3) the symmetric
(nonlinear) Green strain tensor as

εG =
1
2
(∇ϕT∇ϕ− id) =

1
2
(∇uT +∇u+∇uT∇u) . (4)

To investigate the internal forces related to a state of strain
inside a deformable solid letΠ denote its total energy

Π = U +W (5)

with elastic strain energyU and potential energyW due to
applied forces. The strain energy is given in terms of the
displacement fieldu as

U =
∫

Ω
ε(u) : σ(u) dΩ , (6)

whereσ is the symmetricCauchy stresstensor which is re-
lated to strain through a material law as

σ = C(ε) . (7)

In stable elastic equilibrium situations the total energy must
be at a minimum [ZT00]. Mathematically, this can be refor-
mulated by setting the first varitation of energy to zero, i.e.
δΠ = 0, which yields the virtual work equation∫

Ω
δε : C(ε)dΩ−

∫
Ω

δu f dΩ+
∫

Ω
δu ρ ü dΩ = 0 , (8)

where the second term accounts for body forces per volume
f and the last term stands for inertial forces. This equation
constitutes the basis for the subsequent finite element dis-
cretisation.

3.2. Thin Shell Mechanics

For the reader’s convenience and in order to keep this work
self contained we proceed with a quick overview of the
Kirchhoff-Love shell theory. The following section is essen-
tially a summary of Cirak et al. [COS00] and we will make
deliberate use of notation and formulae used by them. For
further details on the mechanics of thin shells the reader is
generally referred to [WT03,SF89].
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In the Kirchhoff-Love theory of thin shells the configu-
ration mapping (1) is expressed in terms of the mid-surface
parametrisationx(θ1,θ2) (see Figure2) as

ϕ(θ1,θ2,θ3) = x(θ1,θ2)+θ3a3(θ
1,θ2) , (9)

whereθi denote curvilinear coordinates anda3 is the director
field normal to the surface. In analogy to eq. (1) we write

Figure 2: A material point (red) on the shell’s mid-surface
with basis vector frame in the initial, reference, and current
configuration (from left to right).

x(θ1,θ2) = x̄(θ1,θ2)+u(θ1,θ2) . (10)

From this, tangential surface basis vectors can be defined as

aα = x,α . (11)

Moreover, the covariant tangent base vectors are given
through differentiation of the configuration mapping as

gα = ϕ,α = aα +θ3a3,α (12)

from which the surfacemetric tensoris derived as

gi j = gi ·g j . (13)

Following eq. (4) this leads to the definition of the Green
strain

εG
i j =

1
2
(gi j − ḡi j ) = αi j +θ3βi j , (14)

where α and β are membrane and bending strains, re-
spectively. In the Kirchhoff-Love theory, the directora3
is assumed to stay normal to the surface, straight and un-
stretched:

a3 =
a1×a2

|a1×a2|
. (15)

Consequently, we haveα3β = αα3 = 0. The strains then sim-
plify to

ααβ =
1
2
(aα ·aβ− āα · āβ), βαβ = (āα,β · ā3−aα,β ·a3) .

Departing fromaα = x̄,α + u,α and neglecting nonlinear
terms, this can be recast to an expression which is linear in
displacements [COS00, eq.(21) and (22)]. Resultant mem-
brane and bending stresses follow as

nαβ =
∂Ψ

∂ααβ
, mαβ =

∂Ψ
∂βαβ

, (16)

whereΨ is the strain energy density. The particular form of
Ψ depends on the material law used. In this work we used a
linear isotropic stress-strain relationship which leads to

σ = Cε , (17)

whereC can be written in terms of the Lamé coefficientsλ
andµ asCi jkl = λδi j δkl +2µδikδ jl .

3.3. Strain measures

Introducing the deformation gradientF as

F =
∂ϕ
∂ϕ̄

eq. (4) can be alternatively written in the form

εG =
1
2
(FTF− id) (18)

(see [BW97]). Via polar decompositionF can be split into a
rotational partRand a pure deformationU asF = RU. From
this, it can be seen thatεG is invariant under rotations since

FTF = UTRTRU = UTU (19)

due to the orthogonality ofR. The linearisation of the Green
strain tensorεG yields theCauchystrain tensor

εC =
1
2
(∇uT +∇u). (20)

This tensor is linear in displacements but not rotationally in-
variant anymore. However, if the rotation fieldR is known,
the corotational strain formulation can be used and we obtain
the rotated linear strain tensor:

εCR(ϕ) = εCR(RTϕ). (21)

Determining this rotation field is crucial for our calculation
and will therefore be detailed in section4.3.

4. Subdivision-Based Finite Elements

This section explains how to construct the subdivision-based
finite element solution of the virtual work equation (8). Al-
though well known to computer graphics, the concept of sub-
division is briefly recapitulated, as well as the actual spatial
discretisation. The extraction of rotations from the displace-
ment field is detailed subsequently and finally, the incorpo-
ration of boundary conditions is discussed.

4.1. Subdivision Surfaces

Subdivision is a process for constructing smooth limit sur-
faces through successive refinement of an initial control
mesh. This procedure essentially consists of two steps: first,
the geometry is refined through introduction of new nodes
and second, new nodal positions are computed. For a dis-
cussion of the diversity of subdivision schemes we refer the
reader to [ZS00]. Here, we limit our attention to Loop’s
subdivision scheme because it was used in the approach
by Cirak et al [COS00] which is the basis for this work.
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Loop’s scheme is approximating, i.e. the nodes of the mesh
at a coarser level are not contained in meshes at finer lev-
els. However, besides the usualC1-continuity inherent to
subdivision surfaces the curvature isL2- or square inte-
grable [RS01]. Due to this property, the subdivision basis
functions can be used as shape functions for the FE-solution
of the thin shell equations. In each step of this subdivision
method, the positions of newly inserted nodes as well as
those of old nodes are computed through a linear combi-
nation of vertices from the coarse mesh determined by the
so called subdivision mask. In the case of Loop subdivision

Figure 3: Subdivision masks.Left: Edge mask to determine
new vertex.Middle: Mask for vertex with valence N.

only the immediate neighbours (i.e. the 1-ring) of a vertex
have influence on this computation which gives rise to an
efficient implementation. The corresponding vertex masks
for computing the new positions are shown in Figure3. The
subdivision process can be considered as a linear operator
and consequently be written in matrix form. It is therefore
possible to directly derive properties like derivatives of the
limit surface using an Eigenanalysis of the subdivision ma-
trix. This yields simple expressions that can be computed ef-
ficiently (see Figure4). Besides the evaluation at the nodes

Figure 4: Left: Limit mask for a vertex of valence N.Middle
and right: Masks for associated tangent vectors.

these quantities can also be determined at the interior of the
triangles. The key observation is that in regular settings (i.e.
when all involved vertices have valence 6) Loop’s scheme
leads to generalised quartic box splines. In this case surface
properties in one triangle (orpatch) are completely defined
through the 12 nodal values in the 1-neighbourhood (see Fig-
ure5) and the associated box spline basis functionsNi .
For instance, if we denote the local patch coordinates byθα,
the limit surface can be expressed as

x(θ1,θ2) =
12

∑
i

Ni(θ1,θ2)xi , (22)

Figure 5: Left:1-neighbourhood of a regular patch con-
sisting of 12 nodes.Middle: Irregular patch with one vertex
of valence 5.Right: After a single local sudivision step the
barycenter (depicted in red) lies again in a regular neigh-
bourhood.

wherexi are the nodal positions of the underlying mesh.
In the same way, the displacement field interpolation is ob-
tained from the nodal values. Additionally, differential quan-
tities can be determined as

x,α(θ1,θ2) =
12

∑
i

Ni,α(θ1,θ2)xi . (23)

If the patch has an irregular vertex the box spline assumption
no longer holds and thus interior parameter points cannot
be evaluated. For the following finite element discretisation,
however, only quantities at the barycenter of the triangles are
needed for integral evaluation. Hence, Cirak et al. required
the initial mesh to have at most one irregular vertex per tri-
angle. Then, after one subdivision step the barycenter lies
again inside a regular patch (see Figure5). This process of
subdivision and evaluation of the newly generated patch can
again be expressed as a sequence of matrix multiplications.
Though sufficient for this case, the method can be extended
to quantity evaluation at arbitrary parameter values using the
technique proposed by Stam [Sta98].

4.2. Spatial Discretisation

For the sake of completeness we recapitulate the spatial
discretisation of the underlying PDE which was derived
in [COS00].

With the definition of the membrane and bending strains
and assuming a linear elastic material (eq. (17)) the internal
energy from eq. (8) can be rewritten as∫

Ω
δε : C(ε)dΩ =

∫
Ω

(
δαTHmα+δβTHbβ

)
dΩ , (24)

whereHm andHb are matrices corresponding to the mem-
brane and bending part of the material law. Due to the linear
strain interpolation, we have

α(θ1,θ2) =
N

∑
i

M i(θ1,θ2)ui , β(θ1,θ2) =
N

∑
i

Bi(θ1,θ2)ui

for matricesM i and Bi relating nodal displacementsui to
membrane and bending strain. This gives rise to a formula-
tion of the complete system in the classical form of

Ku = f (25)

with vectors of nodal displacementu and forcesf. The stiff-
ness matrixK can be assembled in the usual element-wise
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fashion

K i j = ∑
e

∫
Ωe

(
MT

i HmM j +BT
i HbB j

)
dΩ = ∑

e
Ke

i j . (26)

The integral in this equation can be evaluated using numeri-
cal quadrature. We point out that due to the compact support
of the shape functions, only a finite number of elements have
a non-zero contribution toK i j . This leads to a sparse matrix
system for which efficient solvers are available. Although
more accurate schemes are possible, we follow Cirak et al.
and use a one-point quadrature rule at the center of the tri-
angles. In this form, the above equations are only valid on
regular patches. However, as mentioned above, in irregular
settings one subdivision step is sufficient for evaluations at
the barycenters. For a patch with irregular vertex of valence
N let S denote the the subdivision operator (see [COS00]).
Further, letP be the projection operator extracting the 12
vertices corresponding to the central regular subpatch (Fig-
ure5, right). Then we can write

Ke
i j =

∫
Ωe

[
STPT

(
MT

i HmM j +BT
i HbB j

)
PS

]
dΩ (27)

and thus simply include the conceptual subdivision step into
the stiffness matrix.

To cover dynamic effects of moving and deforming ob-
jects inertial as well as viscous forces have to be included.
This leads to the second order ordinary differential equation
(ODE) in time

Λün +Du̇n +Ku = f , (28)

whereΛ is the diagonal nodal mass matrix obtained via mass
lumping andD is the viscosity matrix. We use a viscous ten-
sor proportional to the elasticity tensor,D = νC, which is
derived from the Kelvin-Voigt material model [HGSB03].
For the numerical solution, eq. (28) is transformed into a
set of coupled first order ODEs and the implicit Euler time
integration scheme is applied. The arising system of linear
equations (LES) with nodal velocities as primary unknowns
is solved using the conjugate gradient method (details to the
theory and implementation can be found in [EKS03]).

4.3. Corotational Formulation

Provided the deformations stay small throughout the simu-
lation they can be approximated using a linear displacement
formulation. While this is a reasonable assumption for the
in-plane deformation (i.e. stretching and shearing) of cloth,
any practical application will most likely lead to large bend-
ing deformations and rigid body transformations, including
rotation. Since the Cauchy strain is not rotationally invariant,
one has to extract the rotations from the displacement field
as mentioned above in eq. (21).

With the definition of the configuration mapping (eq. (9))
the deformation gradient can be written as

F =
∂ϕ
∂ϕ̄

=
∂ϕ
∂θi ⊗ ḡi =

[
aα +θ3a3,α

]
⊗ ḡα +a3⊗ ḡ3 , (29)

whereḡi are the contravariant basis vectors which are related
to their covariant counterparts viāgi · ḡ j = δi j (see [WT03]).
In this form, the deformation gradient is a (3×3)-tensor and
its polar decomposition would necessitate the use of an it-
erative scheme [HS04]. In our case, we want to further ex-
ploit the inherent two-dimensionality of the problem. The as-
sumed kinematic restrictions on the shell (i.e. that the direc-
tor remains straight, normal and unstretched) effectively ren-
der the decomposition problem two-dimensional since we
have for the resulting stretch tensor

U =

U11 U12 0
U12 U22 0
0 0 1

 . (30)

From eq. (19) we can thus deduce that only the (2× 3)-
submatrixF̃ will be relevant for the computation ofU2. We
therefore compute the principal stretches in the 2D subspace
and find the rotatioñR which transforms the element from
the initial (flat) configuration to its current position by

R̃ = F̃Ũ−1 , (31)

whereŨ is the upper (2×2) submatrix ofU.
In the presented approach, the deformation gradient is not

constant over an element and thus, theoretically, rotations
might be different for each vertex. However, we found that
using the rotation obtained for the barycenter of the patch
for all the vertices involved was sufficient in all of our tests.
Only in the case of very inhomogeneous deformation this
might lead to noticeable approximation errors which, again,
did not appear in practice.

4.4. Boundary Conditions

The evaluation of integrals (appearing in eq. (26)) for ele-
ments on the border of the domain requires special versions
of the subdivision rules. To avoid the treatment of these spe-
cial cases Cirak et al. suggest the use of a method proposed
by Schweitzer [Sch96] which introduces a layer of artificial
vertices around the boundary. The positions of these vertices
are calculated from their original neighbours such that the
application of the normal subdivision rules effectively re-
produces the behaviour of the border rules. When impos-
ing boundary conditions, i.e. constraints on the boundary
nodes, the artificial vertices have to be taken into account.
The case of a fixed boundary with rotations allowed (simply
supported) is depicted in Figure6 (for an in depth discus-
sion of boundary conditions see [GT04]). Now, if the equa-
tion system arising from (28) is to be solved using an iter-
ative scheme like the conjugate gradient method, this inter-
dependence between the input variables actually hinders the
convergence and might even lead to divergence. Fortunately,
this inconvenience can be circumvented through elimination
of the boundary vertices from the equation system and sub-
sequent symmetrization through elemental matrix transfor-
mations.
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Figure 6: Connectivity of an artificial vertex u4 around the
boundary (shown in red). The displacement of u4 is deter-
mined by its local neighbours. In the example, the border is
fixed while allowing rotations.

5. Computational Classification

In this section we give a brief account of the computational
complexity of our method in comparison with standard lin-
ear finite element approaches. It is worth noting that the
build-up process for the matrixK in eq. (27) is very simi-
lar to a common FE-formulation. Since the elemental sub-
matrices are assembled into the global stiffness matrix in an
additive way, the same framework can be used. The evalu-
ation cost for an element matrix in our approach is slightly
higher than for usual methods. This is mainly due to the in-
creased connectivity of the elements: a regular patch con-
tains a neighbourhood of 12 nodes where for standard ap-
proaches there are only three. This means, that more entries
have to be computed and written into the system matrix. In
the course of numerous test cases we found out that, as a par-
tial remedy, the condition of the resulting LES is improved.
Hence, fewer iterations are necessary to solve the system.
Additionally, even with coarser meshes our method delivers
superior results compared to standard FE-approaches, espe-
cially in buckling situations (cf. Fig.1). This also makes up
for a part of the costs spent in the assembly stage. As an ex-
ample, we provide the actual computation times for the com-
pression scene (see Fig.11) where we used a mesh with 2542
vertices and a step size of 0.01s. We used an AMD Athlon64
(2200 MHz) based system with 1GB of main memory. One
simulation second took about 245s with our method and
about 79s with the FE-approach by Etzmuss et al. While
this is roughly a factor of three for the physical simulation,
we point out that processing times for collision detection
and response can be much larger. This is especially the case
when complicated self collisions occur (see the accompany-
ing video). In this case the additional costs of our method
are less significant. Lastly, we recall that this approach is not
aimed at real-time animations but at physically accurate sim-
ulation. The advantages over previous approaches offered by
our method have to be weighted against the increased com-
plexity. We believe that if accuracy is more important than
speed the benefits by far outweigh the drawbacks.

6. Results

In this section we present the results obtained from our coro-
tational subdivision-based FE-method for cloth simulation.
Unless stated otherwise, we used a standard cotton material
with elasticity coefficient (Young’s modulus)E = 5000N/m

and Poisson’s ratioν = 0.25 obtained from Kawabata mea-
surements [Kaw80] of real fabric samples. For the time in-
tegration we used the implicit Euler method with a step size
of 0.001s. Even for large deformations (see e.g.11) stability
was never a problem. In fact, for the test scenes without colli-
sions even a step size of 0.01s led to good results. For scenes
where collisions occur we use a bounding volume hierarchy
detection scheme based on k-dops [MKE03]. The collision
response is an implementation of the robust method by Brid-
son et al. [BFA02]. This approach incorporates a subdivision
postprocess for smoothing sharp folds which fits nicely into
our simulation framework. Below, we mainly show snap-
shots taken from the dynamic scenes we produced. A more
comprehensive set of examples can be found in the accom-
panying video.

In our dynamic test scenarios we chose cylindrical
sleeves, which are frequently encountered with clothes, as
basic primitives (see Figures1,7,9,10,11). This gives us a
well defined case to investigate the quality of our approach
with respect to static buckling and folding situations and
compare them to real test scenarios (Figure1). We believe
that the capability of modelling these kinds of features is cru-
cial for any cloth simulation technique. In the second part of
this section we validate our method through the application
to standard clothes like a sweater or a pair of trousers (see
Figure12).

Figure 7: Different types of folds on a garment’s sleeve gen-
erated by our method.Left: Catenary-shaped folds due to
gravitational forces.Middle: Diagonal folds resulting from
torsional deformation at one end.Right: Buckling due to
compressive deformation.

In the first set of examples (Figure7), a fabric sleeve is
subjected to gravitational loading and shows the expected
catenary-shaped folds (left). The sleeve is then wrung, show-
ing distinct diagonal folds (middle) and finally compressed,
neglecting forces due to gravitation (right). The specific
folds expected in this situation are clearly reproduced by our
method and very similar behaviour can be observed with real
fabrics. The geometric model used in these examples con-
sists of only 494 vertices and is, compared to the detail of
the results, relatively coarse for standard cloth simulation.
Experiments with finer discretisations did not substantially
affect the visual quality of the results. This is due to the fact
that using higher order elements, globally nonlinear effects
can already be captured on a coarser scale compared to sim-
pler linear elements (cf. [MS06]). The global shape of the re-
sults obtained from our simulation is undoubtably due to the
consistent way of modelling bending energy. This can also
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be seen in Figure1 which shows a test case where buckling
occurs due to compressive deformation. Here, the salient
features are the diamond-shaped buckling patterns. In real-
ity (lefmost picture), the size and the number of patterns that
occur depend on the material properties, the thickness and
the radius. With our method (second from left) these effects
can be captured realistically. The second illustration from
the right was computed with a standard FE-approach with
linear basis functions using the bending model of [EKS03].
Clearly, the expected folds cannot be reproduced satisfac-
torily with the simple model. Moreover, using a finer mesh
does not help as can be seen in the rightmost example of
Figure1. The global shape which in this case is dominated
by the size and the number of diamond-shaped folding pat-
terns changes significantly for different resolutions. This is
not the case for our method. The relative discretisation inde-
pendence of our method can also be seen in Figure8.

Figure 8: Front view of twisted fabric sleeves made of dif-
ferent materials.Left: a thin,middle:a ten times thicker ma-
terial. Right: as in the middle but with a ten times stronger
stretch resistance. The number of folds varies with the mate-
rial parameters although the same mesh was used.

Here, it is interesting to note that the number of folds appear-
ing in consequence to torsional deformation only depends on
material parameters and not on the discretisation. In all three
cases we used the same mesh consisting of 1500 triangles
and we applied the same amount of torsion. The number of
folds however varies with different material parameters and
thickness. In fact, this behaviour is not accidental but derives
from the buckling properties of cylindrical shells [AP04].
During the course of further experiments with different ma-
terials we noticed that quite a broad range can be reproduced
convincingly (see Figure10and11).

We also carried out further experiments highlighting the
different deformation modes and features of our method.
Figure9 shows some snapshots from an animation in which
a sleeve is subjected to torsional deformation. One can
clearly notice the forming of folds starting with fine wrin-
kles which merge into bigger folds.

Figure 9: Sequence with increasing torsional deformation
of a sleeve.

Figure 10: Fabric sleeves under gravitational loading with
different material parameters.Right: Mesh used in compu-
tation with 494 Vertices and 936 faces.

Figure 11: Sequence taken from an animation of axial com-
pression of a sleeve with a metal-like material.

Additionally, we ran a simulation of the sleeve compres-
sion scene with the parameter set ofE = 100000N/m,ν =
0.05 and a thickness of 1mm, leading to a behaviour similar
to thin flexible metal (see Figure11). Hence, it is possible
to visually differentiate between different material types by
merely considering the drape and deformation of the object.

In the second part we verified our approach with com-
mon garments such as a sweater or a pair of trousers. The

Figure 12: Left: woman wearing a sweater.Right: a pair of
trousers pinned at the legs is hanging vertically.

trousers and the sweater consist of 1000 and 1600 vertices
respectively. The pair of trousers is fixed at the ends of the
extremities and is subjected to gravity (see Figure12). Here,
naturally appearing folds and wrinkles are obtained and cate-
nary folds as well as buckling patterns can be observed. De-
spite the rather coarse discretisation of the mesh used in this
example detailed features and, at the same time, convincing
global appearance can be reproduced without any need for
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post-processing or non-physical intervention. The left hand
side of the figure shows one frame of a virtual try-on se-
quence of a pullover on a person where the interaction of
our simulation with the collision handling can be observed.

7. Conclusion and Future Work

We proposed a method for consistently modelling membrane
and bending energies arising in the simulation of thin, flex-
ible objects such as cloth. With the advent of subdivision-
based finite elements, cloth simulation can now be founded
on the physically sound basis of the thin shell equations
which covers stretching, shearing, and bending in one con-
sistent theory. A novel achievement of the presented work is
the combination of this new paradigm with a corotational
strain formulation resulting in a completely linear system
which, in turn, leads to an efficient implementation. Since
the time integration of all forces (resp. energies) is carried
out implicitly unconditional stability can be guaranteed. The
presented examples clearly demonstrate the advantages of
the presented method above previous approaches: when phe-
nomena highly dependent on bending properties are encoun-
tered, e.g. the buckling of fabric, usual methods fail with-
out further non-physical intervention while our approach
shows the expected behaviour. Furthermore, common post-
processing steps can be integrated in a very elegant way,
if desired. Since the employed subdivision basis leads to
smooth limit surfaces, the geometry can be locally evaluated
and refined to the desired degree.

A limitation of the presented method is that the limit sur-
face does not interpolate the vertices of the control mesh.
This may become inconvenient if e.g. a garment is assem-
bled from flat patterns in a CAD application and the resulting
mesh is used as the control mesh. This shortcoming could be
resolved in a preprocessing step in which the control mesh
is transformed such that the limit surface approximates best
the originally designed garment mesh. A further restriction
is that we are currently using the control mesh for collision
detection. This, of course, is not as accurate as using the limit
surface itself. However, if the control mesh is not too coarse
this effect can safely be neglected and we have not encoun-
tered any problems in our test cases. Although we obtained
good results even in the presence of complicated self colli-
sions, the use of a specifically designed collision detection
scheme is an option for future work (cf. [GS01]).

The implementation effort and computational costs for
our method are higher than for mass-spring or particle sys-
tems. However, we believe that our method has strong argu-
ments when it comes to trading accuracy for computational
speed: while current computation times are certainly beyond
the interactive range the physical fidelity and versatility of-
fered by this method can be of great interest to anyone wish-
ing to reproduce fabric behaviour in an accurate way. A
closer investigation and quantitative evaluation of our solu-
tion for different material types would be interesting as well.

One part of our ongoing research is the comparison of real
to virtual material parameters. Here, the goal is to re-obtain
the same material parameters in virtual measurements as in
the corresponding real measurements, which where origi-
nally used as input for the model. Additionally, the applica-
tion of multi-resolution numerics is a very promising exten-
sion (cf. [GTS02]) which motivates expectations on highly
increased computational efficiency.
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