
Efficient Computational Methods for
Physically-based Simulation

Dissertation
der Fakultät für Informations- und Kognitionswissenschaften

der Eberhard-Karls-Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Dipl.-Inform. Bernhard Thomaszewski
aus Osterholz-Scharmbeck

Tübingen
2010



Tag der mündlichen Qualifikation: 14.07.2010
Dekan: Prof. Dr.-Ing. Oliver Kohlbacher
1. Berichterstatter: Prof. Dr.-Ing. Dr.-Ing. E.h. Wolfgang Straßer
2. Berichterstatter: Prof. Dr. François Faure

(Université Joseph Fourier, Grenoble,
INRIA Rhône-Alpes)

3. Berichterstatter: Prof. Dr. Raquel Urtasun
(Toyota Institute of Technology, Chicago)



Pour Solenn





Abstract

Physically-based simulation has become an indispensable foundation of modern enter-
tainment. Animated movies and video games are traditional areas of application, but
also contemporary feature films rely more and more on physics-based computer anima-
tion. The computational methods used for simulating deformable surfaces and solids,
fluids, rigid bodies and their mutual interaction have matured significantly over the last
two decades. However, the expectations of spectators and users grow as well, creating
a sustained demand for increased realism, better control, higher efficiency and new vi-
sual effects. This thesis contributes to these objectives in several ways and proposes new
computational methods for cloth simulation, collision handling and rigid body interaction.

Simulating the behavior of cloth and clothing in an accurate and efficient way requires
a solid computational framework, which is provided in Chapter 2. Particular attention is
paid to an accurate modeling of in-plane deformations, which is achieved with a geomet-
rically nonlinear approach based on continuum mechanics and finite elements.

Building on this basis, Chapter 3 addresses the problem of how to model the complex
material behavior of textiles, which typically exhibit nonlinear and direction-dependent
properties. Modeling these properties in full detail is computationally expensive, but
overly simple approximations fail to capture important characteristics of cloth. In order
to resolve these shortcomings, a novel approach is proposed that combines simple elastic
materials and continuum-based deformation constraints into a biphasic, anisotropic model
of cloth.

Modeling internal properties is only one concern when simulating cloth, another being
how to solve the dynamics over time. Striving for fast computation times, many current
methods rely on implicit integration and large step sizes to solve a linearized version of
the equations of motion. This combination is, however, known to suffer from numeri-
cal dissipation, which suppresses surface details and damps motion in an uncontrollable
way. Chapter 4 describes a different approach that leverages asynchronous explicit time
integration to produce low-damped cloth simulations.

Realism and complexity of cloth animations are typically conveyed through detailed
wrinkles and folding patterns, often with many layers of fabric in close proximity. Han-
dling the arising collisions in a robust way is a challenging task that can easily consume
the largest part of the computation time. This problem is addressed in Chapter 5, which
proposes a method to accelerate collision handling by exploiting the processing power of
parallel architectures.

Deformable surfaces interact with their environment through collisions and contact.
This is also the most common form of interaction among rigid bodies, which typically
dominate the scene in interactive applications. The last chapter of this work introduces
a method that extends the range of possible interactions among rigid bodies to magnetic
forces and torques. The presented approach is not only accurate but also computationally
efficient enough to allow simulations of magnetic rigid bodies at interactive rates.

v
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Chapter 1

Introduction

Physically-based simulation is one of the most fascinating disciplines of com-
puter graphics, intersecting with diverse scientific fields and having numerous
areas of applications. As the most prominent one, physics-based methods have
become a vital part of the entertainment industry and are now ubiquitous in video
games, animated movies as well as regular feature films, to name but a few. In
particular, stunning visual effects involving animations of fluids, cloth, deformable
solids, rigid bodies and their mutual interaction are indispensable components of
many contemporary productions. In this context, physically-based simulations
offer a level of realism and complexity that is far beyond the capabilities of tradi-
tional animation techniques such as keyframing.

Producing realistic yet intriguing animations requires powerful computational
methods that leverage tools and techniques from many different fields includ-
ing computational physics, mechanical engineering, applied mathematics, and
numerical analysis. While there are many parallels to technical simulations in
engineering, there are also substantial differences. For example, crashworthiness
codes are employed to deduce safety parameters for automobile construction and
material properties for load-bearing structures are determined on the basis of nu-
merical simulations. Clearly, accuracy and fidelity to real world conditions are of
paramount importance in this setting. By contrast, physically-based simulations
in computer graphics put special emphasis on visual quality, perceived realism,
directability and control as well as computational efficiency. This does not mean
that physical reality should not be tracked closely, but rather implies that higher
accuracy without visual impact is not enough justification for more expensive
computations. Due to these different ambitions, progress in physically-based sim-
ulation requires ingenuity and inventive adaptation rather than mere adoption
and, consequently, a plethora of dedicated methods has emerged from computer
graphics. Thanks to these, computer animations have transitioned from exotic and
clearly artificial effects to supportive and complementing techniques that achieve
seamless blending with real world footage.

1



2 1 Introduction

The prevalence of computer animation is continuously on the rise, but so are
expectations among the audience, which becomes harder to impress and more
sensitive (or skeptical) towards the quality of computer generated content and
its integration. Consequently, there is a continued demand for increased realism,
better control, higher efficiency and new visual effects. While this is a primary
motivation for research into physically-based simulation in general, this thesis is
in particular concerned with the fields of cloth simulation, collision handling for
deformable surfaces, and rigid body interaction.

1.1 Background and Motivation

Thin deformable surfaces are ubiquitous in our environment. Human skin and
membrane tissue are relevant to facial animation and virtual surgery while cloth
simulation is becoming increasingly important for advertisement and film, com-
puter games and also Internet sales. As a particular property of thin surfaces,
the resistance to in-plane deformation is typically much higher than resistance to
bending. Consequently, compressive in-plane loadings lead to instantaneous lat-
eral deflections, which manifest as diamond-shaped buckling patterns for metal
cans or the typical folds that give textiles their characteristic appearance. Com-
pression is therefore hardly observed in cloth, but also stretch deformations occur
only to a limited extent. Woven cloth, in particular, is readily stretched by a few
percent but beyond a certain threshold, the material becomes stiff and strongly
resists further deformation. This biphasic behavior can be explained by the un-
derlying weave structure: the range of small deformations corresponds to the
straightening of yarns, whose actual material resistance is only exerted after this
process. The heterogeneous fabric structure also gives rise to further material
diversity, since the weave pattern can be asymmetric with respect to its main di-
rections, referred to as weft and warp, and the yarns running in these directions
can have different material properties as well. This leads to anisotropic behavior
with considerably different stretch resistance in weft and warp directions and a
typically much lower resistance to shear deformation. From a practical point of
view, modeling this complex and highly nonlinear behavior to full accuracy en-
tails a number of difficulties and requires computationally expensive methods for
robust simulation. Approximate techniques are needed in this context, but despite
their widespread use, mass-spring systems with linear material laws are not suf-
ficiently accurate to capture the anisotropic and biphasic properties of cloth. We
propose an alternative approach which overcomes these problems by combining
continuum-based elastic forces and deformation constraints.

Existing approaches for cloth simulation differ greatly in terms of the mechan-
ical model, but eventually all methods lead to discrete equations of motion that
have to be solved numerically by means of time integration. Implicit schemes such
as backward Euler are preferred for their remarkable stability properties, which
allow them to use large step sizes and thus skip fine-level and rapidly varying
solution details in favor of computational efficiency. This is a mixed blessing, as
it offers both ’a great potential for efficient use, as well as a great danger of misuse’1:

1quote from Ascher and Petzold [AP98]
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striving for fast computation times, many approaches rely on semi-implicit meth-
ods that solve only a linearized version of the problem. But when combined with
large time steps, this approach is known to suffer from severe numerical dissi-
pation. This is a type of artificial damping that leads to a lack of dynamics and
suppresses the formation of fine level details such as small folds and wrinkles.
Using smaller time steps reduces this effect, but it also partly defeats the purpose
of using implicit integration methods. On the other hand, explicit methods do
not suffer from uncontrollable damping, but are typically overlooked due to their
limited stability and thus efficiency. In order to improve on this, we explore an
alternative approach that is based on asynchronous explicit time integration.

Visually appealing cloth animations often exhibit complex folding patterns
with several layers of fabric in close proximity or contact. Furthermore, practi-
cal applications typically also involve interactions with static or moving objects.
It is needless to say that, for physical plausibility, intersections between cloth and
itself or other objects must be prevented under all circumstances. Detecting col-
lisions and preventing intersections is indeed a challenging problem – to which
we collectively refer as collision handling – and robust methods are notorious for
intensive computations. Despite hierarchical methods and numerous extensions
towards higher efficiency, collision handling remains a major bottleneck in cloth
simulations. A promising direction for accelerating computations is to leverage
the processing power of modern parallel computers, which is the approach taken
in this work. Good parallel efficiency requires a maximum utilization of the avail-
able resources. For this purpose, the problem has to be decomposed into a number
of subproblems in order to distribute work evenly among processing units. This is,
however, a difficult problem in the context of collision handling since the number
and locations of collisions change in a dynamic manner and cannot be predicted
in advance. The approach presented in this thesis achieves high parallel efficiency
without compromising the performance of the sequential algorithm.

Virtual environments typically feature only a small number of deformable ob-
jects such as cloth, solids, or fluids while the largest part of the surroundings con-
sists of rigid bodies. Especially in video games, rigid body interactions contribute
significantly to perceived realism and the level of user immersion. The dynamics
of rigid bodies have been studied intensively in celestial mechanics, robotics and
computer graphics. Diverse forms of interactions for rigid bodies have been ex-
plored, including collisions and frictional contact, external forcing or coupling
with other physical objects. But despite the fact that many rigid bodies consist of
ferromagnetic materials, magnetic interaction has been largely overlooked in graph-
ics. Magnets exert forces and torque on each other and their complex interplay
leads to astounding effects which can greatly enrich rigid body animations. This
is particularly interesting for applications such as video games and film, but also
pedagogy can benefit from didactic tools that help to understand the complex na-
ture of magnetism and its many facets. User interaction is indispensable for such
applications and a computational method for magnetic interaction has to be able
to provide simulations at interactive rates while being physically accurate. The
method presented in the last part of this thesis constitutes the first approach in
this direction.



4 1 Introduction

1.2 Overview and Contributions

The following paragraphs provide an overview of this thesis and summarize its
main contributions.

Physical Cloth Simulation (Chapter 2) The second chapter describes a compu-
tational framework for physical cloth simulation, which serves as a basis for the
developments presented in Chapters 3-5. The anisotropic nature of woven fab-
ric demands for an accurate modeling of in-plane deformations and we resort to
continuum mechanics and finite elements for this purpose. Since large element
rotations have to be expected, we choose a geometrically nonlinear approach but
remain with linear triangle elements in order to limit computational costs. A
simple material law with a linear stress-strain response is proposed in order to
complement the deformation constraints introduced in Chapter 3. We furthemore
describe methods for numerical time integration and collision handling, which
will be used and extended in the subsequent chapters.

Deformation Constraints for Biphasic Anisotropic Cloth (Chapter 3) The third
chapter presents a novel approach for simulating anisotropic biphasic cloth, to
which we refer as Continuum-based Strain Limiting (CSL) [TPS09]. The central
idea of this method is to combine a weakly-elastic material with geometric con-
straints that prevent excessive deformation. This model captures the characteristic
material behavior of general textiles better than linear-elastic models while remain-
ing simple and computationally efficient. Previous biphasic methods limited de-
formation along mesh edges, but this is insufficient to reflect the anisotropic prop-
erties of common textiles. By contrast, CSL imposes constraints on a continuum-
based deformation measure, which allows the enforcement of individual thresh-
olds for stretching in weft and warp directions as well as shearing, thus providing
accurate control over deformation. Discrete deformation constraints are formu-
lated in terms of the co-rotational strain tensor, which is discretized using linear
triangle finite elements. We cast local deformation limiting on triangles as a (6× 6)
linear system and propose an efficient method for its solution, which uses matrix
decomposition and precomputations to reduce run time costs.

Asynchronous Cloth Simulation (Chapter 4) Combining semi-implicit time in-
tegration with large step sizes allows for fast cloth simulation, but animations
produced in this way are often plagued by severe artificial damping. In the fourth
chapter of this thesis, we propose an alternative approach [TPS08] that is based
on explicit asynchronous time stepping. The explicit nature of the time integrator,
which was introduced by Lew et al. [LMOW03], effectively eliminates concerns
with numerical dissipation, thus enabling simulations of low-damped cloth. Its
asynchronous nature allows each element to have its own step size, thus elimi-
nating the strict global restrictions of synchronous explicit methods. Simulating
cloth on this basis requires a specific treatment of collisions and, for this purpose,
we propose a three-stage strategy that combines synchronous and asynchronous
collision handling into a robust and efficient algorithm. We further leverage the
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asynchrony of the solver in order to monitor and limit deformations at run time,
thus increasing its stability and efficiency.

Parallel Collision Handling (Chapter 5) Although previous work has consid-
ered cloth simulation on PC clusters, a dedicated method for parallel collision
handling has not been reported in this context. Collision handling is an irregular
problem for which static problem decomposition is insufficient to achieve well-
balanced workloads. We therefore propose a task-parallel approach with fully
dynamic problem decomposition. The sequential basis for collision handling is
formed by state-of-the-art implementations of bounding volume hierarchies and
impulse-based collision response. We cast recursive hierarchy tests as a depth-
first traversal of the corresponding recursion tree in order to dynamically gen-
erate parallelism. This strategy is implemented using multithreaded program-
ming and a distributed task pool model allows dynamic load balancing among
processing units. Our method was developed to run on distributed-memory ar-
chitectures [TB06a, TB07] but is readily extended to shared-memory machines
[TPB07, TPB08].

Magnetic Interaction for Rigid Body Simulations (Chapter 6) The last chapter
of this work describes a computational method for magnetic interaction in rigid
body simulations [TGPS08]. Central to this approach, we derive a model for dis-
crete dipole interaction that allows for fast computations of magnetic fields, forces
and torques. We decompose arbitrarily shaped objects into aggregates of dipole
cells to obtain discrete approximations of magnetic fields. Using dipole expansions
for both fields and forces leads to a symmetric approach which automatically con-
serves linear and angular momenta. Accuracy can be controlled by the number
of dipole cells used to approximate the magnetic field of a given object. Since a
fixed sampling density is wasteful, we exploit the rapid decay of the dipole field
in order to construct an adaptive sampling strategy based on a multi-resolution
object partitioning. This greatly improves computational efficiency and allows us
to simulate dozens of magnetic objects at interactive rates.

1.3 Context and Related Work

This section gives an overview of the existing and related research on physically-
based simulation of cloth, solids and rigid bodies. Its intent is to provide a context
for the subjects treated in this thesis while more detailed and technical discussions
of relevant works are postponed to the corresponding parts of later chapters.

1.3.1 Cloth Simulation

The physically-based simulation of cloth has been an active research area of com-
puter graphics for more than two decades now. Consequently, there is an abun-
dant body of literature which cannot be covered in full here and we will restrict
considerations to the subset with most immediate relevance.
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Physical Models The earliest work concerned with cloth modeling in computer
graphics is due to Weil [Wei86], who used catenary curves to model the static fold-
ing patterns of cloth supported by a number of fixed points. While this method
can be considered as physically inspired, it is mentioned here rather for historical
reasons. In the following, we will not comment on procedural or heuristically
motivated approaches and restrict considerations to physically-based methods2.

Probably the simplest and most direct way of modeling deformable objects is
by means of mass-spring systems, which were first used by Platt and Badler [PB81]
to animate facial expressions. The basic idea is to sample the surface (or volume)
of interest with a set of point masses (or particles) linked by springs or some other
type of interaction potential. Breen et al. [BHW94] used energy functions based
on measured data to simulate the drape of woven cloth with a regular grid of
particles. This approach was originally limited to the static case, but was later
extended to the dynamic setting by Eberhardt et al. [EWS96]. In contrast to these
rather complex particle interactions, Provot [Pro95] described a method that uses
only simple, linear springs. The latter are arranged on a regular grid in order to
resist stretching and compression (along edges), shearing (along cell diagonals),
and bending (two consecutive collinear edges).

Mass-spring and particle systems, collectively referred to as direct methods,
are popular for easy implementation, but a major drawback is that they require
regular discretizations. This is a significant limitation when dealing with complex
garments, which are best modeled with unstructured triangle meshes. Determin-
ing spring coefficients in order to obtain a desired behavior is rather unwieldy for
such meshes [VG98], although good results have been reported for some applica-
tions [BC00, LSH07].

Methods based on continuum mechanics offer more accuracy and flexibility
in this context. Unlike direct methods, there is a clear separation between the
physical model, described mathematically in terms of partial differential equa-
tions (PDEs), and its spatial discretization with finite differences or finite ele-
ments. Terzopoulos et al. [TPBF87] introduced this rigorous approach to com-
puter graphics, using principles from differential geometry and finite difference
discretizations in order to simulate elastic curves, surfaces, and solids. A con-
tinuum mechanics treatment of thin flexible surfaces is in general based on thin
plate or shell theory. While this is the approach favored in textile engineering
(see, e.g., [Llo80, CCOS91, GLS95]), only few works have been reported in the
context of computer animation [EDC96, GKS02, TWS06]. The vast majority builds
on a splitting of membrane and bending behavior, treating only the former with
continuum-based methods using nonlinear [WDGT01] or linear [EKS03] finite el-
ements.

There also exists a number of works that take a middle route between pure
continuum-based approaches and direct methods. Drawing on concepts from
continuum mechanics, Volino et al. [VCMT95] compute in-plane forces on un-
structured triangle meshes. Similarly, also Baraff and Witkin [BW98] take into
account the material’s orientation when computing stretch, shear, and even bend
forces. Eischen and Bigliani [EB00] described a modified mass-spring system on

2see House and Breen [HB00] for a more extensive account of existing work, including procedural
methods
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a regular grid and obtained good agreement with finite element simulations on
simple examples. Correspondences between particle systems and continuum me-
chanics were investigated by Etzmuß et al. [EGS03] for regular discretizations and
by Delingette [Del08] in the context of unstructured triangle meshes. Close to
continuum mechanics are also the approaches described by Volino et al. based on
particle systems with linear [VMT05a] and nonlinear [VMTF09] in-plane deforma-
tion measures.

Most approaches treat bending apart from in-plane deformations. Provot
[Pro95] describes a simplistic approach which uses interleaved springs to model
bending resistance on regular grids. Using the same discretization, Choi and Ko
[CK02] present an extension to this model, assuming that cloth buckles immedi-
ately at the onset of compression. A method applicable to unstructured triangle
meshes was described by Volino et al. [VCMT95], who compute bending forces
using an approximate curvature measure defined on pairs of edge-adjacent trian-
gles. A similar approach was used by Baraff and Witkin [BW98]. A more rigorous
formulation that accounts for a clean separation of membrane and bending con-
tributions are the discrete shell energy by Grinspun et al. [GHDS03] and the
equivalent force formulation of Bridson et al. [BMF03]. While methods based on
discrete curvature measures offer a high level of accuracy, they also involve con-
siderably more intensive computations than simpler models. Subsequent work
therefore aimed at improving performance, making restrictive assumptions on de-
formation in order to derive bending forces that are linear [BWH+06, VMT06b]
or quadratic [GGWZ07] functions of positions. While the aforementioned bend-
ing models are based on standard discretizations, other methods have considered
point-based [WSG05] and discontinuous [KMBG09, KMB+09] discretizations as
well.

An important aspect of physical cloth simulation is the way in which the
complex, nonlinear material behavior of textiles is modeled or approximated.
While earlier methods used quite elaborate models based on measured data
[BHW94, EWS96, EDC96], many subsequent works have turned to linear rela-
tionships between force and deformation for reasons of simplicity and efficiency.
In particular, Baraff and Witkin [BW98] suggest to use ’a very stiff stretch force’ in
order to prevent large in-plane deformations. But besides the fact that this leads
to a considerable increase in artificial damping, it is also not sufficient for captur-
ing the diversity of woven cloth materials, which do not stretch excessively but
oppose only weak resistance to small deformations. This behavior is better ap-
proximated with a combination of weak elastic forces and constraints that prevent
large stretch deformations. This approach was first employed by Provot [Pro95],
who used weak linear springs with iterative length corrections for edges exceed-
ing the deformation limit. The latter became known as strain limiting and was
adapted and extended to a velocity-formulation [BFA02], constraints on triangle
meshes [Tsi06], and general position-based constraints [MHHR06, Mül08]. While
these methods handle constraints in an iterative way, direct schemes that enforce
all constraints simultaneously have been proposed as well. Hong et al. [HCJ+05]
describe a method to enforce linearized length constraints on a subset of a mesh’s
edges. Goldenthal et al. [GHF+07] presented an efficient constraint projection
method for simulating inextensible cloth using quad-dominant meshes. An exten-
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sion to triangle meshes was described by English and Bridson [EB08].
In order to resolve high frequency details such as small folds and wrinkles a

high mesh resolution is required. However, these features are typically sparse and
change locations over time, which motivates research into adaptive discretizations.
There are not many methods to pursue adaptive strategies for cloth simulation, an
exception being the work of Volkov and Li [VL03, LV05], who use discrete cur-
vature measures to trigger dynamic refinement operations on triangular meshes.
Another method in this direction is due to Wu et al. [WDGT01], who combine
dynamic progressive meshes and nonlinear triangle finite elements for adaptive
simulation of elastic membranes and other deformable bodies. Related is also the
adaptivity framework described by Grinspun et al. [GKS02], which refines the
basis functions of a given finite element space instead of geometry. This method
makes no specific assumption on the nature of the elements and can therefore also
be applied to thin-shell simulation.

The methods discussed above are mostly intended for simulating woven cloth
or general textile materials. However, there are also approaches that address the
particular structure of knitwear with particle systems [EMS00] or even at the yarn
level [KJM08].

Numerical Time Integration There are numerous approaches to physically-
based cloth simulation and the ways in which internal forces are computed differ
considerably. However, all of them eventually lead to a set of ordinary differential
equations with respect to time, which have to be solved by means of numerical
time integration. Terzopoulos et al. [TPBF87] already used implicit schemes for
this purpose and investigated both direct and iterative methods for solving the
arising linear system. Subsequent work, however, turned to simpler explicit inte-
gration schemes such as the second order midpoint method used by Volino et al.
[VCMT95] or the fourth order Runge-Kutta scheme employed by Eberhardt et al.
[EWS96].

A paradigm shift was initiated when Baraff and Witkin [BW98] demonstrated
the performance and stability of implicit methods on complex cloth animations.
They used the semi-implicit3 Euler scheme and solved the arising linear system
with a modified conjugate gradients method. This approach was adopted in nu-
merous subsequent work and is still widespread today, although later research
identified considerable numerical damping as an inherent drawback. Hauth et
al. [HE01a] showed that this unwanted effect can be alleviated by solving the full
nonlinear equations and by resorting to higher-order methods such as the second
order BDF-24 scheme. Subsequent work by Choi and Ko [CK02] reported good
stability and low numerical dissipation for a semi-implicit version of the BDF-2
scheme, which was recently also used by English and Bridson [EB08] for animating
inextensible triangle meshes. Another line of work [EEH00, BFA02, HES03, BA04]
investigated IMEX methods, which treat only the stiff part of the equations with an
implicit method while the remaining component is integrated explicitly. Related
to this are also certain variants of the Newmark scheme, which have been used
by Bridson et al. [BMF03] and Grinspun et al. [GHDS03]. Volino et al. [VMT05b]

3Semi- or linearly implicit methods solve only the linearized version of an actually nonlinear
problem, see also [HW02].

4BDF denotes the family of backward differential formulas, see [HW02].
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revisited the implicit midpoint rule and suggested a careful adjustment of damp-
ing parameters in order to improve stability. Addressing computer animation in
general, Kharevych et al. [KYT+06] considered variational integrators, which are
renowned for their momentum and energy conservation over long run times.

1.3.2 Collision Handling

Cloth animations generally involve frequent and complex collisions, which have to
be detected and handled in order to prevent unphysical intersections. Designing
robust and efficient methods for collision handling is a challenging problem and
the number of existing approaches is large. We can only discuss a subset here
and refer to Lin and Gottschalk [LG98] and Teschner et al. [TKZ+04] for detailed
overviews.

Collision Detection The problem of collision detection has been studied inten-
sively in the context of computer animation. Many efficient methods have been
presented for special cases, including collisions between convex (rigid) polyhe-
dra [GJK88, LC91, Mir98], parametric surfaces [VHBZ90], or reduced deformable
models [JP04]. Cloth simulation is mainly concerned with deforming triangle
meshes and in this case, collision detection amounts to determining all pairs of
triangles that are in close proximity or intersect. Since exhaustive testing is pro-
hibitively expensive, acceleration techniques such as bounding volume hierarchies
are required in order to reduce the number of tests. Existing approaches differ
primarily in the type of bounding volume that is used and, among others, meth-
ods based on axis-aligned bounding boxes [vdB98], sphere-trees [PG95, Hub96],
oriented bounding boxes [GLM96], and discrete oriented polytopes (k-DOPs)
[KHM+98, MKE03] have been described. A robust algorithm also has to account
for collisions that occur between the discrete instants dictated by time integration.
For this purpose, Moore and Wilhelms [MW88] used swept bounding volumes
that enclose a triangle’s position at the beginning and at the end of a given inter-
val. This idea of continuous or geometric collision detection is readily extended to
bounding volume hierarchies [Pro97, BFA02].

Bounding volume hierarchies can also be used to detect self-collisions, but the
standard approach is inefficient in this case. Bounding volumes of adjacent regions
(and triangles) of the surface necessarily overlap such that a large number of tests
has to be performed even if there are no self collisions. Volino and Magnenat-
Thalmann [VMT94] combine adjacency information between surface regions and
curvature measures in order to skip tests for flat areas. Similar in spirit are the nor-
mal cones used by Provot [Pro97] to determine whether a given surface patch can
contain self intersections. An extension of normal cones for continuous collision
detection has been presented by Tang et al. [TCYM09].

The hierarchies of deforming objects have to be updated regularly in order
to reflect changes in geometry. An optimal fit of bounding volumes is obtained
when rebuilding the hierarchy from scratch in each time step. This is, however,
quite costly and merely refitting the existing bounding volumes while maintain-
ing the same structure is typically more efficient [LAM01, MKE03]. In order to
further accelerate the update process, Mezger et al. [MKE03] propose a method
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that exploits temporal coherence to update only those parts of the hierarchy that
have changed significantly. A similar goal is pursued by Zachmann and Weller
[ZW06], who use kinetic data structures in order to minimize hierarchy updates.
The work of Otaduy et al. [OCSG07] addresses the problem of topology changes
during simulation. By combining dynamic refitting and restructuring techniques,
efficiency is maintained even in case of fracturing and tearing.

There also exist several methods that aim at saving time during hierarchy
traversal. Li and Chen [LC98] describe a method for incremental collision de-
tection that uses so called separation lists. For a given pair of hierarchies, a sep-
aration list keeps track of the bounding volume pairs that separate overlapping
from non-overlapping parts of the corresponding trees. Instead of starting the
hierarchy traversal at the root nodes in each time step, the detection process is
warm-started with the nodes from the separation list. While this approach can
greatly reduce the number of overlap tests during detection, it introduces over-
head in cases when formerly close surface parts are separating again. The list
has to be rebuilt in such cases in order to maintain efficiency, but deciding when
to do this is typically difficult. Another line of work has considered stochastics
in order to balance robustness against performance [KZ03, KNF04]. While these
methods may be interesting for time critical applications, their non-conservative
nature seems inappropriate for general computer animation.

A collision query (with bounding volume hierarchies) results in a set of po-
tentially interfering triangle pairs, which need further processing before collision
responses can be computed. To this end, triangle pairs are first decomposed into
sets of vertex-triangle and edge-edge pairs. Geometric distance tests are then per-
formed to determine the primitive pairs for which a collision response needs to be
generated. If the corresponding triangle pair results from a continuous collision
detection step, the exact time of impact (if any) between the primitives has to be
determined. For vertex-triangle pairs, Moore and Wilhelms [MW88] cast this prob-
lem as a fifth order polynomial. Provot [Pro97] reduced the problem to finding the
roots of a third order polynomial and generalized the formulation to accommo-
date edge-edge collisions. Issues of robustness have been addressed in [BFA02].
The involved computations are quite expensive and much time can be saved by
minimizing the number of pairs for which exact tests have to be performed. In
order to avoid redundant primitive tests, Wong and Baciu [WB06] describe a mark-
ing scheme which assigns the vertices and edges of a given mesh to its triangles.
In this way, each primitive pair is covered by exactly one triangle pair, thus elimi-
nating duplicate tests. A similar method was described by Curtis et al. [CTM08].
The primitive bounding boxes described by Hutter and Fuhrmann [HF07] are a
complementary approach that can be used to eliminate non-interfering primitive
pairs before performing more expensive distance computations.

Bounding volume hierarchies are presumably the most widely used approach
for collision detection in cloth simulation. However, there are also alternatives,
such as methods based on spatial subdivision. In the simplest case, a uniform
spatial grid is used to subdivide the scene into regular cells, to which the primi-
tives of deforming and rigid objects are registered. If two primitives are assigned
to the same cell, they are considered as collision candidates and further tests are
performed. This approach was first used by Turk [Tur89] in the context of molec-



1.3 Context and Related Work 11

ular dynamics and extensions for cloth simulation have been presented in [ZY00].
Storing the entire grid leads to excessive memory requirements, which is why
sparse grids that only store occupied regions have been proposed. Teschner et al.
[THM+03] describe a hash function that maps identifiers of occupied cells to their
storage location. However, a drawback of this method is that different cells can
be mapped to the same location. A hash function that guarantees injective cell
mapping was described by Lefebvre and Hoppe [LH06].

Another alternative is to use distance fields in order to detect collisions be-
tween deformable surfaces and complex (static) rigid objects. A continuous dis-
tance field is a scalar function that assigns each point in space its distance to the
closest point on a given surface. Discrete distance fields sample this function on
uniform [OF02] or adaptive grids [FPRJ00]. Distance fields allow fast proxim-
ity queries for vertices but further treatment is necessary in order to avoid edge
intersections. Another drawback is the high computation time required for con-
structing the distance fields. Consequently, they are either limited to static rigid
objects or have to be precomputed for animated models [BMF03].

Another line of work has explored image-space techniques, which exploit the
rasterization power of graphics hardware to accelerate collision detection. One
of the first methods aimed at cloth animation is the the work of Vassilev et al.
[VSC01], who project the scene along various directions and use the resulting
depth maps in order to find collisions. While this method was limited to col-
lisions between cloth and convex rigid bodies, generalizations to self-collisions
and arbitrarily shaped objects have been described by Baciu and Wong [BW04]
and Heidelberger et al. [HTG04]. Related is also the work of Govindaraju et
al. [GKJ+05], who use chromatic mesh decomposition and GPU computations
for efficient culling among non-adjacent triangles. Subsequent work from the
same group suggested discrete Voronoi diagrams [SGG+06], which can account
for topology changes and additionally support local distance and penetration
queries. A method that combines image-based collision detection and response
was recently described by Faure et al. [FBAF08].

Collision Response Once all primitive pairs that need treatment are determined,
appropriate collision responses have to be generated in order to prevent intersec-
tions. We can essentially distinguish between three types of responses, which are
forces, constraints, and impulses. However, some approaches also use combina-
tions thereof.

Terzopoulos et al. [TPBF87] derived repelling forces from the gradient of a
potential field defined around rigid objects. Moore and Wilhelms [MW88] tem-
porarily insert elastic springs that push too close points apart. Carignan et al.
[CYTT92] use a modified formulation that results in a completely inelastic colli-
sion response.

Baraff and Witkin [BW98] combine damped spring forces for self collisions
and constraints for object-cloth collisions. Both are integrated in the implicit time
stepping scheme: spring forces and their derivatives are added to the equations of
the implicit solver while constraints are enforced by appropriate filtering during
the conjugate gradients iterations.

Provot [Pro97] handles collisions with momentum preserving impulses that,
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for a given vertex-triangle or edge-edge pair, prevent further approach. His for-
mulation covers elastic as well as inelastic collisions and also accounts for simple
Coulomb friction. This model was also adopted in [BFA02] and extended by re-
pelling impulses that push primitives in too close proximity apart.

The above described methods span the diversity of basic collision response,
but on their own they are not sufficiently robust to reliably prevent intersections.
The impulse-based response, for instance, resolves collisions for a given primitive
pair but intersections can still occur for primitives involved in multiple collisions.
Provot [Pro97] proposed an iterative strategy to solve this problem. After col-
lisions have been treated with stopping impulses an additional detection step is
performed. If there are remaining intersections, all vertices participating in a given
set of multiple collisions are gathered into an impact zone, which is then moved
rigidly. This step is repeated, leading to growing and merging impact zones, until
finally all intersections are resolved. This approach was adopted by Bridson et
al. [BFA02] who extended Provot’s method to a three stage framework for robust,
iterative collision handling. This method consist of (1) a single pass of simple
collision detection and response via stopping and repelling impulses, (2) possibly
multiple iterations of continuous collision detection and impulse-based response,
and (3) treatment with rigid impact zones, possibly requiring multiple iterations.
This framework appeals through efficiency, versatility and robustness, which is
why it has found widespread use in research as well as industry.

All problems are, however, not solved, which is testified by various subsequent
works and improvements. For example, Harmon et al. [HVTG08] resolve the
problem that rigid impact zones eliminate not only those velocity components
that cause collisions, but also tangential motion. Sifakis et al. [ES08] propose
another replacement for the second stage (and indirectly also the third stage) of
[BFA02], which uses the metaphor of an incompressible fluid in order to couple
primitive responses globally, leading to a system of nonlinear equations.

A limitation of impulse-based collision handling is the fact that there is no cou-
pling between physics and collisions. Consequently, rapidly moving characters or
high-velocity self collisions can induce significant amounts of deformation, which
destabilize the simulation. The approach described by Otaduy et al. [OTSG09]
addresses this problem by directly coupling the time integration of physics and
collision response within a constrained dynamics formulation.

Even with robust collision handling methods, there can still be extreme situa-
tions in which not all collisions are resolved and this requires additional treatment.
Resolving intersections a posteriori has been an early concern in cloth simulation
[VCMT95], but more robust methods have been presented recently for this pur-
pose. Baraff et al. [BWK03] proposed a method that uses global intersection anal-
ysis to recover a valid configuration for meshes tangled due to self-intersecting
character motion. The approach described by Volino and Magnenat-Thalmann
[VMT06a] minimizes the length of intersection contours, which leads to further
improved robustness and, in particular, allows the resolution of intersections in-
volving mesh boundaries.

Collision response is necessary to prevent intersections but it is also the context
for dealing with frictional contact. While earlier approaches used spring forces for
this purpose, more recent methods rely mostly on impulse-based implementations
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of isotropic [Pro95, BFA02, SSIF08] or anisotropic [PKST08] Coulomb friction. A
rigorous impulse-based treatment of frictional contact can also be found in the
work of Cirak and West [CW05], who use velocity decompositions in order to
compute accurate, momentum-conserving contact responses.

Parallel Methods Despite significant advances over the past two decades,
physically-based cloth simulation is still very time consuming. This moti-
vates research into parallel methods and several approaches have been pre-
sented, targeting distributed-memory [ZFV04, KB04, SSIF08] and shared-memory
[RRZ00, LGPT01, GRR+05] architectures. But in spite of its importance for gen-
eral animations, only Romero et al. [RRZ00] explicitly addressed the problem of
collision detection. Parallel collision detection has previously been studied in the
context of various applications from the engineering domain, e.g., for crash impact
simulation [BASH00] or projectile penetration [Kar03]. Most of these applications
are concerned with volumetric solids simulations in which contact is restricted to
a small set of surface elements. This is considerably different from cloth simula-
tions, where every element is a surface element that can be involved in multiple
external and internal collisions. Closer to the needs of computer graphics is the
parallel method by Lawlor et al. [LK02], which is based on spatial subdivision
with a sparse uniform grid. Though promising results were reported for this ap-
proach, its parallel efficiency is critically influenced by the voxel size and finding
a value that leads to balanced workloads while keeping parallel overhead low is
difficult.

The first parallel method explicitly tailored for cloth simulation is due to
Romero et al. [RRZ00] who propose an approach based on bounding volume
hierarchies and separation lists. However, only the separation lists are processed
in parallel such that the hierarchy test is bound to become a sequential bottleneck,
thus posing severe limits on scalability.

1.3.3 Rigid Body Interaction

Volumetric objects are pervasive in virtual environments. If deformations are neg-
ligible or unimportant, it is wasteful to use discrete elastic models with many
degrees of freedom. A more efficient approach is to approximate such objects as
ideal rigid bodies, which can translate and rotate, but not deform. The spatial
configuration of a rigid body is described by the position of its center of mass and
its current orientation, which amounts to six degrees of freedom. The governing
principles of rigid body dynamics are well known an detailed expositions can be
found in most standard textbooks on classical mechanics, such as [Arn97]. A good
overview and practical introduction to the field can be found in the course notes
by Baraff [Bar01]. In the following, we will briefly comment on the major chal-
lenges in rigid body simulation and summarize some of the developments that
emerged in the context of computer graphics.

Collisions, Contact, and Friction The dynamics of rigid bodies are governed by
a set of ordinary differential equations, consisting of a linear part according to
Newton’s second law of motion and a rotational part described by Euler’s equa-
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tions [Arn97]. Integrating these equations for isolated rigid bodies is not partic-
ularly difficult, but simulating multiple bodies with collisions and contact is a
challenging problem. The first methods in graphics that account for such interac-
tions are due to Moore and Wilhelms [MW88] and Hahn [Hah88]. Collisions and
contacts between pairs of objects were treated sequentially and in isolation, using
analytically computed impulses or penalty forces to model the response. But de-
spite later improvements by Mirtich and Canny [MC95], a lack of accuracy with
respect to frictional contact remained a major drawback.

Another class of approaches are constraint-based methods, in which the si-
multaneous computation of all contact responses is cast as a global optimization
problem [Cot77, Löt84]. This involves formulating a set of (inequality) constraints
and (complementarity) conditions on forces and accelerations at contact points. In
computer graphics, the first approaches in this direction are due to Baraff, who ini-
tially considered only frictionless contact [Bar89a]. Subsequent work by the same
author [Bar91, Bar94] addressed frictional contact but in this case, the formulation
in terms of accelerations and forces cannot guarantee the existence of solutions.
However, this issue can be resolved by formulating contact processes in terms of
velocities and impulses [ST96, AP97]. See also Stewart [Ste00] for further details
on constrained-based modeling of frictional contact and a more extensive account
of existing methods.

The approaches mentioned so far (may) perform well for small problems but
become inefficient when applied to systems with large numbers of rigid bodies.
One line of subsequent research improved on this by proposing, for instance, sim-
plified physics [Mil96], event-based time stepping [Mir00] or efficient techniques
based on local [KEP05] or global [MS01] optimization. The impulse-based method
by Guendelman et al. [GBF03] aims at simulating complex stacking effects such
as large piles of nonconvex objects. Collisions and contact are treated in two sep-
arate passes and convergence of the latter is accelerated using shock propagation.
An extended method with improved computational efficiency and better accuracy
was described by Erleben [Erl07]. Noteworthy in this context is also the work by
Kaufman et al. [KSJP08] who addressed the simulation of rigid and deformable
bodies in frictional contact.

Articulation, Control, and Coupling Another early emphasis of rigid body sim-
ulation in computer graphics has been the animation of articulated figures, in par-
ticular human locomotion [AG85]. A variety of constraints can be used to model
articulations (see, e.g., [IC87]) and there are numerous methods for simulating
the resulting systems, including those based on reduced coordinates [Fea87], La-
grange multipliers [BB88b, Bar96] or impulses [WTF06].

With conventional methods, a user can only influence initial values and sim-
ulation parameters, but practical applications typically require additional control
over animations. As a straightforward approach, keyframe constraints can be in-
tegrated into dynamic simulations using inverse kinematics [IC87], but the arising
artificial forces can lead to implausible motion. A more rigorous approach is to
use spacetime optimization [WK88, Coh92]. The latter computes control forces
and motion trajectories that satisfy user-specified constraints while minimizing
an objective function, such as the work done by the muscles of a humanoid fig-
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ure. Other approaches do not rely on optimization but use control algorithms to
compute feedback forces that are directly integrated with the simulation [RH91].
While these methods are primarily aimed at articulated rigid bodies with muscle-
like actuators, other approaches have investigated the control of animations in
the absence of self-propelling forces. In this case, a set of parameters (e.g., initial
values, material properties, or collision normals) is sought such that the resulting
simulation matches the desired behavior [BB88b, CF00]. The latter can also be
specified interactively via position, orientation and velocity constraints [PSE+00]
or by sketching trajectories [PSE03]. Another approach is to use time-reversed
simulation [TJ08] to compute directed physical motion by stepping a system back-
ward in time from a given target configuration.

Finally, complex animations may also involve interactions of rigid bodies with
other non-rigid systems, for which different levels of coupling can be pursued
[OZH00]. A large number of works has addressed the coupling of rigid bodies and
fluids (including [YOH00, CMT04, KFCO06, RMSG+08]), but also the interaction
with deformable models has been investigated [SSIF07, SSF08].





Chapter 2

Physical Cloth Simulation

This chapter describes the computational framework for physically-based cloth
simulation which serves as the basis for the developments presented in Chapters
3 to 5. A cloth simulator consists of a number of different components, each re-
quiring careful design choices. The most fundamental question is how to best
translate the mechanical behavior of fabrics into a discrete model that is amenable
to efficient computer implementation. To answer this, we must define the macro-
scopic properties that have to be reflected by the discrete approximation.

Textiles are thin flexible materials that can deform into complex shapes with
characteristic folding and buckling patterns as illustrated in Fig. 21. The visual ap-
pearance of cloth is usually dominated by large bending deformations, but the way
in which folds and wrinkles form also depends strongly on in-plane properties.
The latter are often direction-dependent and, due to the yarn structure, especially
woven fabrics typically exhibit a nonlinear and anisotropic stretch resistance.

Figure 2.1: Typical folding and buck-
ling patterns of cloth.

Mass-spring systems are well liked for
their simplicity, but while good results can
be obtained, their inherent dependence on
discretization is a severe practical limita-
tion. By contrast, continuum mechanics
offers a sound basis for a discrete model
which is flexible with respect to discretiza-
tions and allows accurate control over ma-
terial behavior. Thin shell theory [SF89,
WT03] provides the appropriate context for
bending-dominated problems, but the high
smoothness requirements and the associ-
ated computational costs have so far pre-
vented a widespread acceptance for cloth
simulation. A widely used and computa-
tionally more attractive alternative is to ne-
glect the coupling between membrane2 and bending mechanics and to treat each
component separately. As for the bending part, a number of discrete models that
offer good accuracy but avoid the complexity of thin-shell approaches have re-

1frame selected from Example 3.4 of Chapter 3
2We will collectively refer to stretching and shearing as membrane deformation in the remainder.
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cently been presented. The membrane part can be modeled accurately and at
comparatively low computational costs using continuum mechanics and finite el-
ements. Combining a discrete bending model with a continuum-based membrane
model thus constitutes a good balance between accuracy and efficiency, which is
why we adopt this approach in this work. The resulting mechanical model as well
as the remaining components of the cloth simulation framework are described in
the remainder of this chapter, which is structured as follows.

Overview Being the basis of the membrane model, we start by summarizing the
relevant concepts of continuum mechanics in Sec. 2.1. This includes measures
for strain and stress as well as their interrelating material laws, which are chosen
in order to accommodate finite deformations and anisotropic material behavior.
Discrete internal forces are derived in Sec. 2.2 and, in particular, a finite element
method based on linear triangles is proposed for the membrane part. Having
established the discrete equations of motion, we turn to their numerical solution
and discuss several time integration schemes in Sec. 2.3. The cloth simulation
framework is completed by a robust collision handling method, which is described
in Sec. 2.4. The chapter concludes with a summary of the presented material in
Sec. 2.5.

2.1 Continuum Mechanics

In the idealized view of continuum mechanics, it is assumed that all quantities of
interest are continuously distributed over the problem domain under considera-
tion. Although textiles typically possess a heterogeneous structure, the continuum
approximation is valid for most fabric materials if only macroscopic behavior is
considered.

We start by introducing the concepts of deformation and stress in the three-
dimensional setting and subsequently specialize to two dimensions in the context
of material laws. For conciseness, we only address parts that are directly relevant
to this work and refer to the textbooks by Bathe [Bat96] and Bonet and Wood
[BW97] for a comprehensive introduction to continuum mechanics.

2.1.1 Deformation

Let B denote a deformable body occupying a spatial region Ω̄ ∈ R3 and let its
motion be described by a time-dependent function ϕ : Ω̄× [0, ∞)→ Ω ⊂ R3. The
mapping ϕ transforms positions of material particles in the initial configuration to
positions in the current configuration as

xi(t) = ϕ(xi(0), t) . (2.1)

ϕ is commonly referred to as the configuration mapping. For brevity, we write

xi = xi(t) , x̄i = xi(0) and ϕ(·) = ϕ(·, t) . (2.2)

A central aspect in the simulation of deformable media is how to measure de-
formation. Consider two neighboring material particles x̄1 and x̄2 such that
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dx̄12 = x̄2 − x̄1 is of infinitesimal length. In the current configuration, we have

x1 = ϕ(x̄1) , x2 = ϕ(x̄2) = ϕ(x̄1 + dx̄12) and dx12 = x2 − x1 . (2.3)

Using a Taylor series expansion and truncating after linear terms, we can write

dx12 = ϕ(x̄1 + dx̄12)− ϕ(x̄1) ≈ ϕ(x̄1) +∇ϕ · dx̄12 − ϕ(x̄1) = ∇ϕ · dx̄12 . (2.4)

The gradient of the deformation mapping, or deformation gradient, is a fundamental
quantity and we define

F = ∇ϕ =
∂ϕ

∂x̄
. (2.5)

Visually, F maps vectors in the initial configuration to their deformed counterparts
as dx = Fdx̄. Closely related to this quantity, we can now define a deformation
measure as follows. Let x̄3 denote the position of an additional material particle
in close vicinity to x̄1 and define dx̄13 = x̄3 − x̄1. A suitable deformation measure
should capture pure stretching but also angular changes between pairs of vectors.
This requirement is satisfied by the difference in dot product,

dxt
12dx13 − dx̄t

12dx̄13 = dx̄t
12(FtF− I)dx̄13 . (2.6)

The middle term is independent of the choice of material vectors and is therefore
a general description of deformation, which leads to the Green strain tensor

E =
1
2
(FtF− I) . (2.7)

The Green strain is a nonlinear tensor, which is clearly symmetric and additionally
invariant under rigid rotations. To see this, note that every deformation F can be
decomposed3 into a rotational part R and a pure stretch tensor U as F = RU.
Introducing the right Cauchy-Green tensor C as

C = FtF = UtRtRU = U2 , (2.8)

the rotation invariance of E = 1
2 (C− I) becomes evident.

If only small displacements are expected, it is often sufficient to approximate
(2.7) by a linearized strain measure. Introducing the displacement field u as

ϕ(x̄) = x̄ + u , u = x− x̄ , (2.9)

the deformation gradient can be written as

F = I +∇u , (2.10)

where I ∈ R3×3 denotes the identity matrix. This allows us to express E in terms
of displacements as

E =
1
2
(∇ut +∇u +∇ut∇u) . (2.11)

3Every real-valued, non-singular matrix can be expressed as the product of an orthogonal and a
positive semi-definite matrix. This is decomposition is known as polar decomposition [GVL96].
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The linearization of E amounts to dropping nonlinear terms from the above ex-
pression and we obtain the linear Cauchy strain tensor as

ε =
1
2
(∇ut +∇u) . (2.12)

This tensor enjoys widespread use in computer graphics since its linear nature
promises good computational efficiency. A fundamental shortcoming is, however,
the fact that ε is not invariant under rotations. This is unfortunate for the simula-
tion of deformable surfaces, which typically undergo large rotational motion. In
order to obtain a linear and yet rotationally invariant measure, several methods
have been proposed to extract the rotational component of the displacement field
prior to strain computation4. Supposing that the rotation field R can be computed
throughout the domain, the co-rotational strain tensor can be defined as

εcr(Ru) = ε(RtRu) = ε(u) . (2.13)

In order to accurately account for finite rotations, we build the membrane model
on the basis of the Green strain, resulting in a geometrically nonlinear approach.
However, the co-rotational strain tensor will be used in the context of continuum-
based deformation limiting, which is described in Chapter 3.

2.1.2 Stress and Equilibrium

Traction loads on the boundary of an elastic solid as well as body forces, e.g., due
to gravity provoke balancing internal forces. The distribution of internal forces is
described by the Cauchy stress tensor σ. This symmetric tensor maps normal di-
rections n to traction force densities t acting on the corresponding material plane,

t(x, n) = σ(x) · n , x ∈ Ω . (2.14)

The relation between internal stress and externally applied loads is described by
the point-wise equilibrium conditions of continuum mechanics, which are5

div σ(x) + b(x) = 0 , x ∈ Ω , (2.15)
σ(x) · n(x)− s(x) = 0 , x ∈ ∂Ω . (2.16)

In these expressions, b and s are externally applied body force and surface traction
densities and n denotes the outward normal on the boundary of the solid ∂Ω.

The Cauchy stress tensor is a spatial quantity that maps between vectors in the
deformed configuration. However, it is computationally more convenient to use
only quantities that refer to the initial configuration. To this end, we introduce
the second Piola-Kirchhoff stress tensor S, which is a symmetric material quantity
that maps unit directions in the initial configuration to force densities in the same
space. S is related to the Cauchy stress σ via the so called Piola transformation,

S = JF−1σF−t , where J = det F . (2.17)

4for graphics-related works see, e.g., [MDM+02, EKS03, HS04, TWS06, MTPS08]
5see Appendix A.1
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Stress can develop in a deformable body as an elastic response to deformation,
but also material viscosity, plasticity or thermal effects can be sources of internal
forces. We will consider only elastic and viscous stress contributions in this work
and describe a corresponding material law in the following section.

2.1.3 Material Laws

We have so far only considered the general case
of three-dimensional elasticity, for which strain
and stress tensors can be expressed as symmetric
(3× 3) matrices. For thin membranes, however, a
reduction to two dimensions can be achieved by
introducing appropriate kinematic assumptions.

To this end, we assume that E is expressed
with respect to a local coordinate system with
mutually orthogonal basis vectors [b1 b2 b3] such
that b1 and b2 are aligned with the material’s
main directions and b3 corresponds to the thick-
ness direction as illustrated in the Figure to the
right. In particular, we define b1 as the weft and b2 as the warp yarn direction for
woven fabrics. In this setting, the components of E can be interpreted as follows:
E11 and E22 describe the stretch deformation in weft and warp direction, while E12
corresponds to in-plane shearing. Furthermore, Ei3 for i = {1, 2} and E33 describe
shearing and stretching in the thickness direction, respectively.

Cloth is typically thin and it is therefore reasonable to assume that stresses
in the thickness directions are negligible compared to the in-plane components
[ZT00a]. In terms of the second Piola-Kirchhoff tensor S, this condition of plane
stress is expressed as

Si3 = S3i = 0 for i ∈ {1, 2, 3} .

We will additionally assume that there are no shear deformations in the thickness
direction6,

Ei3 = E3i = 0 for i ∈ {1, 2} .

Note that the stretch deformation E33 in thickness direction can be nonzero, but
it is only a function of the in-plane stresses and can therefore be eliminated. This
effectively reduces the analysis to two dimensions, leaving the in-plane compo-
nents of stress and strain as the primary problem variables. Having restricted the
computations in this way, we can now turn to the actual relation between strain
and stress.

For a purely elastic7 material, the stress is only a function of the current defor-
mation and there exists an elastic potential Ψ such that

S(C) = 2
∂Ψ(C)

∂C
. (2.18)

6This is one of the Kirchhoff-Love assumptions for thin plates [WT03].
7The technically correct term is hyperelastic, which denotes an elastic material with path-

independent behavior [BW97].
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This formulation also emphasizes the fact that S is invariant under rigid rotations,
since it depends only on the rotation-free tensor C, rather than directly on the
deformation gradient F. The elastic stress is in general a nonlinear function of
positions, but we can distinguish two types of nonlinearity in this context: a geo-
metric nonlinearity that refers to the relation between strain and positions, and a
material nonlinearity that refers to the relation between stress and strain. In order
to deal with finite rotations in a stable and accurate manner, we choose the non-
linear Green strain instead of a linear deformation measure. We elaborate further
on the advantages of this choice at the end of Sec. 2.2.1. Having settled for the
Green strain, the simplest model is therefore geometrically nonlinear, but materi-
ally linear. If, additionally, a completely isotropic material behavior is assumed,
we arrive at the well-known St.Venant-Kirchhoff model, whose elastic potential is
given as8

Ψiso =
1
2

λtr(E)2 + µ(E : E) . (2.19)

With λ and µ corresponding to the Lamé constants, this model is the direct exten-
sion of the linear isotropic material familiar from small strain analysis. Using Eq.
(2.18), the second Piola-Kirchhoff stress follows as

S = λtr(E)I + 2µE . (2.20)

Isotropic models are only of limited use for textile materials. Orthotropic models
are better suited for this case, since they allow material properties to be speci-
fied along two perpendicular directions9, which fits well with the yarn structure
of common woven fabrics. The elastic potential of the orthotropic St. Venant-
Kirchhoff 10 variant is given as

Ψani(C) =
1
2

2

∑
i,j

aijEiiEjj + G(E2
12 + E2

21) , (2.21)

where G is the shear modulus and the material constants aij are related to the
familiar Young’s moduli Ei and Poisson’s ratios νij as

aii = Ei
1

1− νijνji
, aij = aji = Ei

νij

1− νijνji
. (2.22)

We thus have four independent material coefficients relating strain to stress and
using Eq. (2.21) in (2.18) we obtain

Sii = aiiEii + aijEjj and Sij = 2GEji . (2.23)

This expression describes a simple orthotropic stress tensor, which is – just like
its isotropic counterpart – a linear function of the Green strain. This accounts
for the direction-dependent nature of common textiles, but there is only a single

8The trace of a tensor is defined as the sum of its diagonal entries, tr(E) = ∑i Eii. The inner
product of two tensors is defined as A : B = tr(AtB).

9More formally, an orthotropic material is defined as having properties that are invariant under
reflection with respect to two orthogonal planes, see [AG00].

10see e.g. [IA04]
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set of material coefficients for the entire deformation range. This is, in general,
not sufficient to model the characteristic stress-strain behavior of real fabrics. But
instead of considering more advanced material models, we will extend this simple
approach in a different way. This will be described in Chapter 3.

Textiles are not perfectly elastic but exhibit also viscous material properties.
For applications such as virtual surgery, the viscous behavior is of central impor-
tance and justifies the use of advanced models [HGS03]. For general computer
animation, however, a simpler approach based on the rate of strain tensor

Ė =
1
2
(ḞtF + FtḞ) (2.24)

is typically sufficient [OH99, DDCB01]. In analogy to Eq. (2.20), we assume that
the viscous stress Sv is a linear isotropic function of the strain rate,

Sv = λdtr(Ė)I + 2µdĖ , (2.25)

where λd and µd are corresponding damping coefficients. Since the strain rate Ė
is, just like the Green strain itself, invariant under rigid body motion11, rotations
are not damped using this formulation.

2.2 Discrete Internal Forces

Having derived expressions for membrane strains and stresses in the continuous
setting, we can now proceed to their discretization. We assume that deformable
surfaces are represented as triangle meshes with nv vertices and n f faces. Each
vertex is associated with a nodal mass mi as well as three-dimensional vectors xi
and vi describing its current position and velocity.

2.2.1 Finite Element Membrane Forces

The term Finite Elements is, broadly speaking, used to designate a class of meth-
ods for the numerical treatment of partial differential equations. As one of many
appreciable properties, finite elements can be applied to complex problems on ar-
bitrary geometries. This is also attractive for cloth simulation, where fabric panels
typically have curved boundaries and are therefore best modeled with unstruc-
tured triangle meshes.

The starting point for finite element discretizations is the weak form or varia-
tional formulation of the point-wise equilibrium conditions (2.15) and (2.16). Ap-
pendix A provides a detailed description of the necessary transformations, but for
the sake of conciseness, we will restrict our considerations to a practical level in
this chapter.

A finite element approach is largely characterized by the type of element used
for discretization. Since we intend to limit computation costs as much as possible,
we choose the simplest type of element, namely linear triangles. A linear triangle
element Ke is defined by its domain Ω̄e ⊂ Ω̄, its three nodal positions x̄i ∈ R2,

11Since F = RU, we have Ė = 1
2 (U̇tU + UtU̇) + 1

2 Ut(ṘtR + ṘRt)U, but RtR = I such that
ṘtR = −RtṘ, which proves the invariance of Ė.
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as well as its three linear shape functions Ni associated with the nodes. The shape
functions are defined with respect to the two-dimensional rest state as

Ni : Ω̄e → [0, 1] , Ni(x̄j) = δij . (2.26)

Figure 2.2: Linear shape function N1.

Explicit expressions for the shape functions can readily be derived geometrically.
To this end, we consider the shape function N1 of node 1 as an example and note
that N1(x̄) = 0 on the edge ē1 = x̄3 − x̄2 while N1(x̄1) = 1 (see Fig. 2.2). Hence,
the gradient of N1 must be orthogonal to ē1 and its magnitude is determined as
1
h1

, where h1 is the height of node 1. Introducing the edge normal

n̄1 =
1
||ē1||

·
[
−ē1y
ē1x

]
(2.27)

we can write

N1(x, y) =
1
h1

(
[

x
y

]
− x̄2) · n̄1 , (2.28)

noting that x̄2 could be replaced by an arbitrary point on ē1. The shape functions
themselves are not needed for computations, only their partial derivatives are
required. The latter are obtained from Eq. (2.28) as

∂N1

∂x̄
=

1
h1

n̄1 , (2.29)

and analogously for the remaining nodes. For notational convenience, we summa-
rize the shape functions into a vector N ∈ R3 and write their partial derivatives as
a matrix ∇N ∈ R3×2. As an appreciable property of the finite element approach
pursued here12, the shape functions and their derivatives are always evaluated
with respect to the rest state such that they have to be computed only once. As
explained in Sec. 2.1.3, the element coordinate system has to be aligned with the
principal material axes before computing the derivatives. Since textiles are usually
made of flat panels, an element’s orientation with respect to the material axes is
directly available and the alignment amounts to a single rotation in the material
plane. For objects with curved rest states, this orientation cannot be determined
automatically and has to be supplied by the user, e.g., via texture coordinates.

With the shape functions and their derivatives at hand, we can now proceed
to the computation of discrete strains and stresses. We begin by introducing the
interpolated geometry of the deformed element as

12In this so called Total Lagrangian formulation, the governing equations are expressed with respect
to the rest state [Bat96].
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x(x̄) =
3

∑
i=1

Ni(x̄)xi , where x̄ = (x, y) ∈ Ω̄e. (2.30)

With this expression, the discrete deformation gradient follows from Eq. (2.5) as

F =
∂x
∂x̄

=
3

∑
i=1

xi

(
∂Ni

∂x̄

)t

. (2.31)

F is a (3× 2)-matrix and, consequently, the Green strain E = 1
2 (FtF− I) is a sym-

metric (2× 2)-matrix. It should be stressed at this point that E refers to the local
element space described in Sec. 2.1.3. This means that, regardless of the element’s
orientation in 3D space, the entries Eii always refer to stretching along weft and
warp directions while Eij represents shear deformation. These properties also
translate to the discrete elastic stress, which follows from Eq. (2.21). Viscous con-
tributions are computed in a similar way upon replacing positions with velocities
in Eq. (2.31) in order to obtain Ḟ. The strain rate Ė is then computed from Eq.
(2.24) and the discrete viscous stress follows from Eq. (2.25).

We now have everything in place to compute discrete nodal forces, which are
given as13

fe =
ˆ

Ωe

∇NSFt da , (2.32)

where S contains both viscous and elastic contributions and fe ∈ R3×3 denotes
the matrix whose i-th row holds the internal force at node i. It can be seen from
this expression that the deformation gradient accounts implicitly for the mapping
between 2D element and 3D world space. Unlike in the co-rotational formulation ,
no additional transformations have to be computed, which translates into efficient
force computations.

The derivatives of the linear shape functions are constant over the element,
implying that F and S are constant as well. This simplifies the evaluation of the
integral expression (2.32) and the nodal forces are obtained as

fe = ∇NSFthAe , (2.33)

where Ae is the area and h the thickness of the triangle in its rest state. This ex-
pression allows us to compute the discrete internal force due to a single element
Ke. The total force on a given node i is obtained by simply summing up contribu-
tions from all incident elements. Likewise, global Jacobians of elastic and viscous
forces, which are required for implicit time integration, are assembled from ele-
ment matrices. The latter are best derived component-wise by considering a single
entry j of the force acting on node i,

fe
ij =

2

∑
m=1

Fjm

2

∑
n=1

Smn∇Nin . (2.34)

13see Appendix A.2 for a derivation
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The derivative with respect to component l of node k from the same element is

∂fe
ij

∂xkl
=

2

∑
m=1

∂Fjm

∂xkl

2

∑
n=1

Smn∇Nin +
2

∑
m=1

Fjm

2

∑
n=1

∂Smn

∂xkl
∇Nin . (2.35)

For later reference, we denote the corresponding Jacobian matrix as Jik = Ja
ik + Jb

ik,
accounting for the sum in the above expression. In order to compute Jik for actual
implementation, the remaining derivatives in (2.35) are readily determined an-
alytically. However, an efficient implementation requires a careful analysis and
arrangement of subterms in order to minimize arithmetic operations (see also
[Mez08]). We leave such optimizations to the computer algebra software Maple14,
which automatically generates symbolically optimized code.

At this point, an important difference between the geometrically nonlinear
approach pursued here and the co-rotational method should be made clear. In the
latter, the force Jacobians of the elements are computed only once in their rest state
and merely rotated to the current configuration. For concreteness, let K̄ik ∈ R2×2

denote the submatrix of an element’s rest state Jacobian that relates the force on
node i to the displacement of node k. As described by Etzmuß et al. [EKS03], the
matrix of the current configuration is computed as Kik = RK̄ikRt, where Rt ∈ R2×3

is the transformation that rotates vectors in the element’s current plane back to its
rest state plane (xy-plane) and projects onto it (along the z-axis). This implies that
any components along the current normal n of the element are filtered out by the
transformation, i.e., Rtn = 0. In order to see the consequences of this, we will
consider the simple example shown in Fig. 2.3.

Figure 2.3: Effect of applying a small normal displacement to an element with
zero (left) respectively nonzero (right) in-plane deformation.

We are interested in the relation between a displacement applied to node i and the
resulting force fi acting on it. In a state without in-plane deformation (see left of
Fig. 2.3), a small displacement ∆un = εn normal to the element plane does – to
first order – not lead to a change in force since it does not affect deformation15.
The picture changes if the element is deformed in such a way that there is already
a nonzero force fi present. Applying the same displacement ∆un in this state
will again not change the magnitude of the force, but it will change its direction as
shown on the right of Fig. 2.3. However, this change in force is not captured by the
co-rotational formulation, since normal components of displacement are filtered
out. For deformed elements, the co-rotational formulation thus erroneously pre-
dicts a zero change in force for out-of-plane displacement, Kik∆un = 0, which can

14Maple is a computer algebra software by Waterloo Maple (see www.maplesoft.com).
15The deformation of a triangle element is a function of lengths of vectors and angles between

vectors in its plane. Obviously, the gradients of these quantities lie in the element plane as well.

http://www.maplesoft.com
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lead to stability problems16. This is not the case for the geometrically nonlinear
approach, which can be seen by investigating the first term of (2.35). Considering
the definition of the deformation gradient (2.31), we have

∂Fjm

∂xkl
= δjl∇Nim , (2.36)

and, consequently, Ja
ik is a diagonal matrix. Provided that the current stress is such

that the force on node i is nonzero, we therefore have Ja
ik∆un 6= 0. Likewise, it can

be verified that Jb
ik∆un = 0 such that in total Jik∆un 6= 0. The geometrically non-

linear formulation thus captures the effect of out-of-plane displacements, which
translates into better stability for rotational motion.

It should be noted that the above described drawback of the co-rotational for-
mulation is not as severe when simulating volumetric solids, since the nodal Ja-
cobians of three-dimensional elements do not have non-trivial kernels in the rest
state. For the case of deformable surfaces, however, the increased accuracy of
the geometrically nonlinear approach is a strong reason to prefer it over the co-
rotational variant.

2.2.2 Bending

The bending properties of textile materials have a significant impact on the forma-
tion of folds and thus overall visual appearance (see Fig. 2.4). A computational
bending model has to be able to reproduce these effects in an accurate and com-
putationally efficient way. Further requirements are good and intuitive control as
well as consistent behavior across different discretizations and resolutions.

Thin-shell models are appealing since they possess sound mathematical and
physical foundations. However, a finite element implementation of thin-shells
requires a C1-continuous displacement field, which necessitates either additional
non-kinematic degrees of freedom (see e.g. [ZT00a, Bat96]) or elements with ex-
tended support [COS00, CO01]. Although nonlinear [GKS02] as well as linearized
[TWS06] variants of the latter have been proposed in graphics, their increased
complexity and computational costs have so far prevented a widespread use.

Figure 2.4: Drape tests with doubled bending stiffness from left to right.

Trading accuracy for efficiency, discrete bending models have traditionally
been favored in graphics. The linear formulations described by Volino et al.
[VMT06b] and Bergou et al. [BWH+06] promise high computational efficiency
but offer only limited accuracy for large deformations. Similarly, the efficient cu-
bic shell model by Garg et al. [GGWZ07] assumes isometric deformations, which

16see also the discussions in [CK02] and [VMTF09]
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is reasonable for quasi-inextensible shells but too restrictive for general cloth ani-
mations. More general is the nonlinear model described in the contemporaneous
works of Grinspun et al. [GHDS03] and Bridson et al. [BMF03], who compute
bending energies and forces on hinge elements, consisting of two edge-adjacent
triangles. In particular, the bending energy and thus the magnitude of the result-
ing forces depend only on the angle of the hinge, such that a clean separation
of membrane and bending behavior is guaranteed. This is an appreciable prop-
erty and we therefore adopt this model in our framework, using the expressions
provided in [BMF03] in order to compute bending forces. For cloth materials,
bending forces are typically weak and can therefore be integrated explicitly such
that Jacobian matrices are not required.

2.2.3 Inertia and Dynamics

We have derived discrete internal forces on the basis of static equilibrium condi-
tions (2.15, 2.16). The link to the dynamic setting is given by Newton’s second
law, which relates force to acceleration. Letting fi denote the total force acting on
a given node with mass mi, we have

miüi = fi = fext
i − fel

i − fv
i , (2.37)

where fext
i denotes external forces such as gravity and fel

i and fv
i refer to internal

elastic and viscous forces, respectively.
We compute nodal masses as mi = ρAi, where ρ is the material’s mass per unit

area and Ai denotes the area associated with node i. The latter is determined from
the areas of its adjacent faces Aij as Ai = 1

3 ∑j Aij, noting that alternative tilings
based on, e.g., Voronoi cells are possible as well [MDSB03a, EKS03].

Eq. (2.37) describes the nodal force balance for a single node. Defining the
diagonal mass matrix M as

diag(M)3(i+k) = mi for k ∈ {1, 2, 3} and i ∈ {1 . . . nv} ,

we can assemble the force balance equations for all nodes into a global system,

Mü(t) = fext − fel(u(t))− fv(u̇(t)) . (2.38)

This formulation emphasizes the fact the elastic and viscous forces depend pri-
marily on displacements and velocities, respectively. Expression (2.38) describes
a set of 3nv second order ordinary differential equations (ODEs) with respect to
time. Together with starting positions and velocities, an initial value problem
is obtained whose solution describes the continuous trajectories of the system’s
nodes. Discrete approximations of these trajectories are computed by means of
numerical time integration, which is the subject of the next section.

2.3 Time Integration

The last section has lead to the spatially-discrete equations of motions that describe
the dynamic evolution of the system as an initial value problem. The numerical
solution of such problems is an intensively studied field and we generally refer to
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the standard textbooks by Hairer et al. [HWN08, HW02, HLW06] and Ascher and
Petzold [AP98] for detailed and comprehensive overviews. An analysis of time
integration schemes for physically-based simulation in computer graphics can be
found in the works by Hauth et al. [HES03, Hau04], Volino et al. [VMT01] and
Boxerman [Box03].

Most integration schemes are only applicable to first order ODEs such that we
have to transform Eq. (2.38). To this end we introduce nodal velocities v = u̇ as
additional variables and use x = x̄ + u for uniform notation. This allows us to
express (2.38) as a coupled system of first order differential equations,

ẋ = v (2.39)
Mv̇ = fext − fel(x)− fv(v) .

For brevity, we introduce the concatenated state vector y = (x, v) and write

ẏ(t) = f(y(t)) , where f =
d
dt

y . (2.40)

This is a first order ODE and thus amenable to standard integration schemes. Its
exact solution is

y(t) = y(t0) +
ˆ t

t0

ẏ(t) dt , (2.41)

where t0 corresponds to the initial state and y(t0) = (x̄, 0) are initial values. Given
a step size h, a numerical integration scheme computes approximations to the true
solution at discrete instants in time t0 + n · h as

yn ≈ y(t0 + n · h) . (2.42)

We will briefly discuss some of the most widely used integration schemes in the
following, focusing on methods with direct relevance to this work.

2.3.1 Explicit Methods and Stability

Explicit schemes compute the new state yn+1 of a system as a function of its current
and possibly past states, requiring one or several evaluations of f. The simplest
representative of this class is the explicit Euler scheme, whose update formula is

xn+1 = xn + hvn (2.43)
vn+1 = vn + hf(xn, vn) (2.44)

= vn + hM−1(fext − fel(xn)− fv(vn)) .

This method is only first order accurate17, but higher-order integrators such as the
fourth order Runge-Kutta scheme can be implemented with little additional effort.

Explicit methods are simple to implement and the costs per step are low, but
a practical limitation is their conditional stability. In the broadest sense, an in-
tegration scheme is called stable with respect to a given problem if the solution
remains always bounded. For certain difficult problems, stable integration with

17A method is accurate of order p if the local error ||yn− y(t0 + nh)|| is of order O(hp+1) as h→ 0,
see [HWN08].



30 2 Physical Cloth Simulation

explicit schemes requires small step sizes, which in turn decreases computational
efficiency. Equations for which this behavior is observed are referred to as being
stiff and, unfortunately, this is typical of elasticity problems such as those arising
in the simulation of deformable surfaces. The concept of stability can be quantified
with the help of Dahlquist’s test equation

ẏ(t) = λy(t) , y(0) = y0 , λ ∈ C , (2.45)

whose analytic solution is y(t) = eλty0. This equation can be considered a proto-
type of a stiff mechanical system since

eλt = eateibt, where λ = a + ib, a, b ∈ R , (2.46)

from which it can be seen that the cases a < 0 and a = 0 describe conservative
and dissipative oscillators, respectively [AP98]. Integration schemes are called
unconditionally stable or A-stable if the solution stays bounded regardless of the
step size when applied to the test equation. This is clearly not the case for the
explicit Euler method, which yields the solution yn+1 = (1 + hλ)ny0 such that
stability is only given if |1 + hλ| ≤ 1. Likewise, no other Runge-Kutta-type explicit
method is A−stable [NS74], but many implicit schemes are.

2.3.2 Implicit Methods and Dissipation

In contrast to explicit methods, implicit schemes also include the solution itself as
a variable in the update formula. As the simplest representative, the implicit or
backward Euler method is defined as

xn+1 = xn + hvn+1 (2.47)
vn+1 = vn + hf(xn+1, vn+1) (2.48)

= vn + hM−1(fext − fel(xn+1)− fv(vn+1)) .

Like its explicit counterpart, the implicit Euler scheme is only first order accurate,
but it is unconditionally stable even for stiff systems. A step of backward Euler
requires the solution of a nonlinear system of equations, which is in general sig-
nificantly more expensive than computing a single step of an explicit scheme. On
the other hand, the better stability of implicit schemes allows taking larger time
steps such that for stiff problems, the additional costs per step typically pay off in
terms of overall computation times.

The arising nonlinear system can be solved with the iterative Newton-Raphson
scheme, which requires the solution of a linear system in each iteration. An al-
ternative approach that enjoys widespread use in graphics is the semi-implicit for-
mulation of backward Euler [BW98], which only requires the solution of a single
linear system. This is achieved by linearizing the problem at the current state.
Using a Taylor series expansion of the elastic forces and truncating after first order
terms gives

fel(xn+1) ≈ fel(xn) +
∂fel(xn)

∂x
· ∆x , (2.49)
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where ∆x = (xn+1 − xn). Applying an analogous expansion to the viscous forces
and substituting

∆x = h∆v , where ∆v = vn+1 − vn , (2.50)

yields a linear system for the unknown velocities,[
M + h2 ∂fel(xn)

∂x
+ h

∂fv(vn)
∂v

]
vn+1 = Mvn + h(fext − fel(xn)− fv(vn)) . (2.51)

Having solved for vn+1, new positions xn+1 are obtained from Eq. (2.47). When
applied to cloth simulation, the semi-implicit Euler method can yield very fast
computation times if large step sizes are used [BW98]. But unfortunately, this
combination provides only low accuracy, which manifests as overly damped re-
sults that lack detail. In particular, fine folds and wrinkles are largely suppressed
in this way, which partly defeats the purpose of using high-resolution meshes.
This artificial damping, which is also known as numerical dissipation, is inherent
to many implicit schemes, but particularly pronounced for low-order linearized
variants. As shown by Boxerman [Box03], the effect of artificial damping in-
creases with higher material stiffness and larger step sizes. By contrast, resorting
to higher-order integrators alleviates dissipation [HE01a, CK02].

Higher-order implicit methods can be divided into two categories. Multi-stage
schemes such as the family of implicit Runge-Kutta methods can be constructed
up to arbitrary order, but require the solution of multiple systems of equations
per time step [HW02]. By contrast, multi-step methods such as the Backward Dif-
ferential Formulas (BDF) require only the solution of a single system per step.
Since, these methods are based on an extrapolation of past states, they are only
applicable to continuous functions. However, animations of deformable surfaces
typically involve frequent collisions, which can constitute harsh discontinuities.
Without modifications, multi-step methods cannot (or should not) be applied to
such problems.

Another possibility to avoid numerical dissipation is by using variational in-
tegrators18, which are renowned for their conservation properties [HLW06]. The
latter is not to be confused with accuracy, which can be seen on the example of
the symplectic Euler method,

vn+1 = vn + hf(xn, vn) , (2.52)
xn+1 = xn + hvn+1 . (2.53)

The first line is identical to the velocity update of the forward Euler method, but
the positions are updated using the newly computed velocities. Although the
symplectic Euler scheme is only first order accurate, it can be shown to preserve
momentum and energy far better than the explicit Euler method [HLW06]. Similar
arguments apply to implicit variational integrators such as the implicit midpoint
rule, which is given as

vn+1 = vn + hf(
xn+1 + xn

2
,

vn+1 + vn

2
) , (2.54)

xn+1 = xn +
h
2
(vn+1 + vn) . (2.55)

18More details on variational integrators are provided in Chapter 4.
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While the computational costs per step are largely identical to the backward Euler
method, the implicit midpoint scheme is second-order accurate and does not suffer
from numerical dissipation. But despite these apparent advantages, the implicit
Euler scheme is still preferred over the implicit midpoint rule – at least in computer
animation – since especially semi-implicit implementations exhibit better stability.

Discussion To summarize, there is no single ideal approach for time stepping
the dynamics of cloth and one has to balance accuracy against computation times
when choosing an integration scheme. We pursue two strategies in this work.

The first one relies on the semi-implicit Euler method, but alleviates numerical
damping by (a) using a material model that combines reduced elastic stiffness with
deformation constraints and (b) using step sizes in the range of 10−3 seconds.

As the second approach, we address the problem directly and leverage asyn-
chronous explicit integration in order to obtain cloth simulations without artificial
damping.

Before proceeding to the next section, it should be emphasized that both
choices fit well with the geometrically nonlinear membrane model described in
the previous sections. Using a semi-implicit scheme requires only the solution of
a single linear system and the computational costs do not differ much between
our approach and the co-rotational variant. Furthermore, Kikuuwe et al. [KTY09]
have reported good accuracy and efficiency for a similar approach in the context
of three-dimensional elasticity. As for the explicit integration scheme, the costs of
computing element forces are even slightly lower for the geometrically nonlinear
approach since no rotations have to be computed. This observation was also made
by Mezger [Mez08] for the case of volumetric solids.

2.4 Collision Handling

Beyond purely academic purposes, cloth animations generally involve collisions
and contact. For example, cloth easily folds into configurations with multiple
layers in close proximity and treating a single collision often induces multiple
secondary collisions. Similarly, interactions between cloth and rapidly moving
characters require special care in order to avoid intersections or other visual arti-
facts. Clearly, a robust method for handling collisions is vital for the visual quality
and thus the success of cloth animations.

This section describes the approach used in this work, which is also the ba-
sis for the extensions toward asynchronous cloth simulation and parallel collision
handling as described in Chapters 4 and 5, respectively. It relies on k-DOP19 hi-
erarchies [KHM+98, MKE03] for collision detection in combination with impulse-
based collision response [Pro97, BFA02]. Both components are described in the
following.

2.4.1 Collision Detection with k-DOP Hierarchies

A bounding volume hierarchy H is essentially a tree of bounding volumes. For a
given triangle mesh, each of the nodes N ∈ H is associated with a subset of the

19DOP stands for ’discrete oriented polytope’ [KHM+98].
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triangles and a bounding volume that encloses the corresponding geometry. In
particular, the bounding volume of a given node encloses the bounding volumes
of all of its children.

k-DOPs are a particular class of bounding volumes. A k-DOP D is a convex
polyhedron, which is defined as the intersection of k half-spaces Si

D = ∩iSi , with Si = {x ∈ R3|nt
i x < di ∈ R} , (2.56)

where ni is the normal vector of the corresponding separating plane with distance
di from the origin. The orientations of the planes are restricted to a discrete set of
normal vectors, whose components can take on only the values {−1, 0, 1}. Addi-
tionally, the normals are chosen such that there are k/2 pairs of parallel planes.
In three-dimensional space, the simplest representative is a 6-DOP, which corre-
sponds to an axis-aligned bounding box (AABB) if the normals are chosen to coin-
cide with the positive and negative directions of the three principal axes. Similar
to AABBs, testing two k−DOPs for overlap amounts to checking the correspond-
ing k/2 intervals, where disjointness can be signaled as soon as a non-overlapping
interval is found. Since bounding volumes only approximate their enclosed geom-
etry, an overlap between two DOPs does not necessarily imply that there are actual
intersections. However, the probability of encountering such false positives can be
reduced by using larger values of k, which leads to more tight-fitting bounding
volumes that can better adapt to arbitrarily oriented geometry. We use 18−DOPs
in our implementation and construct corresponding hierarchies with a top-down
approach as described by Mezger et al. [MKE03]: starting with a single DOP that
encloses the entire geometry of a given (rigid or deformable) object, the bounding
volumes are recursively split along their longest axis until all DOPs contain only
a single triangle.

Testing two meshes with hierarchies HA and HB for interference is a recursive
process. The first test determines whether the bounding volumes of the two root
nodes overlap and if this is the case, further pair-wise tests are applied recursively
among their children. The result of this recursion is a (possibly empty) set of
triangle pairs, corresponding to leaf nodes with overlapping bounding volumes.
Note that these pairs constitute only potential collisions such that further testing is
required in order to determine truly intersecting triangles, see Sec. 2.4.2.

The procedure outlined above works well if the two hierarchies HA and HB
belong to different meshes, as is the case when detecting collisions between cloth
and rigid objects. When used for detecting self-collisions, however, this approach
is less efficient since the bounding volumes of adjacent regions necessarily overlap,
even for completely flat configurations. We employ normal cones [Pro95] in order
to skip test for such flat regions and additionally use adjacency-based culling to
eliminate unnecessary distance computations for neighboring triangles. These
modifications greatly accelerate computations and are completely transparent to
the parallel algorithm described in Chapter 5.

The time integration scheme produces geometry output at discrete points in
time. For collision detection, however, taking into account only a single configura-
tion is not sufficiently robust since interferences that occur in between two states
(i.e., during a time step) can pass unnoticed. Such interferences can be captured
when enlarging the bounding volumes such that they enclose both the geometry



34 2 Physical Cloth Simulation

at the beginning and at the end of a given time step. Applying a recursive test as
usual to these swept hierarchies yields a set of triangle pairs, whose trajectories
have to be checked for true intersection. This process is commonly referred to as
continuous collision detection whereas the term proximity detection is used when only
a single configuration is taken into account.

2.4.2 Impulse-based Collision Response

A collision detection pass with bounding volume hierarchies yields a set of po-
tentially colliding triangle pairs, which require further processing in order to
determine actual intersections. Different treatments are necessary depending on
whether a pair originates from proximity or continuous collision detection. Both
cases are described in the following paragraphs.

As the input for collision response, we assume that position vectors x and x̃
are supplied, corresponding to configurations at the beginning and end of a given
time step, respectively. Furthermore, it is assumed that the velocities v are such
that x̃ = x + hv, where h is the step size.

Proximity-based Response For each pair of triangles in close proximity, we first
perform a geometric test [Möl97] in order to determine the distance between their
closest points. If this value is larger than a given proximity threshold20 εc, the tri-
angles are considered as non-colliding. Otherwise, exhaustive tests are performed
on a set of primitive pairs, which consists of the six vertex-triangle and nine edge-
edge combinations of the two triangles.

To simplify notation, we let xi with i = 1 . . . 4 denote the positions of the four
vertices of a given primitive pair at the beginning of the time step. For conciseness
we will only give expressions for the vertex-triangle case, but refer to the generic
pair of closest points as xa and xb in order to allow easy translation to edge-
edge collisions. For a vertex-triangle collision, the indices i = 1 . . . 3 refer to the
triangle’s vertices whereas x4 denotes the single vertex. The latter is also one of
the two closest points and we set xb = x4. The other closest point xa is computed
as a convex combination of the triangle’s vertices using a geometric point-triangle
test [AMHH08], which results in a set of barycentric weights λi such that

xa =
3

∑
i=1

λixi , where
3

∑
i=1

λi = 1 . (2.57)

If the distance dab = ||xb − xa|| between the closest points is smaller than the
threshold value εc, further approach between the primitives has to be prevented.
We use stopping impulses for this purpose that are computed in the following
way. Let va and vb denote velocities corresponding to the closest points, where
the former is computed in analogy to Eq. (2.57). The relative velocity in normal
direction is determined as v̂r = nt(vb− va), where the sign of the triangle’s normal
n is chosen such that v̂r > 0 if the two points are approaching. If v̂r < 0 , the
primitives are separating and no action is required. Otherwise, a pair of normal
impulses p̂b = p̂4n and p̂a = −p̂b is computed such that, when applied to vb and

20The constant εc effectively models the thickness of the cloth surface.
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va, they cancel the relative normal velocity. Letting v̂i = ntvi and p̂i denote normal
velocities and corresponding impulses of the four vertices, these conditions can be
expressed as

(v̂4 +
p̂4

m4
)−

3

∑
i=1

λi(v̂i +
p̂i

mi
) = 0 subject to

3

∑
i=1

p̂i = − p̂4 . (2.58)

In order to solve for the unknown impulses, additional assumptions have to be
made on the way in which they are distributed to the vertices of the triangle.
A simple way of distribution is to use the barycentric weights as suggested in
[BFA02], i.e., to define p̂i = −λi p̂4, which ensures continuity as a collision moves
from a given triangle to a neighboring one. This leaves the normal impulse p̂4 as
the only unknown, which is determined from Eq. (2.58) as

p̂4 = −v̂r

(
3

∑
i=1

λ2
i

mi
+

1
m4

)−1

. (2.59)

The stopping impulses filter the velocities of the vertices such that a further
approach is prevented. In order to maintain the separating distance εc, repelling
impulses are added that push primitives in too close proximity apart. These are
computed in analogy to Eq. (2.59), essentially creating an appropriate amount
of negative relative velocity. Finally, Coulomb-like friction21 is incorporated by
modifying the tangential velocities v̄i = vi − ntvi in proportionality to the applied
normal impulses.

Continuous Collision Response Pairs of triangles that originate from a pass
of continuous collision detection can potentially interfere at any time during the
interval [0, h]. In analogy to the case of proximities, the detection and treatment
of actual continuous collisions is again based on a decomposition into primitive
pairs. A necessary condition for a pair of primitives to collide during the interval
is that its four vertices are coplanar for some t ∈ [0, h]. This can be expressed in
a formal way using the observation that the four vertices of a given primitive pair
describe a tetrahedron. Coplanarity is then equivalent to a vanishing volume of
the tetrahedron, which is computed as

V(t) =
1
6
[e21(t)× e31(t)]te41(t) , (2.60)

where eij(t) = (xi + tvi)− (xj + tvj). Requiring V(t) = 0 yields a cubic equation
in t, which is solved for possible times of coplanarity ti. The valid roots ti ∈ [0, h]
are then processed in ascending order and proximity tests are performed on the
geometry at the corresponding times. Primitive collisions detected in this way are
then treated with stopping impulses as explained in the previous paragraph.

21Coulomb friction is an empirically derived model which distinguishes between static (resting)
and kinetic (sliding) friction, for which independence of the sliding velocity is postulated, see also
[Pop10]. Letting µsand µk denote coefficients of friction and fn the normal force acting between the
surfaces, the tangential contact forces for the static and kinetic case are defined as fs ≤ µsfn and
fk = µkfn, respectively.
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2.4.3 Iterative Collision Resolution

As described by Bridson et al. [BFA02], proximity-based and continuous collision
handling can be combined into a robust framework for iterative collision resolu-
tion. The original method consists of three stages, but we use only two of them in
our implementation. In the first stage, collisions are detected and handled based
on proximities at the beginning of a time step. In the second stage, continuous
collision detection and response passes are applied iteratively until all remaining
collisions are resolved. An additional third stage with rigid impact zones [Pro97]
or the method by Harmon et al. [HVTG08] can be used in order to treat cases
when the second stage is unable to resolve all collisions. While such a fail-safe can
give increased robustness for large time steps or high coefficients of friction, we
found the first two stages to be sufficient for all examples considered in this work.

This iterative collision resolution framework is a state-of-the-art approach and
compelling results can be obtained even for challenging animations with massive
and intricate self-collisions. Its robustness with respect to such extreme condi-
tions comes, however, at the price of high computational costs, which can easily
constitute the largest part of the simulation time. By way of illustration, we will
consider a collision-intensive example, which is inspired by the collision handling
stress test described in [HVTG08].

Figure 2.5: A stress test for collision handling: a piece of cloth is forced through a
narrow funnel.

A square cloth with 14 476 faces is forced to follow the motion of a rigid sphere
that passes through a narrow funnel. Some representative frames of the four sec-
onds of animation are shown in Fig. 2.5. The cloth first settles on the upper part
of the funnel, but is soon pulled inwards due to the scripted motion of the sphere.
Complex folds start to form and merge into tightly packed layers as the sphere
moves futher down, inducing massive self-collisions. The cloth starts to unfold
when the sphere leaves the funnel and finally settles on the rigid floor. While
the first part of the animation requires few intervention from the second stage,
up to ten iterations are required in order to resolve all collisions while the cloth
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passes through the funnel. This translates into relatively high computational costs:
using a step size of 0.001s a single 25Hz frame took 54.72 seconds to compute22

on average and 72 percent of this time were spent on collision handling. While
this example is more collision-intensive than the average case, it is not unusual
that collision handling takes up half of the simulation time and performance im-
provements are thus of immediate practical relevance. This motivates our work
on parallel collision handling, which is presented in Chapter 5.

2.5 Summary

This chapter has laid out a computational framework for accurate physical cloth
simulation. Being one of its central components, we have advocated a nonlinear
continuum mechanics approach for the in-plane behavior in order to accomodate
large rotational deformations and direction-dependent material properties. As
for the latter, we restricted our considerations to a simple anisotropic material
law, anticipating the extensions to be introduced in Chapter 3. Discrete in-plane
forces were derived using linear triangle finite elements and, as is common prac-
tice in cloth simulation, we decided on a discrete hinge-based bending model. In
order to solve the spatially-discrete equations of motion in time, we have subse-
quently discussed several numerical integration schemes. Despite certain reser-
vations with respect to accuracy, we selected the semi-implicit Euler scheme as
the default method, postponing an alternative approach to Chapter 4. Finally,
we have addressed collision handling and described the sequential basis for the
parallel approach presented in Chapter 5.

22Times were measured on a laptop computer with an Intel Core2Duo processor running at
2.0GHz. Only a single core was used.





Chapter 3

Deformation Constraints for
Biphasic Anisotropic Cloth

Many cloth materials show a direction-dependent and highly nonlinear response
to in-plane deformations. Although this behavior is not well approximated by
linear material laws, most animation methods avoid the complexity of fully non-
linear models for the sake of computational efficiency. This chapter presents an
alternative approach that combines a simple elastic material law and geometric
deformation constraints into an efficient model for biphasic and anisotropic cloth.

3.1 Introduction

Textiles and especially woven fabrics are
complex materials that exhibit anisotropic,
highly nonlinear, and even hysteretic1

properties as shown in the example to the
right. Much of this complexity is due to
the material behavior and surface structure
at the yarn level, but also the weave pat-
tern plays a role in this context. As a com-
mon characteristic of most textiles, the re-
sistance to stretching is initially weak but a
high stiffness is observed for larger strains. Consequently, cloth is readily stretched
by a few percent but deformations beyond material-specific thresholds do not oc-
cur under normal circumstances. Due to the anisotropic nature of cloth, these
effective limits can vary significantly for deformations in different directions.

A widespread approach in computer graphics is to model the elastic response
of textiles with linear material laws [BW98, CK02]. Since this model offers only a
single stiffness parameter for the entire deformation range, a high value is required
in order to comply with the material’s effective strain limits. This, however, is a
poor approximation of general cloth, especially for the small deformation range,
and a lot of its characteristic behavior is lost in this way. Furthermore, highly stiff

1In this context, hysteresis denotes the effect that measured force-deformation curves do not co-
incide for loading and unloading directions.

39



40 3 Deformation Constraints for Biphasic Anisotropic Cloth

materials degrade the efficiency of the physics solver [HE01a] and amplify the
effects of numerical dissipation [Box03]. A second possibility is to use nonlinear
material laws, which can be described, e.g., in form of stress-strain curves based
on measured data. While this approach is accurate, its high nonlinearity calls for
more elaborate numerical solvers in order to allow stable time integration. This,
in turn, leads to an increase in complexity as well as computation times.

An attractive alternative in this context is to replace the stiff component of the
nonlinear material law by a geometric constraint and to use a soft elastic mate-
rial for the non-stiff part. The resulting biphasic model captures the characteristic
stretching properties of cloth much better than a linear material. At the same time,
numerical complications arising from stiff and nonlinear models are avoided.

Overview and Contributions Drawing on this concept, the present chapter in-
troduces Continuum-based Strain Limiting (CSL), which is a novel approach for the
simulation of anisotropic biphasic cloth. We impose deformation constraints on
a continuum-based strain measure, which allows us to accurately distinguish be-
tween all deformation modes. In particular, individual limits can be used for
stretching in weft and warp directions as well as shearing, thus enabling full con-
trol over deformations. Constraints are formulated per triangle on the basis of the
co-rotated Cauchy strain tensor, which is discretized with linear finite elements.
Unlike previous approaches, our method is thus able to enforce anisotropic defor-
mation constraints on general unstructured triangle meshes.

The remainder of this chapter describes all components of this approach in
detail. After a short review of existing work on deformation limiting, we turn to
the central part of this chapter. We first describe how to formulate and enforce
deformation constraints on triangle elements (Sec. 3.3.1), subsequently address
the combination of elemental responses into a global solution (Sec. 3.3.2), and
finally discuss the question of how to appropriately choose material coefficients
and deformation limits (Sec. 3.3.3). We demonstrate the qualitative capabilities of
continuum-based strain limiting in Sec. 3.4 and compare its performance to con-
ventional approaches. The chapter concludes with a summary and a discussion of
limitations as well as directions for future work.

3.2 Previous Work

The idea to combine elastic forces with deformation constraints has been pursued
by several previous works. The first approach in this direction goes back to Provot
[Pro95], who described a deformation limiting method for mass-spring systems
in the context of explicit time integration. Using weaker springs allows the use
of larger step sizes but also entails unrealistically high stretch deformations. In
order to reduce this unwanted effect, Provot suggested to correct end points of
overly strained edges in an iterative manner. A deformation threshold of 10% was
established and subsequent work largely followed this example. Bridson et al.
[BFA02] extended Provot’s technique to strain-rate limiting, recasting the method
into a velocity-correcting formulation. In order to reduce bias resulting form a
fixed edge ordering, a randomized traversal was suggested. Similar in spirit is the
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work by Müller et al. [MHHR06, Mül08], who used general position constraints
as the basic simulation principle.

In contrast to these iterative methods, Hong et al. [HCJ+05] couple edge length
constraints globally using a Lagrangian mechanics formulation and require con-
straint satisfaction at the end of each time step. Similar to the semi-implicit Euler
scheme of Baraff and Witkin, they linearize the constraint maintaining forces and
solve a single linear system. However, constraints can only be satisfied to first or-
der in this way, which can lead to large violations especially for rotational motion.

Tsiknis [Tsi06] describes a three step scheme consisting of constraint force es-
timation, strain limiting and global response. The second step forms an exception
to conventional strain limiting, as it works on triangles instead of edges. However,
only one principal strain direction is considered and anisotropic properties can-
not be taken into account. The first and the third step rely again on edge-based
techniques such that the associated limitations are inherited.

While the above approaches settled for a 10% deformation limit, an efficient
way to simulate quasi-inextensible cloth was introduced with the fast projection
method by Goldenthal et al. [GHF+07]. Since constraint satisfaction is guaran-
teed at the end of each time step, very strict deformation limits can be enforced
with this technique. Based on fast projection, English et al. [EB08] animate in-
extensible triangle meshes, enforcing zero in-plane deformation via edge length
constraints. Note that for such quasi-inextensible materials, anisotropy is not of
primary importance since deformations are assumed to be very small. For many
general textile materials, however, this assumption does not hold.

Figure 3.1: A complex garment (left) made of 13 flat panels with curved bound-
aries (right) is modeled and animated with an unstructured triangle mesh. The
orientation of the panels corresponds to their alignment with the material’s weft
and warp directions, running along the horizontal and vertical axes of the image
plane, respectively.
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A common point of all previous approaches is that constraints are formulated
and/or enforced on edges, making them more or less strongly dependent on dis-
cretization. Since an edge can only respond to deformation along its direction,
a regular weft-warp-aligned mesh is necessary to model anisotropic deformation
limits. This is a significant disadvantage for practical animations of garments,
which are typically made of complex panels with curved boundaries (see Fig.
3.1).

The method presented in this chapter departs significantly from previous ap-
proaches. In order to resolve the above shortcomings, constraints are formulated
on the basis of a continuous deformation measure. Consequently, CSL allows ac-
curate control of stretch and shear deformations with anisotropic limits, regardless
of the underlying mesh.

3.3 Continuum-based Strain Limiting

This section describes the formulation and enforcement of continuum-based de-
formation constraints.

Instead of directly coupling elastic forces and constraints, we implement the
biphasic model as a two-step process: in the first step, the system is advanced in
time considering only physical forces, not constraints. The resulting positions and
velocities are the input to the second step, which enforces deformation constraints
by modifying velocities appropriately. This approach facilitates time integration
and is in line with previous work [Pro95, BFA02, GHF+07].

The physical forces of the first step include the elastic part of the biphasic
model, for which we use the approach described in Chapter 2. The second step
consists again of two building blocks: one is the local constraint enforcement on
triangle elements, the other is the combination of element responses into a global
solution. We pursue an iterative global enforcement scheme, which corrects in-
dividual elements in isolation until all deformation constraints are satisfied. We
will start the detailed description with the local part of this approach, i.e., the
formulation and enforcement of deformation constraints on triangle elements.

3.3.1 Deformation Constraints on Triangle Elements

In the course of a global deformation limiting step, elemental constraints have
to be evaluated and enforced multiple times for each triangle. Optimizing this
kernel will pay off in terms of overall performance and the choice of the deforma-
tion measure is a central component in this context. A linear measure promises
good computational efficiency and we therefore decide to use the Cauchy strain
as the basis for the deformation constraints. However, since the triangles of a cloth
mesh will generally undergo large rotations we use the co-rotational formulation.
This amounts to extracting rotations from the displacements before computing the
strain, which is explained in the following paragraph.
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Extracting Rotations Consider a triangle element with rest state nodal positions
x̄i ∈ R2 which have been translated, rotated, and deformed to current positions
xi ∈ R3 as illustrated in Fig. 3.2. We want to extract the rotational part from
this transformation and will do so on the basis of the corresponding deformation
gradient F or, more precisely, its polar decomposition [GVL96].

Figure 3.2: A triangle is transformed from its two-dimensional rest state (left) to
its current configuration in three-dimensional space (right). The transformation ϕ
generally includes translation and rotational components, as well as pure defor-
mations.

Assuming deformations to be piecewise constant, we compute F for a given
triangle using the linear finite element discretization as described in Sec. 2.2.1,

F =
∂ϕ(x̄)

∂x̄
=

3

∑
i=1

xi

(
∂Ni

∂x̄

)t

.

Recall that F ∈ R3×2 is a linear operator that transforms vectors from the two-
dimensional rest space of an element to their deformed counterparts in three-
dimensional space. In particular, we can express the deformed edges eij = xj − xi
of the triangle as

eij = Fēij , where ēij = x̄j − x̄i . (3.1)

With this relation, the polar factorization of the deformation gradient, F = RU,
can be interpreted in the following way: a given edge ēij is first stretched and
sheared in the plane of the element according to the deformation matrix U ∈ R2×2,
leading to an intermediate vector ẽij = Uēij. This vector is then rotated to its
current orientation in three-dimensional space as eij = Rẽij, where R ∈ R3×2

is the element’s effective rotation matrix. We follow Etzmuß et al. [EKS03] in
order to determine this rotation, i.e., we first compute U from FtF = U2 using
singular value decomposition and then obtain R = FU−1. Since U is only a (2× 2)-
matrix, its singular values and its inverse can be computed very efficiently. Having
determined R, we use its transpose to rotate the element’s positions back to their
rest state plane, by construction corresponding to z = 0, and transform to two
dimensions by discarding the third components. We thus obtain rotation-free in-
plane displacements,

ui = Rtxi − x̄i , where ui ∈ R2 ,

from which we finally compute the linear Cauchy strain of the element as
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ε =
3

∑
i=1

Biui = Bue . (3.2)

Here and henceforth, the superscript e denotes a six component vector holding
nodal quantities such as displacements, ue = [u1 u2 u3]t, whereas B ∈ R3×6

denotes the concatenation of the three strain-displacement matrices

Bi =


∂Ni
∂x 0
0 ∂Ni

∂y
1
2

∂Ni
∂y

1
2

∂Ni
∂x

 . (3.3)

Having defined an appropriate deformation measure, we can now proceed to the
actual constraints.

Formulating and Enforcing Constraints Suppose that the current deformation
ε(ue) of a given element, computed via Eq. (3.2), violates one or several of the
strain limits, which are supplied in a vector εlim ∈ R3. In general, not all three
limits are violated at the same time and it seems to be the least intervention to
leave non-violated modes unchanged. To this end, we define a target deformation
εtar for the element as

εtar
i =

{
εlim

i , if ε i > εlim
i

ε i , otherwise.
(3.4)

Limits for maximum compressive deformation are set in an analogous way. We
now seek to compute correcting displacements ∆ue such that all deformation lim-
its are satisfied at the same time, i.e.,

ε(ue + ∆ue) = εtar . (3.5)

Due to the linearity of ε we obtain a linear system for the unknown correcting
displacements

B∆ue = ε(ue)− εtar , (3.6)

which describes three equations for six unknowns. In order to prevent momen-
tum drift, we add three equations that explicitly require the corrections to be free
from unwanted translational and rotational components. To this end, we start by
expressing ∆ue in terms of equivalent correcting velocities ∆ve. The latter are com-
puted in such a way that, when applied retrospectively to the average velocities
of a given time step, they yield the desired displacement corrections ∆ui = h∆vi,
where h is the step size of the time integration scheme. Requiring ∆ve to not affect
linear momentum gives two additional equations,

3

∑
i=1

mi∆vi,x = 0 and
3

∑
i=1

mi∆vi,y = 0 , (3.7)

where mi denotes the mass of node i. Similarly, a sixth equation is obtained by
enforcing ∆ve to not change rotational momentum2. To this end, we define a set

2Since the corrections ∆ve are confined to the plane of the element, they can only cause rotational
motion about its normal direction.
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Figure 3.3: Rotational components ∆vτ
i of correcting velocities and resulting an-

gular momentum L. The coloring indicates the contributions of individual nodes.

of vectors li = xi − xm that link the triangle’s nodes with its center of mass xm as
shown in Fig. 3.3 and require

3

∑
i=1

mi(li,x∆vi,y − li,y∆vi,x) = 0 . (3.8)

We thus have six equations for six unknowns and can now set up a linear
system for elemental deformation limiting. Defining the right hand side vector
b ∈ R6 component-wise as

bi =

{
ε i(ue)− εtar

i , for i = 1 . . . 3
0 , for i = 4 . . . 6

(3.9)

we write the linear system of equations as

A∆ve = b , (3.10)

where the matrix A is defined as

A =



∂N1
∂x 0 ∂N2

∂x 0 ∂N3
∂x 0

0 ∂N1
∂y 0 ∂N2

∂y 0 ∂N3
∂y

1
2

∂N1
∂y

1
2

∂N1
∂x

1
2

∂N2
∂y

1
2

∂N2
∂x

1
2

∂N3
∂y

1
2

∂N3
∂x

m1 0 m2 0 m3 0
0 m1 0 m2 0 m3

−m1l1,y m1l1,x −m2l2,y m2l2,x −m3l3,y m3l3,x


. (3.11)

The matrix A is invertible for all non-degenerate triangles3 such that this system
has exactly one solution.

This solution of (3.10) has to be computed once for every over-deformed ele-
ment in each iteration of the global enforcement scheme, which can become quite
expensive if a conventional solver, for example based on Gaussian elimination, is
used. The computational costs can, however, be significantly reduced using the

3In this case, non-degeneracy is equivalent to non-zero area.



46 3 Deformation Constraints for Biphasic Anisotropic Cloth

observation that, except for the last row, all entries of A are rest state quantities.
We first decompose the linear system and write[

A1 A2
A3 A4

]
·
[

s1
s2

]
=
[

r1
r2

]
, (3.12)

where A1 is the upper-left (5× 5)-submatrix and [s1 s2]t and [r1 r2]t are partitioned
solution and right hand side vectors, respectively. Letting S denote the Schur
complement [GVL96] of the submatrix A1,

S = A4 −A3A−1
1 A2 , (3.13)

the solution of (3.12) can be recast into two steps:

s2 = S−1(r2 −A3A−1
1 r1) ,

s1 = A−1
1 (r1 −A3s2) .

Note that S is a scalar such that its inverse is obtained directly. Computing the
(5×5)-inverse matrix A−1

1 is more involved, but since it only depends on rest state
quantities it can be precomputed. Using an optimized code, only 1 division, 33
additions and 37 multiplications have to be performed at run time to solve (3.12).
Compared to the solution via direct inversion of A, the operation count is thus
reduced by a factor of more than 134.

Having solved system (3.12) for the correcting in-plane velocities, they are
transformed back to world space according to

∆v3D
i = R∆v2D

i . (3.14)

The effect of these elemental corrections can be visualized by applying correspond-
ing displacements ∆ui = h∆vi to individual elements in isolation. This results in
an intermediate state with a set of incompatible triangles as shown in Fig. 3.4.

Figure 3.4: Effect of elemental corrections visualized by applying corresponding
displacements to triangles in isolation.

Having established the formulation and enforcement of local deformation con-
straints, we can now turn to the combination of elemental responses into a global
solution. But before proceeding to this subject in the next section, two further
points should be mentioned.

4These numbers refer to optimized C++ code generated by the computer algebra software Maple.
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First, we have only considered deformation constraints, but an analogous for-
mulation can be used to enforce limits on strain rates. For this purpose, it is
sufficient to replace the displacement vector ue in Eq. (3.2) with nodal velocities
ve and to define corresponding strain rate limits.

Second, we have not considered the case of triangles with nodes subject to
position constraints. This can be dealt with by modifying the matrix A of the de-
formation limiting problem accordingly. For the purpose of illustration, suppose
that for a given element a single node with index i = 3 is fixed. In this case, we
delete the fifth and sixth columns of A to obtain a modified matrix Ã. The re-
sulting overdetermined system is solved in a least squares sense using the normal
equations

[∆v1 ∆v2]t =
(
ÃtÃ

)−1 Ãtb . (3.15)

3.3.2 Iterative Global Enforcement

The previous section introduced deformation constraints on triangle elements and
described how to enforce them locally. This section discusses two iterative schemes
for combining local element responses into a global solution.

In order to provide the necessary context, we assume that x0 holds positions at
the beginning of a given time step and use x1 to denote candidate positions for the
end of the step, obtained by integrating the equations of motion forward in time.
Additionally, we define the average velocity of the time step as v0 = 1

h (x1 − x0).
We can now cast the global enforcement of deformation limits as the problem of
finding correcting velocities ∆v such that the final positions

x = x0 + h(v0 + ∆v) (3.16)

satisfy all constraints. The global correction vector ∆v is computed iteratively from
elemental contributions and we consider two alternatives for this purpose.

Jacobi Iterative Enforcement Each iteration of global constraint enforcement
consists of a loop over all triangles in the mesh, involving the computation of
correcting velocities ∆ve for those elements whose deformation exceeds the limits.
These corrections are accumulated at the vertices of the mesh and each vertex i
stores contributions from all elements j incident to it as

∆vi = ∑
j

∆vj
i . (3.17)

For implementational convenience, we directly update candidate velocities and
positions after iteration k as

vk+1 = vk + ∆v (3.18)
xk+1 = xk + h∆v (3.19)

and reset ∆v after each pass instead of accumulating corrections over the entire
enforcement step. The iteration terminates when the deformation constraints are
satisfied for all elements. In analogy to the iterative solution of linear systems of
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equations, this process can be considered as Jacobi iterative enforcement [BFA02],
since element responses of one iteration become visible to other elements only in
the next iteration. One advantage of this approach is that the result is completely
independent of element ordering in the mesh. Another benefit is that the elemental
corrections are independent of each other and can thus be carried out in parallel.

Gauss-Seidel Iterative Enforcement Instead of computing all element correc-
tions in isolation before applying them globally, an alternative approach is to ap-
ply them immediately. To this end, we initialize xk+1 = xk at the beginning of
iteration k + 1 before starting the loop over the elements. Having computed the
velocity correction ∆ve for a given element, the positions of its three nodes are
updated according to

xk+1
i = xk+1

i + h∆ve
i . (3.20)

In this way, the response for an element is immediately visible to its neighbors and
is taken into account when computing further corrections in the same iteration.
The resulting scheme can be considered as Gauss-Seidel iteration and it has been
reported to converge faster than its Jacobi counterpart in the context of edge-based
strain limiting [BFA02]. This improved performance comes, however, at the cost of
losing order-independence, which may introduce bias into the results. Fortunately,
this dependence can be largely eliminated by randomizing the order of element
updates in each iteration and, using this strategy, we did not observe bias or other
artifacts in practice.

Having introduced these iterative enforcement schemes, the question now
arises as to which of them should be preferred in practice. We will postpone a
detailed performance comparison of the methods to Sec. 3.4 and instead continue
with an overview of their implementation.

Implementation Algorithm 3.1 describes the implementation of iterative
continuum-based strain limiting. It is structured into two loops: the inner one
(ll.4-17) computes corrections for triangle elements in isolation, whereas the outer
one (ll.2-22) combines these elemental responses and stops the process when all
constraints are satisfied. While this is a straightforward implementation, its effi-
ciency can be improved using the following modification.

In each iteration of the algorithm, all elements of the mesh are checked for
constraint violations and corrections are computed and applied if necessary. De-
pending on the animation, however, the fraction of actually corrected elements can
be rather small and is often less than 10%. In order to not waste time on evaluating
constraints for elements that do not require correction, we pursue the following
modified strategy. The first iteration proceeds as usual, but we mark all elements
that needed correction. After this first iteration, we insert all marked elements as
well as their incident triangles5 into an index set, to which we refer as the active set.
The underlying reasoning is that correcting a given element can only induce sec-
ondary deformations for triangles incident to it. The active set therefore contains
all triangles that can possibly violate the limits and it is sufficient to check only
these elements in the next iteration. The same process is applied in subsequent

5Two triangles are incident if they have at least one vertex in common.
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Algorithm 3.1 limitDeformations(x,v)
1: converged = false;
2: while not converged do
3: converged = true;
4: for (e = 1 to e = ne) do
5: xe = getElementVec(e,x); //get candidate positions for element
6: ε = computeDeformation(xe);
7: if limitsViolated(ε) then
8: converged = false;
9: ∆ve = computeCorrection(ε);

10: if Gauss-Seidel then
11: addElementVec(e,∆ve, v); //commit element response immediately
12: addElementVec(e,h∆ve, x); //commit element response immediately
13: else
14: addElementVec(e,∆ve, ∆v); //Jacobi iteration, store element response
15: end if
16: end if
17: end for
18: if not Gauss-Seidel then
19: v = v + ∆v;
20: x = x + h∆v;
21: end if
22: end while

iterations and we keep elements that were added to the set for the entire global
enforcement step such that its size can only increase.

The implementation of this active set method requires only minimal changes
to Alg. 3.1. When used in combination with Jacobi-type global enforcement, the
number of necessary iterations is the same as before, but typically with much
less elemental constraint evaluations. Compared to conventional Gauss-Seidel it-
eration, the speed at which isolated deformations are spread out can be slightly
lower. This is due to the fact that, for a given iteration, the active set can only grow
by the elements contained in its border, i.e., triangles that are incident to those al-
ready in the set. However, the increase in iteration count is only small whereas the
gain in computational efficiency can be significant, as will be shown in Sec. 3.4.

Integration Algorithm 3.1 can be interpreted as a post-integration filter that
modifies the average velocity of a time step such that the final positions satisfy
all constraints. The same principle is used in the collision handling framework
of Bridson et al. [BFA02]. Consequently, CSL can be used as a drop-in replace-
ment for conventional edge-based strain and strain rate limiting methods. This
integration is summarized in Algorithm 3.2. A time step of unconstrained physics
provides candidate positions and velocities (l.3), which are fed to CSL for con-
straint enforcement (l.5). The corrected positions and velocities are then passed
on to the collision handling scheme (l.6). This yields collision resolving velocities
as well as final nodal positions. Another CSL pass can be applied to the final
velocities in order to limit the strain rate (l.8).
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Algorithm 3.2 CSL - Integration
1: //Simulation loop:
2: for (n = 1 to n = nsteps) do
3: (xn+1, vn+1) = stepPhysics(h, xn, vn);
4: limitStrain(xn+1, vn+1);
5: handleCollisions(xn, xn+1, vn+1);
6: limitStrainRate(vn+1);
7: end for

3.3.3 Selecting Deformation Limits

We have so far not discussed how deformation limits can or should be selected in
order to obtain a desired material behavior. There are essentially two ways that
can be envisaged.

One is to let the animator or artist specify two parameters per deformation
mode, corresponding to a stiffness coefficient for the elastic range and a defor-
mation limit. This is a concise and intuitive interface that allows easier control
of material behavior than the manipulation of nonlinear stress-strain curves. If
desired, more complexity could be hidden from the user by quantizing the elastic
stiffness into a small set of material behaviors, e.g, ranging from ’very soft’ to ’stiff’.

However, it is also possible to determine these six parameters in order to match
a given material behavior as closely as possible. In this context, it is insightful to
take a closer look at the material curves shown in Fig. 3.5.

Figure 3.5: Photographs of real fabric samples (top row) and corresponding strain-
stress plots (bottom row) for stretching in weft and warp directions. The first col-
umn shows a plain weave material made of wool and viscose. The second fabric
is a light viscose-polyester composite in plain weave, while the third sample is a
stretchy knit fabric with wool-viscose yarns.

The data was acquired in the context of the Virtual Try-On project [WKK+04]
using the Kawabata Evaluation System [Kaw80a]. Accordingly, dimensionless
strain is plotted against applied loading in gram force per centimeter (gf/cm).
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Figure 3.6: Representative frame from Example 3.1, which compares continuum-
(columns 1–4) and edge-based (columns 5–6) strain limiting using different de-
formation constraints as indicated above each column. Results obtained without
strain limiting are included as well (column 7). The top row shows rendered
views, the middle row shows visualizations of weft and warp deformation in split
images while the last row plots shear deformation. Weft and warp directions
coincide with the horizontal and vertical axis of the image plane, respectively.

For a maximum loading of 500 gf/cm the resulting maximum deformation varies
from 15% to 40%. However, it should be noted that a force of 500 gf/cm corre-
sponds to loading a fabric sample of 1m length with 50 kg or to grabbing a part of
it by hand and pulling with the equivalent of around 5 kg. Such high loadings are
not to be expected under normal circumstances and it seems reasonable to set up
deformation limits corresponding to forces roughly between 100 and 200 gf/cm.
For the fabrics shown in Fig. 3.5 reasonable choices would be 5%, 2%, and 15%
of admissible deformation in warp direction. Having estimated the deformation
limit, the elastic stiffness coefficient can be fit to best approximate the remaining
part of the stress-strain curve.

3.4 Results

We have investigated the performance of continuum-based deformation limiting
on a number of examples, some of which are presented in this section. All com-
putation times that are given in the following were obtained on a commodity
workstation with 2GB of main memory and two dual-core AMD Opteron CPUs
running at 2.0GHz. Unless indicated otherwise, only a single core was used.

The first example is meant to demonstrate the range of material behaviors
that can be obtained with continuum-based strain limiting by merely varying the
anisotropic deformation limits. For comparison, results for conventional edge-
based strain limiting (ESL) are included as well. The setup consists of a square,
irregularly tessellated mesh with 3616 faces, which is pinned at two corners and
swings under the influence of gravity. We impose deformation constraints with a
strictness varying from 0.02 to 0.2. Fig. 3.6 shows a rendered frame along with
strain distributions for the cases studied. Only a single constraint value can be
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Figure 3.7: Strain plots for weft, warp and shear strain (left to right) in groups
of three for Example 3.2. Material coefficients and deformation limits are set to
(1000,200,100) N/m and (0.04,0.2,0.4), respectively. The plots show results ob-
tained with CSL (A1-A3), CSL with material coefficients and deformation limits
switched along weft and warp directions (B1-B3), ESL (C1-C3), and without strain
limiting (D1-D3).

used for ESL (columns 5–6), but with CSL we can additionally experiment with
differently strict constraints for each deformation mode (columns 1–4). In or-
der to best isolate the effect of strain limiting, material parameters were set to
(100,100,30) N/m in all cases6. Using CSL, substantially different material behav-
iors are obtained just by switching anisotropic constraints along weft and warp
direction (compare columns 3 and 4). Likewise, setting strict constraints for weft
and warp but a weak constraint for shear deformation gives completely different
though realistic results. Relaxing the single constraint for ESL from 0.02 to 0.2
(columns 5 and 6), the fabric becomes globally softer and resembles the uncon-
strained case (column 7). The strain visualizations in rows 2 and 3 reveal that in
all cases deformation constraints are accurately adhered to. The plots also show
that CSL achieves a clean separation between the different deformation modes. In
particular, we can observe higher deformation for strain components with softer
constraints. We further note that the strain distribution for ESL is not as smooth
as for CSL. This can be attributed to the fact that some edges are well aligned with
the material directions while others are not.

The impression of this first experiment is largely confirmed by Example 3.2,
which consists of a disc-shaped mesh (4424 faces, 1m diameter) that drapes over
a small sphere. In contrast to the first example, we used a stiffer and strongly
anisotropic material with elasticity coefficients and deformation limits selected
in equal proportions as (1000,200,100) N/m and (0.04,0.2,0.4), respectively. The
single parameter for edge-based strain limiting was set to 0.04. Figure 3.7 shows
strain plots for a representative frame of this animation. Using continuum-based
strain limiting, the deformations adhere accurately to the strict limit imposed in
weft direction (A1). At the same time, larger strains are produced in warp and
shear directions (A2-A3), which is in accordance to the more generous limits set

6Triples of elasticity coefficients or deformation limits refer to stretching in weft and warp direc-
tion and shearing, respectively.
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for these modes. As can be seen from plots (B1-B3), a consistent behavior is
obtained when switching the material coefficients and deformation limits in weft
and warp directions. Using edge-based strain limiting, the threshold is respected,
but in contrary to the material properties, deformation is more or less isotropic
(C1-C3). The fact that deformation limiting is actually necessary to satisfy the
imposed thresholds can be observed in plots (D1-D3), for which no strain limiting
was used. The results show strongly localized deformations which exceed the
imposed limits by a factor of up to 5.

Figure 3.8: Three representative frames from Example 3.3 shown in side view (top
row) and from above (bottom row).

The remaining examples are intended to demonstrate the method’s ability to
produce more complex and dynamic cloth animations. Example 3.3 consists of
a square piece of cloth (14 476 triangles) with 0.5m side length that is placed
slightly off the center of a small sphere with 0.15m radius. The material pa-
rameters were set to (300,300,150) N/m and deformation limits were chosen as
(0.1,0.1,0.4). During three seconds of animation, the cloth first drapes around the
sphere but subsequently slides down onto the floor, forming complex folding and
buckling patterns as shown in Fig. 3.8. In this example, the average computa-
tion time for constraint enforcement was 2.92 seconds for a single 25Hz frame,
while time integration took 7.8 seconds. As a side note, more than 55% of the
total time was spent on collision handling, which can be attributed to the complex
self collisions that occur throughout the animation. We also used this example to
evaluate the efficiency of the modified iteration strategy7 described in Sec. 3.3.2.
Using this active set method, the average iteration count increased from 3.4 to 4.0,
but the time spent on strain limiting decreased by almost 50% to 1.53 seconds per
frame. This is an appreciable improvement and we found it to be consistent for all
examples considered.

7In order to allow better comparison with edge-based strain limiting, the active set method was
only used for Example 3.3.
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Figure 3.9: Four representative frames from a dress animation (Example 3.4).

The fourth example is a practical cloth animation consisting of a dress (8891
triangles) and a rigid bar with scripted motion that is placed through its straps.
The elastic material coefficients are set to (300,300,75) N/m and deformation limits
are selected as (0.1,0.1,0.4), providing room for large shear deformations. During
five seconds of animation, the dress initially drapes due to gravity, but is soon
accelerated forwards by the abrupt motion of the bar, which moves back and
forth several times. This leads to high-velocity collisions which are challenging for
both strain limiting and collision handling. Subsequently, the bar is rotated with
increasing angular velocity such as to spin and swirl the dress around itself (see
Fig. 3.9). Complicated self collisions result in multiple twisted layers and provoke
large shear deformations.

Figure 3.10: Rendered frame (left) and shear strain plots using CSL (middle) and
ESL (right). With CSL, larger shear strains can be allowed while enforcing low
stretch deformation. ESL can only enforce a single limit on stretch and shear
deformation, leading to substantially different results.

Again, the difference between continuum- and edge-based deformation limit-
ing can be seen very clearly in this example. The edge-based scheme cannot satisfy
stretch constraints and allow large shear deformations at the same time (see Fig.
3.10, right). Using CSL, larger shear deformations develop in accordance to the
prescribed limits and the elastic material (Fig. 3.10, middle).
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For this example, time integration took about 16.09 minutes for the five seconds of
animation. The average iteration count for CSL was 14.92 and the corresponding
computation time was 12.19 minutes.

Finally, a last example is used to compare the computational costs and conver-
gence properties of CSL and ESL. The setup for this experiment is the same as in
Example 3.1, but a set of meshes with increasing resolution is used. In order to
facilitate comparison to the edge-based variant, an isotropic material with mate-
rial coefficients of (500,500,250) N/m was used and deformation limits were set
to (0.1,0.1,0.2) for CSL and 0.1 for ESL. Table 3.1 provides average iteration counts
and run times for 1 second of simulation.

Table 3.1: Iteration counts and computation times in seconds for Example 3.5. #it
denotes the average number of iterations to convergence for strain limiting and
t_sl the corresponding computation times. t_int lists time spent on time integra-
tion.

It can be seen that the Gauss-Seidel variant (CSL-GS) converges slightly faster
than its Jacobi counterpart (CSL-JAC-1), which also translates into faster compu-
tations for the single-threaded case. However, using 4 threads on 4 CPUs, the
parallel Jacobi variant (CSL-JAC-4) is faster than CSL-GS. As expected, the com-
putational costs for the CSL variants are higher than for ESL, but this difference
has to be weighted against the increased capabilities offered by CSL.

3.5 Conclusions

Summary This chapter presented continuum-based strain limiting, which is a
novel approach for simulating biphasic, anisotropic textiles. Deformation con-
straints were derived from a continuous strain measure and discrete expressions
were obtained using linear triangle finite elements. Our method allows accurate
control over all deformation modes and enables the use of individual anisotropic
thresholds. Unlike conventional edge-based approaches, CSL does not require
specifically-aligned discretizations but works on unstructured triangle meshes,
which is a valuable asset when simulating complex garments.

The capability of continuum-based strain limiting to create diverse material
behaviors has been demonstrated on a number of examples. It was also shown
that conventional edge-based approaches can only reproduce a subset of the effects
achievable with CSL.

Limitations and Future Directions Continuum-based strain limiting relies on it-
erative constraint enforcement, as did previous edge-based methods described in
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[Pro95, BFA02]. As such, it inherits the drawbacks with respect to performance
scaling with increasing mesh sizes, discussed in [GHF+07]. An interesting direc-
tion for future work would therefore be to explore ways to improve the asymp-
totic convergence behavior, e.g., using multi-resolution techniques or direct en-
forcement schemes. The fast projection scheme of Goldenthal et al. [GHF+07]
seems an attractive approach in this context. However, a fundamental problem
is the fact that imposing deformation constraints on a per-triangle basis leads to
far too many constraints for the degrees of freedom in the system. English et al.
[EB08] avoid this problem by using a discontinuous discretization. Indeed, our
continuum-based deformation constraints can be used as a drop-in replacement
for their edge length constraints. However, their method introduces a significant
amount of additional degrees of freedom, leading to higher computational costs.

Another point for improvement is the interplay between deformation limit-
ing and collision handling. Implemented as a velocity filter, continuum-based
deformation limiting integrates seamlessly into the widely used collision han-
dling framework of Bridson et al. [BFA02]. This makes switching to CSL a
lightweight effort, but a limitation of the original method persists: in order to
obtain intersection-free configurations, the collision handling filter has to be ap-
plied last, i.e., after strain limiting. Collision response can therefore reintroduce
deformations that were painstakingly removed before. Although strain rate lim-
iting can reduce secondary deformations in the next time step, it cannot remove
strain introduced by collision handling. An approach worth investigation might
therefore be to couple the enforcement of deformation and collision constraints.

Finally, a further direction is to extend CSL to volumetric solids in order
to model, e.g., living tissue. Especially tendons and muscles naturally exhibit
anisotropic and often biphasic properties8. In this context, continuum-based de-
formation constraints could be used to build a computationally efficient approxi-
mation of complex and costly nonlinear material laws.

8see, for example, the textbook by Fung [Fun93]



Chapter 4

Asynchronous Cloth Simulation

Physically-based approaches for cloth animation give rise to stiff equations of mo-
tion, which render numerical time integration a challenging problem. Due to their
superior stability properties implicit methods are typically preferred over their ex-
plicit counterparts. Especially the semi-implicit Euler scheme enjoys widespread
use since it offers fast computation times, provided that large steps can be taken.
This, however, is not always possible or even desirable. First, complex collisions
typically require reduced step sizes in order to be resolved in a visually pleasing
manner and this reduction lessens the computational advantages of implicit meth-
ods. Second, large step sizes and stiff materials are known to amplify the effect of
numerical dissipation, leading to overdamped animations that lack detail (see Fig.
4.1, (a)).

Figure 4.1: Comparison of different integration schemes on an animation of a
swinging cloth with low material damping. Using the semi-implicit Euler method
with a large step size (a) leads to a considerable lack of detail when compared to
results for smaller step sizes (b). For the same computation time, our AVI-based
method (e) produces more detail.

Explicit methods, by contrast, do not suffer from numerical dissipation but
possess only limited stability when applied to stiff equations. For conventional
methods1, the step size has to be small enough to match the stability requirements
of the stiffest component of the system. This is especially unfortunate when using
unstructured meshes, where a few small elements, e.g., in regions around curved
borders can drastically limit the global step size and thus computational efficiency.

1i.e., synchronous methods

57
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Overview and Contributions Motivated by these observations, this chapter ex-
plores an alternative approach based on asynchronous explicit time stepping. The en-
abling technology of this method is the asynchronous variational integrator (AVI)
introduced by Lew et al. [LMOW03]. Using an explicit integrator eliminates the
problem of numerical dissipation such that damping becomes fully controllable
through material parameters (see Fig. 4.1, (e)). The asynchronous formulation re-
laxes the strict limitations of synchronous methods by assigning each element an
individual step size according to its local stability requirements.

In order to be of practical use for cloth animations, collision handling has to
be integrated into the asynchronous framework. We propose a three-stage strat-
egy for this purpose that combines both synchronous and asynchronous tech-
niques. The efficiency and robustness of the solver is further increased through
per-element deformation limiting and adaptive step size reduction.

The remainder of this chapter is organized as follows. In order to provide the
necessary context, we first review the basic concepts of variational integration and
briefly summarize the derivation of AVIs (Sec. 4.1). Details on the asynchronous
time stepping framework are given in Sec. 4.2 and we describe our approach to
collision handling in Sec. 4.3. Results and examples are presented in Sec. 4.4,
followed by a conclusive summary in Sec. 4.5.

4.1 Background

The method described in this chapter is based on an asynchronous time stepping
scheme, which has its roots in discrete mechanics. We start by summarizing the
template process for constructing variational time integrators. Having introduced
these basic concepts in the synchronous setting, we subsequently consider the
translation to the asynchronous case. An extensive treatment of the underlying
concepts from classical mechanics can be found, e.g., in the standard textbook
by Arnold [Arn97]. For a comprehensive overview on discrete mechanics and
variational integrators we refer to the survey article by Marsden and West [MW01].

Variational Integrators We consider a discrete mechanical system consisting of
a set of nv nodes whose configuration is described position and velocity vectors
x ∈ R3nv and ẋ ∈ R3nv , respectively. The system is characterized by its Lagrangian
L, which is defined as the difference between kinetic and potential energy

L(x, ẋ) = T(ẋ)−V(x) . (4.1)

In our case, V contains contributions from elastic and gravitational potential en-
ergy. The kinetic energy is defined as

T(ẋ) =
1
2

ẋtMẋ, (4.2)

where M is the (diagonal) mass matrix as described in Chapter 2. The motion of
the system is described by Hamilton’s principle, which states that the trajectory
x(t) between two fixed configurations x(t0) and x(tN) is such that the action

S =
ˆ tN

t0
L(x(t), ẋ(t)) dt , (4.3)
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is rendered stationary. This implies that

δS =
ˆ tN

t0

[
∂L
∂x
− d

dt
∂L
∂ẋ

]
δx +

d
dt

(
∂L
∂ẋ

δx
)

dt = 0 , (4.4)

for all variations satisfying δx(t0) = δx(tN) = 0. The latter requirement also leads
to the vanishing of the last term, which reveals the Euler-Lagrange equations as

d
dt

∂L
∂ẋ

=
∂L
∂x

. (4.5)

Inserting the definition of the Lagrangian into this expression, we recover the
ordinary differential equations (2.38) which are the starting point for conventional
time discretization schemes such as those discussed in Chapter 2.

Instead of discretizing these equations of motion, variational integrators are
derived by approximating the action integral with a discrete action sum

SD =
N−1

∑
n=0

Ln+1(xn, xn+1, tn, tn+1) (4.6)

where the pairs (xn, tn) define the discrete trajectory of the system and

Ln+1(xn, xn+1, tn, tn+1) ≈
ˆ tn+1

tn
L(x(t), ẋ(t)) dt (4.7)

is the discrete Lagrangian. A corresponding discrete version of Hamilton’s prin-
ciple [MW01] requires that the sequence x1, . . . , xN−1 renders SD stationary. This
leads to the discrete Euler-Lagrange equations, which require

∂Ln(xn−1, xn, tn−1, tn)
∂xn +

∂Ln+1(xn, xn+1, tn, tn+1)
∂xn = 0 (4.8)

to hold for all n = 1, . . . , N − 1. These equations give direct rise to a time step-
ping scheme once a discrete Lagrangian has been defined. In order to illustrate
this process, we make a particular choice for approximating the integral in Eq.
(4.7). To this end, we assume piecewise linear trajectories (i.e., constant velocities
on [tn, tn+1]) and use a rectangle rule for quadrature that evaluates the potential
energy at the end of the interval. This gives

Ln+1(xn, xn+1, tn, tn+1) = (tn+1 − tn)L(xn+1,
xn+1 − xn

tn+1 − tn ) . (4.9)

Inserting this expression into the discrete Euler-Lagrange equations (4.8) yields

M(
xn+1 − xn

tn+1 − tn −
xn − xn−1

tn − tn−1 ) = −(tn − tn−1)
∂V(xn)

∂xn , (4.10)

which can be rearranged to give an update scheme for xn+1 in terms of xn and
xn−1. In the special case of a constant step size h , this expression simplifies to

M(xn+1 − 2xn + xn−1) = −h2 ∂V(xn)
∂xn , (4.11)
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which can be identified as the two-step version of the explicit Verlet scheme (see
Hairer et al. [HLW03]). In practice, a one-step formulation is more convenient and
for this purpose, it is customary to introduce staggered2 velocities as

vn− 1
2 =

xn − xn−1

h
and accordingly

vn+ 1
2 − vn− 1

2

h
= M−1 ∂V(xn)

∂xn . (4.12)

The one-step update scheme follows as

xn = xn−1 + hvn− 1
2 (4.13)

vn+ 1
2 = vn− 1

2 + hM−1 ∂V(xn)
∂xn . (4.14)

This scheme allows the following interpretation: first, positions are updated with
the constant velocity of the preceding interval. Second, velocities for the next
interval are computed by applying instantaneous impulses to vn− 1

2 according to
the current potential. This pattern can also be found in the explicit AVI scheme,
which is introduced subsequently.

Asynchronous Setting The previous paragraph demonstrated the construction
of variational integrators for discrete mechanical systems in a general setting.
In particular, no assumptions were made on the origin of the discretization or
whether the discrete problem derives from a continuous one. We will now as-
sume that V is an elastic potential defined by Eqs (2.19) or (2.21) and that the
positions x stem from a finite element discretization of the corresponding contin-
uum mechanics problem as described in Chapter 2. In order to proceed towards
asynchronous integration, we will partition the Lagrangian in accordance to the
underlying triangle mesh. To this end, we write its kinetic and potential compo-
nents as

V = ∑
K∈K

VK and T = ∑
K∈K

TK , (4.15)

where VK and TK correspond to the potential and kinetic energies of element K
and K denotes the set of triangle elements. The discrete elastic energy VK is only a
function of the discrete deformation gradient on element K, which in turn is given
by Eq. (2.31). For an isotropic material law according to Eq. (2.21), we simply have

VK =
1
2

λtr(EK)2 + µ(EK : EK), where EK =
1
2
(Ft

KFK − I) . (4.16)

An analogous expression holds for anisotropic materials. Finite elements can be
used for the kinetic energy as well, but in practice we use a lumping scheme that
distributes the mass of an element evenly among its vertices. To this end, we define
the mass of node a due to element K as mK,a = 1

3 ρAK, where AK is the element’s
area and ρ denotes the mass per unit surface. The kinetic energy of element K is
then obtained as

TK =
1
2 ∑

a∈K
mK,a||ẋa||2 , (4.17)

2This means that velocities are not co-located in time with positions but are associated with the
intervals [ti−1, ti].
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which enables us to express the Lagrangian as a sum of elemental contributions,

L = ∑
K∈K

LK = ∑
K∈K

(TK −VK) . (4.18)

Letting xK and ẋK denote vectors holding positions respectively velocities of ele-
ment K, we can rewrite the action integral as

S =
ˆ tN

t0
∑

K∈K
LK(xK(t), ẋK(t)) dt = ∑

K∈K

ˆ tN

t0
LK(xK(t), ẋK(t)) dt = 0 , (4.19)

which indicates the possibility to use different time discretizations of [t0, tN ] for
the elemental Lagrangians LK. Assigning each element its individual step size
hK yields sets of time events (t0

K, . . . , tNK
K ), where tj

K = t0 + j · hK. The time sets
of all elements incident to a given vertex a furthermore induce a nodal time set
(t0

a, ..., tNa
a ), where each ti

a is part of the time set of (at least) one of the neighbor
elements of a.

In order to arrive at a time stepping method, the discrete action sum has to
be constructed and, to this end, it remains to define the discrete Lagrangians of
the triangle elements. Integrating the potential term VK with the same quadrature
rule as in (4.9) yields a semi-discrete Lagrangian Lj

K for the interval [tj
K, tj+1

K ] as

Lj
K =
ˆ tj+1

K

tj
K

TK(ẋK(t)) dt + (tj+1
K − tj

K)VK(xj+1
K ) . (4.20)

Unlike the potential energy, the integral of TK cannot be evaluated in the same
way as in (4.9), since the velocities ẋK(t) are no longer constant over [tj

K, tj+1
K ]. The

reason for this is that update events of neighboring elements cause changes to the
nodes of K and their velocities during the interval [tj

K, tj+1
K ]. In order to evaluate

the integral of TK explicitly, all these changes have to be taken into account. To this
end, let nj denote the number of update events for a given node a of K during a

given interval [tj
K, tj+1

K ], which is thus subdivided as [tj
K = tj,0

a , . . . , t
j,(nj+1)
a = tj+1

K ].
Assuming piecewise linear trajectories, the integral of the kinetic energy TK,a of
node a due to element K can now be written explicitly as

ˆ tj+1
K

tj
K

TK,a =
1
2

mK,a

nj

∑
i=0

||xi+1
a − xi

a||
(ti+1

a − ti
a)

2

, (4.21)

and summing over all nodal contributions yields a corresponding expression for
the entire element. Further note that for every term in the sum of (4.21), there are
contributions from all neighboring elements of node a, which are identical except
for the mass factors mK,a. Since we have ∑K mK,a = ma, these terms merge into a
single one with mass factor ma. We can thus write the discrete action sum as

SD = ∑
K∈K

NK−1

∑
j=0

Lj
K =

nv

∑
a=1

Na−1

∑
i=0

1
2

ma
||xi+1

a − xi
a||2

(ti+1
a − ti

a)
− ∑

K∈K

NK−1

∑
j=0

(tj+1
K − tj

K)VK(xj+1
K ) .
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The asynchronous update scheme is obtained from this expression by invoking
the discrete Hamilton’s principle [MW01], which requires that

∂SD

∂xi
a

= 0 for all a ∈ {1, . . . , nv} and all i ∈ {1, . . . , Na − 1} .

Observe that a given xi
a contributes to three terms of the discrete action sum:

two kinetic terms corresponding to the contiguous intervals [ti−1
a , ti

a] and [ti
a, ti+1

a ],
respectively, as well as a potential component evaluated at time ti

a. Carrying out
the derivatives, we obtain

xi
a − xi−1

a

ti
a − ti−1

a
− xi+1

a − xi
a

ti+1
a − ti

a
=

1
ma

(tj
K − tj−1

K )
∂VK(xi

K)
∂xi

a
, (4.22)

where we have used ti
a = tj

K. This is a two-step update scheme and in analogy to
the synchronous case of (4.12), it can be transformed to a one-step method using
staggered velocities. By doing so, we finally arrive at

xi
a = xi−1

a + (ti
a − ti−1

a )vi− 1
2 (4.23)

vi+ 1
2

a = vi− 1
2

a +
1

ma
(tj

K − tj−1
K )

∂VK(xi
K)

∂xi
a

. (4.24)

These equations describe an asynchronous time stepping scheme, which is steered
by asynchronous elemental update events at times tj

K. Its algorithmic implemen-
tation as well as the extensions and adaptations made for the work presented in
this chapter will be described in the next section.

4.2 Asynchronous Time Stepping

A high-level overview of the time stepping scheme is provided by Algorithm 4.1,
which is structured into two main loops. The outer one (ll.7-30) is driven by the
collision handling scheme, which synchronizes the system at regular instants ti

c,
separated by a collision step size ∆tc. The inner loop (ll.14-28) advances elements
asynchronously across the intervals [ti

c, ti
c + ∆tc]. We postpone details on collision

handling to the next section and first describe the asynchronous event loop.

Algorithm Overview The most distinguishing aspect of AVIs is that they allow
each element to have its dedicated time step. Since each element advances at its
own pace, also the nodes of the system evolve asynchronously as illustrated in
Fig. 4.2. It is therefore necessary to keep track of both elemental and nodal times,
denoted by tK and ta in Algorithm 4.1.

The inner loop of the latter corresponds to the update scheme of Lew et al.
[LMOW03], modified in order to accommodate the extensions described in this
chapter. It advances the system between two successive synchronization points
ti
c and ti

c + ∆tc, at which global collision handling routines are performed (see
Sec. 4.3). The event loop is implemented using a priority queue, which orders
elemental update events automatically according to their time stamp. This is a
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Algorithm 4.1 Outline of the time stepping algorithm.
1: //Initialization:
2: tc = 0
3: for k = 1 to ne do
4: compute elemental time step hk
5: end for
6: //Outer loop
7: while tc < tend do
8: collisionHandling_stage1()
9: for k = 1 to ne do

10: queue.push(k; tc + hk) //fill queue
11: end for
12: tc = tc + ∆tc
13: //Asynchronous loop
14: while queue is not empty do
15: (k; tK) ⇐ queue.pop() //retrieve next event
16: K = element(k) //get element
17: for all a ∈ K do
18: xa = xa + va(tK − ta) //update positions
19: ta = tK //update nodal times
20: va = va − (hK/ma)fK,a //update velocities
21: end for
22: limitStrainAndStrainRate()
23: collisionHandling_stage2()
24: if (tK + hK) ≤ tc then
25: tK = tK + hK
26: queue.push(K, tK) //reschedule element
27: end if
28: end while
29: collisionHandling_stage3()
30: end while
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Figure 4.2: A chain is fixed at one point and subjected to gravity. Left: three ele-
ments with different step sizes advance asynchronously in time. The nodes follow
piecewise linear trajectories. Right: element activations over time are indicated by
corresponding color marks.

convenient and efficient way to ensure causality, since the element which has to
be updated next is always on top of the queue.

The update procedure itself is as follows. Once an element is retrieved from
the queue, its nodal positions are updated using the current velocities (l.18) and
nodal times are set to the current element time (l.19). Subsequently, the nodal
velocities are updated according to the net forces3 that have been acting on the
element since its last update (l.20). Finally, if the element’s next update time lies
in the interval [ti

c, ti
c + ∆tc], it is rescheduled for evaluation (l.26). The event loop

terminates once the queue is empty, which means that the next synchronization
point for global collision handling has been reached.

Geometry output for rendering is generated at regular intervals. We use ded-
icated events for this purpose that extrapolate the system’s positions to the corre-
sponding point in time, using its current velocities.

Cloth Mechanics In order to simulate the mechanics of cloth within the asyn-
chronous framework, the template expression in l.20 has to be specialized to
appropriate elastic and viscous forces. Integrating elastic membrane forces is
straightforward and the finite element expression (2.33) from Chapter 2 can be
used without modification.

Similarly, dissipation is implemented as a viscous stress according to Eq. (2.25),
which involves the rate of deformation tensor Ḟ. The obvious way to compute
this quantity is to use the current nodal velocities, but a subtlety arises in this
context: the velocities at an element’s update time tj

K are generally different from
the average values according to the positions at times tj−1

K and tj
K

4, which is due to
the impulses imparted by neighboring elements during the interval [tj−1

K , tj
K]. The

dissipation impulses applied at time tj
K should, however, approximate the integral

of the corresponding forces over the preceding interval. A better reflection of the
average behavior is obtained by using a difference approximation of the tensor as
suggested by Lew [Lew03],

Ḟj
K = (tj

K − tj−1
K )−1(Fj

K − Fj−1
K ) , (4.25)

3We use the shorthand fK,a to summarize all elastic, viscous and external forces due to element
K that act on its node a.

4See also the corresponding discussion in [HVS+09].
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where Fj
K and Fj−1

K are deformation gradients for the current and previous element
updates.

With the elastic and viscous in-plane forces defined, it remains to integrate
bending forces into the asynchronous framework and the hinge-based model
[BMF03, GHDS03] is again an attractive candidate. A direct way of implemen-
tation is to use dedicated bending elements (consisting of two edge-adjacent tri-
angles) and to add corresponding update events to the queue. However, the local
collision handling routine has to be invoked whenever an element (membrane or
bending) is updated (see Alg. 4.1, l. 23) such that maintaining a single type of
element is desirable. We therefore decided to model bending as an external force
that is applied to the nodes of a membrane element whenever it is updated. In
order to compute bending forces on a given membrane element, we evaluate the
three hinges corresponding to its edges, using the expression provided by Bridson
et al. [BMF03].

Figure 4.3: Support for
bending forces.

As illustrated in Fig. 4.3, the support of these forces
extends to four triangles and six nodes, three of which
belong to neighbors of the current element (depicted in
blue). Since these neighbor triangles are generally not
synchronized with the current element, their positions
have to be extrapolated accordingly before forces are
computed.

Having coupled the computations of membrane and
bending forces in this way, a step size that allows sta-
ble integration has to be determined. We do this based
on the assumption that bending and damping forces are not critical for stability,
such that the latter is determined solely by elastic properties. The critical step
size, beyond which stability is jeopardized, is then determined by the Courant-
Friedrichs-Lewy (CFL) condition (see, e.g., [Bat96]). Roughly speaking, this condi-
tion requires that the elemental time step be less than the time it takes a material
wave to pass the element. Following Lew [Lew03], we set the step size hK to a
fraction of the critical value,

hK = α ri

√
ρ/(λ + 2µ) , (4.26)

where ri is related to the size of element i (its internal radius) and α is a user-
supplied parameter, typically chosen as 0 < α < 1. The Lamé constants λ and µ
describe an isotropic, linear-elastic material and ρ denotes the mass density.

As can be seen from Eq. (4.26), reducing the material stiffness leads to larger
elemental time steps. This allows for faster integration but it also fits well with
the biphasic model of cloth as described in the previous chapter. To implement
this model in the context of asynchronous time stepping, we complement elastic
forces with local deformation limiting as described next.

Monitoring and Limiting Deformations The robustness and efficiency of the
solver can be improved by monitoring and limiting element deformations at run
time (see Alg. 4.1, l.22). In keeping with the original work [TPS08], the following
exposition is based on edge deformations. The extension to the continuum-based
method described in the previous chapter is, however, straightforward.
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Assume that a given element K is processed in the course of asynchronous
time stepping and that its positions and velocities have been updated according
to ll.18 and 20 of Algorithm 4.1. Let x1 and x2 denote the position vectors for two
of the element’s vertices and let the corresponding edge have a rest length l0 such
that its current strain is

εc =
||x2 − x1|| − l0

l0
=

lc

l0
− 1 . (4.27)

Using the current velocities of the edge points, v1 and v2, we define the approxi-
mate strain εn for the time of the next element update as

εn =
||x2 + hKv2 − (x1 + hKv1)|| − l0

l0
=

ln

l0
− 1 . (4.28)

Additionally, a corresponding rate of deformation is defined as

ε̇ = (εn − εc)/hK = (ln − lc)/(l0hK) . (4.29)

These three quantities are used to implement a strategy for monitoring and lim-
iting deformations as follows. Whenever the predicted next strain εn exceeds a
given threshold εlim

n , momentum-conserving impulses are computed such that,
when applied to the current velocities, the condition εn = εlim

n holds. To this end,
we compute a length correction ∆ln that satisfies

(ln + ∆ln)− l0
l0

= εlim
n → ∆ln = l0εlim

n − (ln − l0) . (4.30)

This correction is distributed to the two vertices such that their center of mass re-
mains unchanged and is applied as equivalent impulses to the current velocities.
This limiting scheme works well if the current deformation is below the threshold
or if violations are only moderate. However, if the current deformation already
exceeds the limit εlim

n by a significant amount, large impulses would be required to
recover a configuration with valid strain. In order to improve stability in such sit-
uations, we additionally correct positions using a formulation analogous to (4.30).
This is done whenever the condition εc > εlim

c holds, where εlim
c is a second de-

formation threshold5. Note that, in contrast to conventional strain limiting, there
is only a single correction per element update, i.e., no iterations are performed.
Although this is not appropriate for strictly enforcing tight deformation limits, it
is an effective way to prevent large strains and thus increase the robustness of the
solver.

In order to further improve stability in critical situations, we also take advan-
tage of the possibility to selectively reduce the step size of individual elements. In
cases of sudden character motion or high velocity impacts, the collision-resolving
impulses can induce large strain rates, which threaten to destabilize the simula-
tion. Such situations can be identified on the basis of the current strain rate ε̇ or,
equivalently, the expected change in strain ∆ε = hK ε̇ during the element’s next
time step. Following the suggestion of [BFA02], we use a limit of 10% for ∆ε and,
in case of violation, compute a reduced step size hK,r such that the condition holds.

5For the examples presented in Sec. 4.4, values of εlim
c = 10% and εlim

n = 7.5% were used.
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This reduced step size is used for a number nr of subsequent evaluations, which
is determined by requiring that nrhK,r = hK. Even for the more complex exam-
ples considered in this chapter, such step size reductions were only required very
rarely. In these cases, however, this technique has proved a valuable support for
maintaining stable animations and smooth collision response.

4.3 Asynchronous Collision Handling

In order to be of practical use, it is necessary to account for collision detection
and response in the asynchronous framework. We propose a three-stage scheme
for this purpose that combines techniques commonly used in synchronous ap-
proaches into an efficient asynchronous algorithm.

Figure 4.4: Snapshots of an animation sequence exhibiting complex self-collisions
with multiple layers of fabric in close proximity.

The method can be outlined as follows. The system is synchronized at regular
instants ti

c = i · ∆tc, where i is an integer and ∆tc denotes a user-supplied collision
step size6. The first stage acts on the synchronized state at times ti

c, detecting
triangle pairs that may potentially interfere during the subsequent interval [ti

c, ti
c +

∆tc]. This information is used in the second stage, which couples asynchronous
element updates with inter-triangle collision detection and impulse-based collision
response. In the third stage, which acts again on the synchronized state, remaining
collisions are resolved in an iterative way. The following paragraphs explain each
of these stages in detail.

6We used ∆tc = 0.01s for the animations described in Sec. 4.4.
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First Stage The first stage is invoked at each synchronization point ti
c in order to

register the triangle pairs that will interfere in the subsequent interval [ti
c, ti

c + ∆tc].
Since the positions at the end of this interval are unknown, these interferences
cannot be determined exactly and have to be estimated instead. To this end, we
compute a first-order approximation of x(ti

c + ∆tc) as

x̃ = x(ti
c) + ∆tcv(ti

c) , (4.31)

and perform a continuous collision detection pass between x(ti
c) and x̃. This is

done in the usual way, i.e., by enlarging the bounding volumes such that they
include both the geometry of x(ti

c) and x̃. Having updated the hierarchies of
all deformable and rigidly moving objects in this way, recursive overlap tests are
performed to obtain a set of potentially interfering triangle pairs. These pairs are
subsequently mapped to the cloth objects such that each element is assigned a
(possibly empty) list of triangles, which have to be checked for actual collisions in
the second stage.

Second Stage The first stage registers potentially interfering triangle pairs, but
the actual collision handling is coupled to the asynchronous element updates. Af-
ter a given element K has been updated at time tK, it is tested for collisions with
all potentially interfering triangles Ki that are registered in its list. To this end, the
nodal positions of Ki are synchronized to the current time tK (using the current
nodal velocities of Ki) and the geometric distance between K and Ki is computed
as described by Möller [Möl97]. If the distance is smaller than a threshold value,
exhaustive tests are performed for all edge-edge and vertex-face pairs of the two
triangles. True collisions are then treated as described in Sec. 2.4.2, i.e., by ap-
plying impulses that prevent imminent intersections or push too close primitives
apart.

Although most of the collisions can be resolved in this way, there can still be
intersections at the end of the second stage. Such remaining collisions, which were
either not captured by the first stage or not resolved in the second one, are treated
in an additional third stage as described next.

Third Stage The task of the third stage is to resolve all collisions that remain
after the second stage and we employ an iterative scheme for this purpose. First,
a continuous collision detection pass is applied in order to determine potential
intersections that occurred during the interval

[
ti
c, ti

c + ∆tc
]
. This is analogous to

the first stage, except that the positions x(ti
c + ∆tc) at the end of the interval are

now supplied by the asynchronous stage. Second, continuous intersection tests
are performed between the primitives of the detected triangle pairs and collision
resolving impulses are applied if necessary. This process is repeated until all in-
tersections are resolved. The integration of rigid impact zones as an additional
fail-safe is straightforward, but we found this unnecessary for the examples con-
sidered in this chapter.

Continuous Culling The first stage typically captures the vast majority of the
actually interfering triangle pairs. It can, however, also lead to a large number
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of false positives, i.e., triangle pairs for which no real collisions were detected in
the second stage. This effect is especially pronounced for examples with complex
self collisions such as the animation shown in Fig. 4.4. Since these false positives
slow down the simulation unnecessarily, we aim to reduce their number in an
additional culling step.

Figure 4.5: Impact of the geometric culling step for the animation shown in Fig.
4.4. The left diagram shows the percentage of actually handled triangle pairs in
the asynchronous stage over time. The right diagram plots the number of triangle
pairs that were only handled by the third stage.

For each detected triangle pair, a continuous collision test is performed in
order to determine whether an actual intersection occurs along the linear trajectory
between x(ti

c) and x̃. To this end, we check the corresponding edge-edge and
vertex-face pairs for coplanarity during the interval

[
ti
c, ti

c + ∆tc
]

as described in
Chapter 2. If no intersection is found, the triangle pair is removed from the input
list for the second stage.

The improvement in the ratio between detected and actually handled triangle
pairs can be quite significant: as can be seen in the left diagram of Fig. 4.5, an
average culling rate of over 50% was obtained for the ribbon animation shown in
Fig. 4.4. The right diagram also indicates that the culling step leads to a slightly
higher number of triangle pairs being missed during the second stage7. This
entails a slight increase in workload for the third stage but we did not observe
a negative effect on robustness.

4.4 Results

This section presents numerical results and example animations for the method
described in this chapter. We are especially interested in how well surface details
are produced and preserved in comparison to existing implicit methods. Although
such qualitative aspects are often difficult to quantify and to some extent subjec-
tive, the following simple example speaks a sufficiently clear language in this
regard.

Example 4.1 consists of a square piece of cloth with 5016 faces, which is pinned
at two corners and left swinging for 4 seconds. The material properties were set

7Compared to the number of asynchronously handled collisions, the number of missed pairs is
still very small.
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to E = 300N/m and G = 150N/m for stretching and shearing and a mass density
of ρ = 500g/m2 was used. Moreover, we applied deformation limiting with a
tolerance of 10% for the synchronous methods, while parameters were set to εlim

n =
7.5% and εlim

c = 10% for our AVI-based scheme. Fig. 4.1 shows qualitative results
for this example in form of rendered views, which correspond to the same frame
of the animation, but were computed using different integration methods and/or
step sizes. The table on the left of Fig. 4.6 lists the corresponding computation
times and it can be seen that, when using a large step size of h = 1/30s, the semi-
implicit (backward) Euler scheme allows simulation at almost real-time rates. The
resulting animation is, however, heavily damped and clearly lacks surface detail
(see Fig. 4.1, (a)) even though no material damping was used.

Figure 4.6: Comparison of different integration methods on Example 4.1. All
values refer to seconds and computation times correspond to the entire animation
(4s).

The symplectic Euler scheme and our AVI-based method perform significantly
better in this regard as can be seen in Fig. 4.1 (d) and (e), respectively. In order
to provide an even comparison, we repeated the example with the implicit solver,
this time using a step size of h = 0.00075s, which yields roughly the same com-
putation time as for our method. This leads to a decrease in spurious damping
such that finer folds and wrinkles can produce (see Fig. 4.1, image (b)), but com-
pared to the explicit variants, results still exhibit less detail. We also experimented
with a linearized version of the implicit midpoint rule (Fig. 4.1, (c)), but found
its performance deceiving. Contrary to our purposes, a significant amount of ma-
terial damping was required for stable simulation, even for a small step size of
h = 0.001s.

Among the explicit integrators, the forward Euler scheme takes longest to sim-
ulate since we could not use as large a step size as for its symplectic counterpart.
It is worth noting in this context that the AVI-based method is almost as fast as the
symplectic Euler scheme, despite the fact that it has a certain overhead for man-
aging asynchrony. This can be attributed to the fact, that an unstructured mesh
with elements of slightly different sizes is used for simulation. The asynchronous
method benefits from the freedom to choose elemental step sizes according to local
stability requirements, whereas the global step size of the synchronous methods
has to satisfy the requirements of the smallest element. For this example, the av-
erage time step of the asynchronous scheme was thus slightly higher than for the
symplectic Euler method (0.00037s vs. 0.00025s).

This effect is significantly more pronounced for Example 4.2. The deformable
object is represented by a mesh with non-flat rest geometry (see Fig. 4.7) that is
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optimized for accurately modeling regions of high curvature with small triangles,
whereas large elements are used for flat regions. The animation is quite simple:
during 4 seconds of simulation, the mesh is dropped from a small height onto a
flat floor, where it comes to rest. The parameters are the same as in the previous
example except for a higher bending stiffness, which lets the object recover its
shape after the impact. The table on the left hand side of Fig. 4.7 shows the
computation times for this example with separate timings for time stepping and
collision handling. The backward Euler scheme is again the fastest, but the AVI-
based method performs significantly better than the other explicit schemes and
the implicit midpoint rule.

Figure 4.7: Comparison of different integration methods on Example 4.2, which
consists of an unstructured mesh with 2304 elements of considerably different size
(the ratio between the areas of the largest and smallest element is 160:1). All values
refer to seconds and computation times correspond to the entire animation (4s).

While the first two examples are of a rather technical nature, we also investi-
gated the capability of our method to generate more complex animations, two of
which are described in the following. In Example 4.3, a woman wearing a long
dress (comprised of 8891 faces) walks through an obstacle course, along which she
climbs a number of stairs and takes several additional hurdles (see Fig. 4.8).

Figure 4.8: Snapshots from an obstacle-walk animation (Example 4.3).

Cloth simulation with animated characters is a common application scenario and
this example puts special emphasis on cloth-object collisions in combination with
fast rigid body motion. Our method deals with these challenges in a smooth and
robust way and generates vivid motion of cloth with rich surface details. For
comparison, we also ran this example with the semi-implicit Euler method for
time integration. As to the computational performance, the latter was roughly
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30% faster than our method when using a step size of h = 0.001s. The additional
computation time is, however, compensated for by less damped motion and more
detailed folds and wrinkles, as can be seen in the comparison shown in Fig. 4.9.

While external collisions were predominant in the previous animation, the last
example puts special emphasis on self-collisions. A long ribbon consisting of
8000 faces is positioned in vertical orientation above two inclined planes (see Fig.
4.4). During 5 seconds of animation, the ribbon falls onto the planes and slides
towards the floor, forming complex self collisions along its way. Even for the
most challenging frames with multiple layers of fabric pressed tightly together, all
collisions are resolved gracefully and without taking recourse to a fail-safe such
as rigid impact zones. This is due to the comparatively small elemental step size
(havg = 0.00025s) and the corresponding high rate at which collisions are handled.
For this example, a single 25Hz frame took an average of 185 seconds to compute
and, due to the large collision step size of ∆tc = 0.01s, more than 90% of this time
was spent in the asynchronous update loop.

Figure 4.9: Comparison between implicit Euler (left images) and our AVI-based
method (right images) on two frames from Example 4.3.

4.5 Conclusion

This chapter described a method that leverages asynchronous time stepping for ef-
ficient simulation of low-damped cloth. While approaches based on semi-implicit
time integration are plagued by numerical dissipation, our method does not sup-
press fine folds and wrinkles, thanks to the explicit nature of the underlying inte-
grator. In order to increase the efficiency and robustness of the latter, we imple-
mented a strategy that exploits the local time stepping for monitoring and limiting
deformations at run time. Drawing on techniques from the synchronous setting,
we have further proposed an efficient method to incorporate collision handling
into the asynchronous framework.

Our method aims at high-quality animations and we have demonstrated its
capabilities in this regard on two complex examples. Compared to a standard
approach based on the semi-implicit Euler scheme, the increase in computation
times seems justified by the higher degree of detail observable in the results.
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A recent development that should be mentioned in this context is the work of
Harmon et al. [HVS+09], who presented a rigorous treatment of contact mechanics
for deformable models, using asynchrony in order to treat collisions in true order
of occurrence. In addition to asynchronous variational integration, the enabling
technology of this approach are kinetic data structures and nested contact poten-
tials for collision detection and response, respectively. This allows simulations
with remarkable accuracy and robustness, but computation times are (currently)
beyond what is affordable for practical applications. Our method does not strive
to attain this extreme level of accuracy and rather focuses on a careful selection
of approximations that enable efficient computations. However, in contrast to the
standard approach based on semi-implicit time integration, this is achieved with
less compromise in visual quality.

As a possible direction for future work, spatially adaptive discretizations seem
a promising perspective to increase the computational efficiency of our method.
In this context, the efficiency of AVIs for discretizations with differently sized ele-
ments is particularly attractive. Additionally, their explicit nature make dynamic
local adaptations a lightweight process, whereas the Jacobian matrices of implicit
schemes are rather reluctant to these changes.





Chapter 5

Parallel Collision Handling

A robust handling of collisions and contact is vital for creating complex anima-
tions of deformable surfaces. State-of-the-art collision processing methods can
deliver compelling results even for challenging scenarios with multiple, tightly-
packed layers of cloth (see Fig. 5.1). However, this robustness comes at the price
of intensive computations, which can easily take up the largest part of the total
simulation time. This chapter presents a collision handling method that leverages
the processing power of modern parallel computers in order to accelerate these
computations.

5.1 Introduction

Figure 5.1: Complex multi-layer self
collisions.

As parallel processing power becomes
widely available, the demand for effi-
cient algorithms that can exploit these re-
sources also propagates into the field of
computer animation. This is especially
true for physically-based simulations of de-
formable surfaces and solids, for which
time integration and collision handling
are particularly time-consuming. In order
to accelerate such computation-intensive
methods on parallel platforms, it is cru-
cial to distribute work evenly among pro-
cessing units such as to utilize available re-
sources as much as possible. For this pur-
pose, the problem has to be decomposed
into a number of subproblems.

Implicit time integration is a regularly structured problem with predictable
interaction and memory access patterns1, which lends itself well to static problem
decomposition. Dividing the input mesh into a number of partitions induces a
decomposition of the arising linear system, which can be used as the basis for a
parallel solution method (see, e.g., [KB04]). Since the structure of the system stays

1see [GRV95] for a taxonomy of problems in the context of parallel computing
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constant over time, the decomposition has to be computed only once.
By contrast, collision handling for deformable surfaces is a highly irregular

problem since the number and locations of collisions change rapidly over time
and cannot be predicted in advance. A static problem decomposition is bound
to produce a high degree of processor idling and, consequently, results in poor
efficiency. In order to obtain good parallel performance for such difficult problems,
a dynamic problem decomposition is mandatory.

Previous Work Although several approaches have been presented for accelerat-
ing cloth simulation on parallel computers [RRZ00, LGPT01, ZFV02, KB04, ZFV04,
GRR+05], few propose a specific treatment of collisions. In particular, no previ-
ous cloth simulation method addressed parallel collision handling on distributed-
memory architectures.

A notable method for shared-memory parallel computers is due to Romero et
al. [RRZ00], who describe a data-parallel approach based on bounding volume
hierarchies and separation lists2 [LC98]. The basic idea is to perform a sequen-
tial collision detection pass to obtain a separation list, whose entries are then
distributed evenly among the processing units. Good parallel efficiency can be
expected if the separation list has to be recomputed only infrequently, i.e., for
quasi-static scenes. However, in order to maintain well-balanced workloads for
practical animations with rapidly changing collisions, frequent rebuilds are re-
quired. Consequently, the sequential hierarchy detection is likely to become the
limiting factor for parallel efficiency.

Parallel collision detection has also been studied in the context of engineer-
ing applications such as impact simulation. Methods from this field typically
rely on partitioning input data, which can be accomplished via spatial subdi-
vision [PAH+98, BASH00] or graph partitioning [Kar03]. At any rate, the de-
compositions have to be adapted or recomputed regularly in order to maintain
well-balanced workloads. Although good scalability was reported for all these
approaches, they were designed for solid simulations in which the potentially col-
liding surface polygons constitute only a small fraction of the total number of
elements. It is unclear to what extent efficiency can be maintained in the case of
cloth simulation, where every pair of elements can potentially collide.

Overview and Contributions Instead of relying on static data partitioning, we
propose to treat the irregular nature of collision handling with a task-parallel ap-
proach based on fully dynamic problem decomposition. Using bounding volume
hierarchies for collision detection and stopping impulses for collision response,
our parallel algorithm extends widely used sequential techniques to the paral-
lel setting. The basis of this approach is formed by a reformulation of recursive
collision detection as a depth-first tree traversal, which is amenable to parallel ex-
ecution. Parallelism is generated dynamically by decomposing bounding volume
tests into subtasks, which can be sent to remote processing units for execution.
This mechanism is steered by a dynamic load balancing scheme, which uses a dis-
tributed task pool model in order to achieve a high degree of resource utilization.

2although the authors did not use this terminology
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We implement this strategy using multithreaded programming and analyze the
parallel efficiency of the resulting approach on a number of examples.

The method described in this chapter was developed for distributed mem-
ory architectures and was presented in [TB06a] and [TB07]. Although we restrict
considerations to this setting here, our approach is readily translated to shared-
memory architectures such as multi-core platforms [TPB07, TPB08].

The remainder of this chapter is organized as follows. Building on the sequen-
tial framework described in Chapter 2, Sec. 5.2 describes how the potential par-
allelism in recursive collision detection is exposed and exploited. Corresponding
strategies for problem decomposition and dynamic load balancing are presented
in Sec. 5.3. We analyze the performance of our approach in Sec. 5.4 and conclude
with a summary in Sec. 5.5.

5.2 Exposing Parallelism in Collision Handling

Our method for parallel collision handling builds on the sequential basis as de-
scribed in Chapter 2: it uses k-DOP hierarchies [KHM+98, MKE03] for collision
detection and an impulse-based collision response [Pro97, BFA02]. This approach
can be considered state-of-the-art, but it does not directly lend itself to a parallel
implementation. This section describes how to reformulate the recursive collision
detection in order to expose its potential for parallelization.

Figure 5.2: Schematic view of the bounding volume hierarchies for two interfering
rectangles. Left: hierarchy structure and object arrangement. Right: overlapping
leaf nodes marked in the tree structure.

An observation fundamental to our strategy is that recursive testing of two
bounding volume hierarchies can be considered as a tree traversal [LC98]. Fig. 5.2
shows a simple example in order to illustrate this view. The root of the recursion
tree T, which is shown in Fig. 5.3, corresponds to the overlap test between the roots
of the two bounding volume hierarchies H1 and H2. Every other node Nab ∈ T
corresponds to an overlap test of two DOPs Da ∈ H1 and Db ∈ H2. The children
of Nab are defined as the set of all pairwise tests between the children of Da and
Db. Note that the recursion tree does not have to be binary, but at any rate, it is
only a conceptual construct that is never built in practice.

We implement the recursion tree traversal as a depth-first search, which is
particularly well suited for parallel implementation [RK87]. The process of depth-
first traversal starts at the root of the test tree. If an overlap is detected, one of the
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Figure 5.3: Test tree for the colliding objects shown in Fig. 5.2.

nodes is expanded into its n child nodes, resulting in n bounding volume tests3.
Instead of invoking a recursive function call on each newly generated test, the
depth-first traversal continues with one, e.g., the left-most test while the remaining
nodes are pushed onto a stack. This process continues downwards in the tree until
a leaf is reached. Upward traversal begins by fetching a node from the top of the
stack and starting a new depth-first traversal on the corresponding subtree. The
process finishes when the stack is empty, which implies that all nodes in the testing
tree have been visited. Note that this is an exhaustive search, which is exactly
equivalent to recursive testing. However, the central difference is that the stack
structure can be exploited for creating parallelism: each stack entry corresponds
to an untried branch of the recursion tree and entries are mutually independent.
In particular, changing the order or processing entries elsewhere does not affect
the exhaustiveness, i.e., the correctness of the traversal. Practically, this means that
we can freely remove entries from the stack, assign them to tasks, and send these
tasks to remote processing units for execution.

The optimal strategy of task creation and distribution depends on the platform
under consideration and details for the distributed-memory case will be given in
the next sections. At any rate, good parallel efficiency requires that the number of
synchronization points be kept at an absolute minimum. We therefore integrate
hierarchy traversal, decomposition into primitives, geometric distance tests and
impulse generation into a single processing stream. This strategy minimizes syn-
chronization overhead and maximizes the ratio of computation to communication.

5.3 Problem Decomposition

Clusters of interconnected computers are typically programmed as distributed-
memory machines. This setting invites an SPMD (single program, multiple data)
programming style, in which all processing units execute the same operations
but on different data. The Message Passing Interface (MPI) provides extensive
support for this programming model through comprehensive communication and
synchronization functionality. Previous work by Keckeisen and Blochinger [KB04]
introduced an efficient method for cloth simulation using parallel implicit time in-
tegration. This section describes how parallel collision handling can be integrated
into this framework.

3It is also possible to test the children of both nodes directly against each other, which would
results in 2n tests. However, expanding only one node immediately (e.g., the one with the larger
bounding volume) and thus creating only n tests has proved more efficient in practice. See [MKE03]
for details.
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5.3.1 Static Problem Decomposition

Figure 5.4: A ’cloth dragon’ decom-
posed into 12 partitions [TWW+07].

The parallel time integration scheme of
[KB04] is based on a static decomposition
of the input mesh into a number of disjoint
partitions (see Fig. 5.4 for an example).
This decomposition is computed with the
parallel multilevel graph partitioning func-
tionality provided by the ParMetis library
[KK96b]. On the basis of this partitioning,
each processing unit is assigned a certain
subset of the vertices and faces of the input
mesh. In order to achieve a maximum de-
gree of locality, it is reasonable to account
for this decomposition when building the
bounding volume hierarchy. To this end,
we construct a bounding volume hierarchy for each partition and combine the
root nodes of the different processing units into a global hierarchy. On this ba-
sis, we formulate collision detection for a deformable surface mesh as a number
of top-level tasks: each partition is tested against every rigid object in the scene,
against all other partitions of the same deformable surface and against itself.

A naive approach would distribute top-level tasks evenly among the proces-
sors, but this is insufficient for achieving high processor utilization in dynamic
scenes. In Sec. 5.4 we present examples where such uneven processor loads can
be observed. In order to obtain an efficient implementation with well-balanced
workloads, we propose a task-parallel approach which dynamically decomposes
top-level tasks into smaller subtasks. This method is described in the following
section.

5.3.2 Dynamic Problem Decomposition

Our method for dynamic problem decomposition is based on the depth-first
search formulation of bounding volume hierarchy testing described in Sec. 5.2.
Each processing unit is initially assigned one or several top-level tasks. During
the depth-first traversal of these top-level tasks, untried test nodes are pushed
onto a local stack. There are two options for processing entries from the stack.
A test can be removed from the top of the stack and executed by the task that
performs the current traversal. This case corresponds to the sequential version of
the depth-first search. The other option is to remove one or several tests from the
bottom of the stack and to assign them to a newly generated subtask. This subtask
can either be executed locally or be sent to a remote processing unit. Either way,
some tasks will eventually encounter interfering triangle pairs and return corre-
sponding stopping impulses. All these partial responses are combined at the end
of the collision handling phase by one all-to-all broadcast operation and applied
to the positions vector.

A central aspect in the creation of subtasks is an adequate control of granular-
ity. Since tasks are likely to be transferred to remote processors, they should at
least represent a certain minimum amount of work in order justify the incurred
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communication overhead. However, it has to be ensured as well that there are
always enough tasks available for incoming transfer requests. For these reasons,
we pursue an adaptive decomposition strategy that is steered by the dynamic load
balancing process described in the following section.

5.3.3 Dynamic Load Balancing

The dynamic load balancing process is responsible for triggering and coordinat-
ing task creation and task transfer operations in order to prevent processors from
running idle. Load balancing can either employ a central controller or be orga-
nized in a distributed manner. A central controller can establish a more accurate
view of the current processor loads, but it runs the risk of becoming the sequential
bottleneck of a parallel algorithm. In order to achieve high scalability, we employ
a fully distributed scheme. In particular, each processor maintains a local task
pool, where tasks are initially placed upon creation. Tasks can then be instantiated
and executed locally or be transferred to a remote task pool for load balancing
purposes. As described subsequently, task creation and transfer operations are
initiated autonomously by the processing units.

Task Creation Tasks are generated dynamically on the basis of the decomposi-
tion scheme described in the previous section. In order to achieve a high degree of
efficiency, an active processing unit must be able to satisfy task requests from other
processors immediately. But additionally, it has to be ensured that tasks represent
a sufficient amount of work. This, however, means that the stack must contain a
minimum number of entries before tasks can be created. In order to meet both
requirements, we generate tasks in a proactive fashion, i.e., independently of in-
coming tasks requests. Tasks are generated whenever the size of the stack exceeds
a threshold value τ. Task generation generally creates overhead, even when the
new task is subsequently executed on the same processor. We therefore increase τ
linearly with the current size of the task pool σ as τ = aσ + b, where a and b are
scalar parameters. A new task is assigned τ/2 tests, which are taken from the bot-
tom of the stack. Such tests have a higher potential of representing a large amount
of work, since they originate closer to the root of the current testing tree. With this
strategy, we can rapidly create tasks of minimal granularity (determined by b) and
at the same time ensure that subsequently generated tasks represent an increased
amount of work such as to compensate creation overhead. The parameter values a
and b largely depend on the parallel architecture used and should be determined
experimentally. We found that choosing a = 2 and b = 8 delivered consistently
good results for all examples considered.

Task Transfer We employ a receiver initiated scheme for transferring tasks be-
tween processing units. When a processor runs idle and its local task pool is
empty, it requests work from remote pools. A target node to be sent the request is
chosen on the basis of a round robin scheme. If available, the target node transfers
a task from its pool to the local pool. Otherwise the request is rejected and the
process is repeated for another target node.



5.4 Numerical Experiments and Results 81

Task Representation The dynamic load balancing scheme transfers tasks be-
tween processing units at run time. In distributed memory architectures, task
transfers require explicit communication operations, which can constitute a sig-
nificant part of the overall parallel overhead. A compact description is therefore
crucial in order to minimize communication overhead. In our case, the costs for
transferring a task are largely determined by the representation of the associated
bounding volume hierarchy tests.

A prerequisite for dynamic load balancing is that task execution is independent
of location. Endowing each task with the complete set of data required for its
execution is very wasteful in terms of communication costs. Instead, we choose
to replicate the required data, i.e., the bounding volume hierarchies of all objects
in the scene on every node locally. This provides an identical context for task
execution on every node and enables us to represent tasks in a compact way using
only 4 indeces (H1, H2, D1, D2): H1 and H2 identify the hierarchies while D1 ∈ H1
and D2 ∈ H2 refer to corresponding bounding volume nodes, which define the
root for the test.

The size of the bounding volume hierarchies is comparatively small for usual
scenes, even if high-resolution models are used. The additional storage require-
ments of this approach are therefore negligible in practice. The run time overhead
remains small as well since updating the hierarchies requires only an all-to-all
broadcast operation in order to provide all processors with the complete position
vectors of all objects. The structure of the hierarchies is kept fixed during the
whole simulation such that no additional costs occur due to rebuilding. It has to
be pointed out, that the latter is not an optimization made in order to improve
the efficiency of the parallel algorithm. Rather than that, we did not observe a
consistent performance improvement for the sequential version when regularly
rebuilding the hierarchies.

5.4 Numerical Experiments and Results

This section provides a performance analysis of the parallel collision handling
scheme described in this chapter. We will first briefly comment on implementa-
tional aspects and describe the test system as well as the examples used for the
performance measurements.

5.4.1 Implementation and Example Setup

Implementation Implementing the parallel collision handling scheme on
distributed-memory architectures requires a framework for distributed multi-
threading. We use the parallel system platform DOTS due to Blochinger et al.
[BKLW99], which provides extensive support for the multithreaded parallel pro-
gramming model. In particular, DOTS includes functionality for termination de-
tection, thread transfer between nodes and event-handlers for implementing load
balancing strategies. Implementational details with respect to DOTS can be found
in [TB07].
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Testing and Measuring The performance measurements were carried out on a
Linux-based cluster with 12 computation nodes, equipped with Intel Xeon CPUs
(2.667 GHz) and 2 GB of main memory. The nodes are connected by a Myrinet-
2000 network.

The example animations consist of 1000 simulation steps and a step size of
0.001s was used. The measurements are computed as the arithmetic mean of the
wall-clock times of three individual runs. Timings for the single processor case are
based on a sequential version of the simulator. In particular, only sequential data
structures and sequential arithmetic operations are used for this configuration and
no dynamic problem decomposition was performed during the collision handling
phase.

Example Setup We evaluate the performance of our approach using two ex-
amples and in order to demonstrate the robustness of our method, we focus on
problems with a high degree of irregularity. Additionally, we aim at accelerating
commonly used scenarios and therefore restrict considerations to input data of
moderate size.

For the first example (Example 5.1), a disc-shaped table cloth with 14.033 ver-
tices and 27.532 faces is draped over a sphere with roughly on third of the cloth’s
diameter (see Fig. 4.8). Initially, collisions occur only in a locally bounded region
near the center of the cloth. As the simulation proceeds, the distribution of the
collisions becomes more even. The folds formed in the last part of the animation
lead to massive intra- and inter-partition self collisions.

Figure 5.5: Representative rendered frame (left) with corresponding mesh parti-
tioning (right) for Example 5.1.

In the second example (Example 5.2) a square piece of cloth with 14.641 vertices
and 28.800 faces is draped over a thin wave-shaped bar, which is posed at some
distance to a rigid floor (see Fig. 5.6). Again, collisions are locally bounded in
the first part of the simulation. Due to the shape of the bar, complicated folding
patterns are formed as the cloth falls further downwards. When it reaches the
floor, rigid collision occur throughout large parts of the mesh and the setting
becomes more regular. Although rigid collisions are initially predominant, also
self collisions occur between the detailed folds as the cloth slides towards the
troughs of the bar.
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Figure 5.6: Representative rendered frame (left) with corresponding mesh parti-
tioning (right) for Example 5.2.

5.4.2 Results

The diagrams in Figs. 5.7 and 5.8 show the results of the performance measure-
ments for the two examples. The costs for time integration of the physics (referred
to as physical modeling) and preprocessing are included for comparison. Despite
the high degree of irregularity of the examples, the overall computation time as
well as the individual run times for both time integration and collision handling
are substantially reduced by parallel execution. In particular, very good parallel
efficiency is achieved for the collision handling stage.

In both examples, collision handling takes longer than time integration. While
the latter requires a comparable amount of time in both cases, the higher number
of self collisions in Example 5.1 also entails higher costs for collision handling in
comparison to Example 5.2. Regardless of the number of processors, we observe a
constant amount of time spent on preprocessing, which is largely due to mesh par-
titioning and bounding volume hierarchy setup. However, for typical production
runs with several hundreds of frames, this overhead becomes negligible.

In order to assess the influence of our dynamic problem decomposition and
load balancing scheme, we compare two program runs with 12 processors for
each of the test scenes. The diagrams shown in Fig. 5.9 illustrate the average CPU
utilization of each processor for the collision handling stage during the course of
the animation. The diagrams on the left and right side show data for the runs
in which problem decomposition and load balancing were disabled and enabled,
respectively. Additionally, the total time spent on collision handling is given for
each frame in the left diagrams, while corresponding acceleration factors are given
in the right diagrams. Note that the computational costs of collision handling
increase by one to two orders of magnitude when complex collisions occur.

The diagrams reveal that the combination of dynamic problem decomposition
and load balancing leads to a considerable improvement in parallel efficiency.
This increase is particularly clear for Example 5.1, which exhibits a higher degree
of unevenly distributed (self-)collisions. No interactions occur during the first
frames and we observe slight slowdowns, which reflect the overhead introduced
by the dynamic approach. This overhead is, however, marginal in comparison to
the improvement in overall efficiency.
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Figure 5.7: Results of performance measurements for Example 5.1.

Figure 5.8: Results of performance measurements for Example 5.2.

To summarize, the results presented in this section indicate a high parallel ef-
ficiency for our method. Its robust performance can be attributed to the fact that
problem decomposition and load balancing are tightly interrelated, thus achiev-
ing self-adapting parallelism. For regular examples where collisions are evenly
distributed among the processors, the overall amount of dynamic parallelism is
limited. By contrast, if processors run idle due to an uneven distribution of col-
lisions, additional parallelism is generated and balanced across the processors.
Our task-parallel collision handling approach integrates seamlessly into the SPMD
framework and, in particular, has no negative effect on the performance of the
data-parallel time integration scheme. This combination can therefore be consid-
ered a successful symbiosis of considerably different types of parallelism within a
single application.
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(a) Example 5.1

(b) Example 5.2

Figure 5.9: Effect of dynamic problem decomposition and load balancing on
the parallel efficiency of the collision handling phase. For the diagrams in the
left/right column, dynamic load balancing was disabled/enabled.

5.5 Conclusion

Summary This chapter presented a parallel approach for handling collisions be-
tween deformable surfaces. Our method extends state-of-the-art sequential tech-
niques to the parallel setting: collision detection based on bounding volume hier-
archies and impulse-based collision response.

Collision handling is an irregular problem in which interactions cannot be
predicted in advance. Since a parallel approach based on static problem decom-
position is insufficient in such settings, we pursued a dynamic strategy for this
purpose. In order to expose its potential parallelism, we have cast the recursive
collision detection on bounding volume hierarchies as a depth-first tree traversal.
This view allows us to generate parallelism dynamically by assigning subtrees of
the recursion tree to individual tasks. The latter are then distributed among the
available processing units in order to accelerate computations.

In order to implement this strategy, we proposed a task-parallel approach
based on multithreaded programming and a distributed task pool model for dy-
namic load balancing. By making their execution independent of location, tasks
can be transferred dynamically between pools on different nodes in order to dis-
tribute work evenly among processing units. The benefits of this dynamic load
balancing scheme were assessed experimentally and up to threefold accelerations
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over a naive static decomposition were obtained. As a result, a high overall parallel
performance was achieved.

Subsequent Work and Future Directions Parallel collision detection and re-
sponse is the subject of ongoing research and several new contributions have
emerged from this field. An extension of our method to shared-memory archi-
tectures showed good parallel efficiency for several recent multi-core platforms
[TPB07, TPS08]. A development aimed at the same architecture is due to Tang et
al. [TMT09], who translated sequential acceleration techniques such as advanced
triangle culling or separation lists to the parallel setting. Apart from bounding
volume hierarchies, also space partitioning methods have potential for efficient
parallel implementations [LK02]. Sparse grids, which only store data for occu-
pied cells, are mandatory in this context in order to contain storage requirements.
Efficient random access to cells requires hash functions, but previous methods
suffered from index collisions. However, the collision-free spatial hashing due to
Lefebvre and Hoppe [LH06] might turn sparse voxel grids into a competitive al-
ternative for parallel collision detection. Another line of research is to leverage
the capacities of computer clusters in order to explore problem sizes that cannot
be treated by single workstations [SSIF08]. Especially for the latter category, it
would be interesting to investigate hierarchical distributed-memory systems, in
which each node consists of several multi-core processors. This scenario is of
particular practical interest for low-budget high performance computing, since a
system assembled from a few interconnected multi-core workstations can already
concentrate a significant amount of computation power.



Chapter 6

Magnetic Interaction for
Rigid Body Simulation

Deformable surfaces and solids constitute only a small part of virtual environ-
ments and rigid bodies typically dominate the scene in video games and film.
Given the fact that many rigid bodies are made of metal, it is a notable lack
that magnetic interaction has been largely overlooked in this context. This chapter
presents an accurate and efficient method for modeling such magnetic interactions
in rigid body simulations.

Figure 6.1: Interleaved renderings of animation frames and magnetic field. A toy
magnet, carrying small permanent magnets in its ends, attracts a metallic sphere.

6.1 Introduction

Simulating rigid bodies and their dynamic interaction through collisions and con-
tact began to attract the interest of computer graphics researchers more than
twenty years ago [Hah88, MW88, Bar89a]. Since these initial developments, sub-
stantial progress has been made regarding frictional contact [Bar94, ST96, GBF03],
control of animations [Coh92, PSE+00, TJ08] and coupling with other physically-
based simulations [OZH00, CMT04, SSIF07], to name just a few. To the best of our
knowledge, no attempt to model magnetic interaction between rigid bodies has
been reported in computer graphics so far.

Accounting for magnetic effects opens a range of possibilities for creating stun-
ning animations that cannot easily be achieved with artificial forces or inverse
kinematics. Similarly, video games can benefit from magnetic interactions at real-
time frame rates but also the visualization of magnetic field lines in physics classes

87
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could be complemented or replaced by computer graphics techniques (see Fig.
6.1).

Computing magnetic fields and forces on magnetized objects is a problem
frequently encountered in applications from electrical engineering. A standard
approach is to first solve the governing, i.e., Maxwell’s equations using a con-
ventional finite element method in order to obtain the magnetic field throughout
the region of interest [MSP88]. The magnetic forces and torques acting on objects
in this field can then be computed with one of many approaches, including the
virtual work method, Maxwell’s stress tensor method or equivalent source meth-
ods. We refer to de Meiros et al. [dMRM98] and Delfino [Del01] for an overview
of these methods and their numerical implications. Solving Maxwell’s equations
with finite elements is certainly accurate, but also too expensive for interactive
applications.

Only few works from computer graphics have addressed magnetism or mag-
netic interaction. Klein and Ertl [KE04] simulate ellipsoidal particles in order to
visualize magnetic field lines. The interaction between particles and with the ex-
ternal field is formulated as a simplified energy minimization problem, which is
solved with conjugate gradients. Explicit expressions for force and torque between
particles are not derived. Remotely related is also the work of Kim and Lin [KL04],
who model lightning and electrical arcs using a physically-based approach. A sim-
plified version of the Helmholtz equation is used for modeling the propagation of
electromagnetic waves.

6.1.1 Overview and Contributions

This chapter presents a model for discrete magnetic interaction that is simple and
fast while reproducing all macroscopic magnetic effects in a faithful way. Instead
of relying on costly discretization methods, we take an approach which is dis-
crete from the ground up. Our method builds on the interaction between pairs of
magnetic dipoles, for which closed-form expressions can be obtained. The central
properties of this method are summarized below.

Symmetric Magnetic Dipole Approach We pose magnetic force and torque com-
putations as discrete magnetic dipole interactions and provide explicit formulas for
all quantities. The basis of our method is to model magnetic objects as aggregates
of magnetic dipole cells. This approach is consistent since the dipole approxima-
tions for field, forces and torques converge to their continuous counterpart with
increasing number of cells. The method presented in this chapter is similar to the
equivalent magnetic dipole approach described, e.g., in [DMMR01]. However, our
approach is symmetric since we compute both forces and fields from dipole con-
tributions. This avoids the computation of magnetic fields via FEM solvers and
automatically ensures conservation of linear and angular momenta. Conserving
such physical invariants is important since it ensures a correct dynamic behavior
even if magnetic properties are only coarsely approximated.

Adaptive Refinement The accuracy of an object’s dipole field approximation de-
pends on the cell density. However, the magnetic field decays rapidly away from
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its source and indeed resembles a dipole field at large enough distances. When
computing interactions between pairs of magnets, we can therefore save computa-
tion time by adapting cell resolution as a function of inter-object distance. For this
purpose, we propose an adaptive sampling scheme based on a hierarchical multi-
resolution object partitioning. Computational efficiency is greatly increased in this
way and, as a result, dozens of magnetic objects can be simulated at interactive
rates.

Magnetic Materials There exists a variety of magnetic materials with very dif-
ferent properties. We provide physical descriptions and implementations for hard
ferromagnets or permanent magnets, soft ferromagnets, paramagnets, diamagnets
and even superconductors.

Validation The accuracy of the proposed method is assessed on a problem with
known analytical solution and simulation results are compared to real-world ex-
periments. Additionally, we investigate the influence of the sampling density on
approximation quality by comparison with exact results. Finally, we provide ex-
ample simulations that demonstrate the usefulness of our method for practical
computer animation.

The remainder of this chapter is organized as follows. The next section de-
scribes magnetic dipole interactions and derives closed-form expressions for fields,
forces and torques. Magnetic materials and their implementations are also de-
scribed within this context. Sec. 6.3 gives an overview of implementational aspects
and in particular describes the adaptive cell sampling scheme. Sec. 6.4 presents an
extensive set of example animations and provides quantitative performance data
in terms of computation times. The chapter closes with a conclusive summary in
Sec. 6.5.

6.2 Physical Modeling

In order to simulate magnetic interactions between aggregates of dipole cells, ex-
pressions for magnetic fields, forces and torques are required. We start with a
brief overview of the relevant parts of magnetostatics. Most of these concepts are
well-known and we refer to the standard textbooks by Jackson [Jac99] and Landau
et al. [LLP84] for detailed explanations.

6.2.1 Magnetostatics

We will assume that magnetic objects are uncharged and that no time-dependent
electric currents are present. This reduces the interaction of magnetized objects to
a magnetostatic problem. The relevant part of Maxwell’s equations1 reads

∇ · B = 0, ∇×H = J , (6.1)

H =
1
µ0

B−M , (6.2)

1in SI units
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where the last equation is a constitutive relation linking B and H. In these equa-
tions, B denotes the magnetic flux density or magnetic induction, H the magnetic
field and J the current density. Furthermore, µ0 denotes the permeability of free
space and M the magnetization or density of the magnetic moment. For a given
current distribution J we define the associated magnetic moment m as

m =
1
2

ˆ
V
(x− rO)× J(x− rO) dx , (6.3)

where rO is an arbitrary point of reference inside the volume V occupied by J (see
also Fig. 6.3). The magnetic induction B can be obtained by a series expansion of
the magnetic vector potential for distances r large compared to the spatial extent
of the magnetized volume V [Jac99]. The leading term of the magnetic induction
for a magnetic moment m located at position rO reads

B(r) =
µ0

4π

[
3n(n ·m)−m
||r− rO||3

]
(6.4)

with n = (r − rO)/||r − rO||. The distribution described by this expression is
commonly referred to as the field of a dipole, see Fig. 6.2. For the special case of
a sphere with homogeneous magnetization M = 1

2 [r× J(r)], (6.4) represents the
exact solution for all r.

Figure 6.2: Field of a dipole cell with magnetization as indicated (black arrow).

Let us now consider an arbitrary magnetized object with volume V and ho-
mogeneous magnetization M. In order to model this object as an aggregate of
magnetic dipoles, we subdivide its volume into N cells of equal size such that
each of them carries a magnetic moment mi = MV/N. Sampling an object with
dipole cells is a straightforward process since it is sufficient to ensure that the
cells are distributed evenly and that the sum of their moments corresponds to the
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total magnetic moment MV. In particular, a volume mesh is not required such
that objects with complex geometries pose no problems. With this decomposition
established, the total magnetic induction of the object can now be expressed as a
linear superposition of the individual dipole fields,

B(r) =
µ0

4π

N

∑
i=1

[
3ni(ni ·mi)−mi

||r− ri||3

]
, (6.5)

where ri denote the positions of the cells and ni = (r− ri)/||r− ri||. If we assume
the magnetization to be given, the exact solution for the total magnetic induction
is recovered in the continuous limit N → ∞. For finite N, Eq. (6.5) describes
an approximation of the exact magnetic induction, whose accuracy is effectively
controllable by the number of cells. Eq. (6.5) is only valid for distances larger
than the spatial extent of the cells, which is V/N. However, with growing number
of cells, the range of validity is increased to smaller and smaller distances to the
object.

Figure 6.3: A dragon model (a) is sampled with dipole cells. For large distances
d = ||r− ro||, the field resembles a dipole field such that a single cell is sufficient
(b). For smaller distances (c-e) the number of cells has to be increased in order to
maintain the same level of accuracy.

The convergence of the total magnetic induction can be demonstrated on a
simple numerical example. Fig. 6.4 shows the distribution of magnetic induction
for a cuboidal test object with homogeneous magnetization using an increasing
number of dipole cells. It can be seen that the distribution converges rapidly and
that changes between the cases of 10× 5 and 20× 10 cells are already small. For
more than 40× 20 cells, only minimal differences in the immediate vicinity of the
object can be observed. For distances in the range of the object’s spatial extent, a
few cells are already sufficient to obtain very good accuracy.

A question that arises in the context of this dipole approach is whether the
case of contact is covered as well. If Eq. (6.4) is considered for a constant magnetic
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1� 1 10� 5

20�10 40�20

Figure 6.4: Magnetic induction B(r) for an object with homogeneous magnetiza-
tion. The number of cells in x/y direction used for the calculation is indicated in
the upper left corner of each figure. The shade of the vectors is proportional to
their magnitude ||B(r)||.

moment, B(r) tends to infinity as the distance d = ||r− rO|| goes to zero. Regard-
less of whether this expression is in good correspondence with the physical world,
infinite field values are certainly not ideal for computer implementations. Theo-
retically, this problem can be avoided by appropriately increasing the cell density
as a function of d. In particular, if the cell volume is made proportional to 1/d3,
the magnetic induction B(r) remains finite as d → 0. However, another problem
arises since the number of cells now tends to infinity as contact is approached.
We solve this problem by defining a maximum cell density and ensuring that two
dipole cells cannot approach closer than a corresponding minimal cell diameter
(see Sec. 6.3.2). This can also be interpreted as using a non-magnetic safety layer
around magnetized objects, whose thickness is controlled by the maximum cell
density. This view corresponds quite well with the plastic coated magnetic toys
used in our examples (see Fig. 6.1).

6.2.2 Forces and Torques

If a current distribution J with volume V is exposed to an external magnetic field
B, it experiences forces and torques according to Ampère’s law,

F =
ˆ

V
J(x)× B(x) dx , (6.6)

T =
ˆ

V
x× [J(x)× B(x)] dx . (6.7)
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The leading terms of these expressions can be obtained by a Taylor series expan-
sion of the magnetic induction B around the center of the current distribution. The
lowest-order nonvanishing terms in the expansion of the force and torque are

F = ∇(m · B) (6.8)
T = m× B . (6.9)

From these expressions, we can determine the forces and torques acting between
a pair of dipole cells. To this end, consider two dipole cells at positions rl and rk
with magnetic moments ml and mk, respectively. Inserting Eq. (6.4) into Eqs. (6.8)
and (6.9) and letting nlk = (rk − rl)/||rk − rl ||, we obtain explicit expressions for
the force

Fkl =
µ0

4π

1
||rk − rl ||4

[
− 15nlk

(
(mk · nlk)(ml · nlk)

)
+ 3nlk(mk ·ml) + 3

(
mk(ml · nlk) + ml(mk · nlk)

)]
(6.10)

and the torque

Tkl =
µ0

4π

[3(mk × nlk)(ml · nlk)−mk ×ml

||rk − rl ||3
]

(6.11)

acting on mk due to the field of ml . Note that with increasing distance, force
decreases more rapidly than torque, by a factor of 1/||rk− ri||. For large distances,
the interaction is therefore dominated by torque.

Instead of considering only the field of a single cell, we can also use Eq. (6.5)
for the field of a magnetized object with N cells to obtain

Fk =
N

∑
i=1

Fkl , Tk =
N

∑
i=1

Tkl . (6.12)

In order to compute the total force F and torque T acting on an object composed of
M dipole moments, (6.10) and (6.11) have to be evaluated for all cells (k = 1 . . . M)
and summed up appropriately. For the total force, the positions of the cells rk
relative to the center of mass R of the object have to be respected in the summation.
Letting Tm denote the net mechanic torque caused by the magnetic dipole forces
Fk, we have

F =
M

∑
k=1

Fk · (rk − R)
||(rk − R)|| ·

(rk − R)
||(rk − R)|| , Tm =

M

∑
k=1

(rk − R)× Fk , (6.13)

and the total torque follows as

T =
M

∑
k=1

Tk + Tm . (6.14)

The next section gives a geometric interpretation of all terms involved in these
expressions and also sketches how to prove momentum conservation. But before
we proceed to this subject, a brief comparison to the equivalent magnetic dipole
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method as described in [DMMR01, Del01] will be made. The latter defines the
total force FK

2 on a magnetized object with domain V as

FK =
ˆ

V
M · ∇Bext dV , (6.15)

where M describes the continuous distribution of dipole moments and Bext de-
notes the magnetic induction due to an external source. Considering this external
source as an aggregate of dipoles, it is obvious that the expression described by
Eq. (6.10) converges towards that of Eq. (6.15) as the number of cells, N and M,
tends to infinity. Analogous observations can be made for the torque. Hence, Eqs.
(6.10) and (6.11) are consistent and exact in the continuous limit, but accurate and
reliable results are already obtained for a small number of cells per object. This
robustness with respect to mesh refinement has also been observed by Delfino
et al. [DMMR01], who investigated the accuracy of force computations with the
equivalent magnetic dipole method in combination with finite element solutions
for the external field.

6.2.3 Interpretation and Momentum Conservation

Interpretation It is insightful to give geometric interpretation to the different
terms appearing in the expressions for forces (6.10) and torques (6.11) acting be-
tween pairs of dipole cells. To this end, we investigate six exemplary arrangements
of two bar magnets (Fig. 6.5), which are modeled as simple magnetic dipoles with
a single cell. Only the force and torque terms acting on the second bar magnet are
discussed in the following. Analogous observations for the first magnet follow by
interchanging m1 and m2 and setting n12 = −n21.

In the first arrangement A1, the two bar magnets are aligned in parallel and
positioned side by side. The first term of the dipole force (6.10) vanishes since both
(m2 · n12) and (m1 · n12) evaluate to zero, but the second term contributes propor-
tionally to 3n12(m2 ·m1) (yellow arrow in the sketch, labeled 2). The third term
of (6.10) vanishes for the same reason as the first one. The first term of the dipole
torque (6.11) does not contribute since (m1 · n12) is zero, and the second term of
(6.11) vanishes since m2 ×m1 = 0. Accordingly, the only relevant contribution is
given by the second term of Eq. (6.10) and the total force is repulsive.

The second arrangement A2 is analogous to A1, but this time with an anti-
parallel alignment. Consequently, the total force is attractive.

This is also the case in the third arrangement B1, in which all three terms
(labeled 1 to 3) of Eq. (6.10) contribute. The first term has the largest prefactor
and dominates the total force. The situation in the fourth arrangement B2 is the
same as in B1, but with m2 reversed. Accordingly, all contributions change sign
and the total force is repulsive. In both B1 and B2, the torque vanishes since
(m2 × n12) = 0 and (m2 ×m1) = 0.

The torque comes into play in the last two arrangements C1 and C2. Here,
only the third term of the force (6.10) contributes. The first term of the torque
(6.11), which is proportional to 3(m2 × n12)(m1 · n12), acts only on m1 (labeled
4). The second term of (6.11) contributes for both m1 and m2 and is proportional

2this is also known as Kelvin’s formula
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Figure 6.5: Six exemplary arrangements of two bar magnets with forces and
torques depicted by yellow and blue arrows. Black arrows indicate the magnetic
dipole moments m1 and m2, “north” and “south” poles of the magnets are shown
in red and blue.

to −(m2 ×m1) (labeled 5). The reversion of m2 from C1 to C2 leads to a change
in sign for all contributions. In C1, the total torque tends to align the two bar
magnets in a way similar to the configuration of B1. In C2, the total torque also
tends to align the two bar magnets, but in the opposite direction.

Momentum Conservation Conservation of momentum is an inherent property
of conservative physical systems, but it is not obvious that an approximate descrip-
tion exhibits the same behavior. In the present case, however, the approximations
for the magnetic induction, forces and torques are formulated in such a way that
both linear and angular momentum are conserved. In order to prove conservation,
it has to be shown that both the total force and the total torque (summed over all
cells of all objects) vanish. For the total force, this can easily be seen from (6.10) by
interchanging mk and mi as well as their positions. Then, the force acting on mk
is exactly the negative of the force acting on mi and the sum of the two vanishes.
For the total torque, the derivation involves both forces and torques since the third
term of Eq. (6.10) as well as Eq. (6.11) contribute. In analogy to Eq. (6.13), a
correct combination of these contributions via R× F + T leads to a vanishing total
torque.
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6.2.4 Magnetic Materials

We will now turn to the physical description of magnetic materials, i.e., the con-
stitutive relations linking the magnetic induction B to the magnetic field H. The
exposition is structured according to the distinction between permanently magne-
tized objects and those with induced magnetization.

Permanent Magnetization Permanent magnets are typically ferromagnets with
a strong remanence or residual magnetism. More precisely, their constitutive re-
lation is given by a hysteresis curve B[H] which exhibits a large remanent value
of B for vanishing H. In other words, a strong permanent magnetization is ob-
served even in the absence of magnetizing fields. The field used for exciting the
remanent magnetization is typically much stronger than the fields produced by
permanent magnets. Consequently, the magnetization of a permanent magnet
remains largely unaffected by external fields due to other permanent magnets.
Accordingly, we assume the magnetization of permanent magnets to be constant
(hard ferromagnets).

Induced Magnetization The second group of materials exhibits a magnetization
only in the presence of an external magnetic field. This group includes diamag-
nets, paramagnets as well as ferromagnets with a weak remanence. Superconduc-
tors will also be treated within the scope of this group.

For isotropic3 diamagnets and paramagnets, the constitutive relation can be
written in a linear form as

B = µ0(H + M) = µ0(1 + χ)H , (6.16)

with χ denoting the magnetic susceptibility of the material. In the case of a dia-
magnet, we have χ < 0, whereas for paramagnets χ > 0. For the most common
diamagnetic and paramagnetic materials, however, the absolute value of the sus-
ceptibility is of the order of 10−6 and the resulting magnetization as well as the
forces and torques are very weak.

As mentioned above, ferromagnets have to be described by a hysteresis curve
that puts B and H into relation. For the special case of ferromagnets with a weak
remanence (soft ferromagnets) subject to weak external magnetic fields, a linear ap-
proximation in the form of (6.16) with χ > 0 is, however, adequate. The magnetic
susceptibility of soft ferromagnets varies by several orders of magnitude for dif-
ferent materials. Steel, for example, exhibits a value of about χ ' 700 whereas
χ ' 20, 000 for mu-metal, which is a nickel-iron alloy.

In general, the magnetostatic Maxwell equations (6.1) and (6.2) have to be
solved together with the constitutive relation, i.e., (6.16) in the present case. For
arbitrary geometries, this is a very complicated task because of the boundary
conditions that have to be respected, e.g., at the interface of two media [Jac99].
Computationally most efficient are explicit analytical solutions, but they can only
be obtained for highly symmetric situations. Fortunately, modeling magnetized
objects as aggregates of dipole cells and approximately assuming the cells to be

3Magnetic materials are said to be isotropic if the resulting magnetic induction B is parallel to the
magnetizing field H.
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spherical, an explicit solution can be derived. If we additionally neglect the cou-
pling between the cells4, we obtain an expression for the induced magnetization
Mi of a cell located at position ri as

Mi =
3
µ0

χ

1 + χ
B(ri) . (6.17)

This model is only approximate and certainly less accurate than solving Maxwell’s
equations together with the constitutive relations. However, it is sufficient to re-
produce the salient macroscopic properties and, as an important advantage, allows
for a very efficient implementation of magnetic interaction: we first use (6.5) to
compute the magnetic induction due to permanently magnetized objects and then
determine the induced magnetization of diamagnets, paramagnets and soft ferro-
magnets using (6.17). The resulting final magnetic induction is used to compute
forces and torques according to Eqs. (6.10) and (6.11).

It can be seen from Eq. (6.17) that the sign of the magnetic susceptibility χ de-
termines the general behavior of the material. In the case of a positive (negative)
value, the induced magnetization is oriented parallel (anti-parallel) to the mag-
netic induction. Accordingly, a paramagnet is attracted by a permanent magnet,
whereas a diamagnet is repelled. Soft ferromagnets with χ > 0 behave like para-
magnets, but the resulting force and torque are much stronger due to the higher
value of χ.

Superconductors expel any external magnetic field from their interior5, which
is achieved by screening currents flowing on the surface of the superconducting
material. In the interior of the superconductor, these screening currents generate
a magnetic field which exactly balances the external one. In a simplified picture,
the magnetic induction thus vanishes completely inside the superconductor and
upon inserting B = 0 into Eq. (6.2), we find M = −H (perfect diamagnetism). If
we additionally approximate the magnetic field H by the vacuum field, we have
H = B/µ0 and thus

Mi = − 1
µ0

B(ri) (6.18)

for every cell of the superconductor. Because of the strong induced magnetization
which is oriented anti-parallel to the magnetic induction, superconductors are
strongly repelled from permanent magnets.

6.3 Implementation

This section describes implementational aspects of our method including the com-
putation of magnetic fields, forces and torques as well as the adaptive cell hierar-
chy.

4i.e, we assume that the field due to a cell with induced magnetization has no influence on the
magnetization of other cells

5a phenomenon called Meißner-Ochsenfeld effect
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6.3.1 Algorithm

Algorithm 6.1 provides an overview of the steps involved in the computation of
magnetic forces and torques. The magnetization of induced magnets changes
according to the magnetic field in their surroundings and has to be recomputed in
every time step. This amounts to evaluating the magnetic field of all permanent
magnets in the scene at the induced magnets’ cell positions (l.3). It should be
stressed that the field is only evaluated where it is required for computations.
In particular, we do not employ a spatial grid for this purpose6. The following
code (ll.6-16) computes the magnetic interaction between all magnets in the scene.
Note that the bound for the second loop (l.7) is different due to the symmetry of
magnetic interaction. For every pair of magnets, we compute force and torque
exerted by all cells of one object onto all cells of the other object and vice versa
according to Eqs. (6.10) and (6.11).

Algorithm 6.1 Magnetic force and torque computation
1: //Compute magnetization for induced magnets
2: for all induced magnets do
3: computeInducedMagnetization();
4: end for
5: //Compute magnetic force and torque
6: for i = 1 to nmag do
7: for j = i to nmag do
8: for k = 1 to ncells,i do
9: for l = 1 to ncells,j do

10: ck=cell(k), cl = cell(l);
11: applyForce(i,ck,cl), applyTorque(i,ck, cl);
12: applyForce(j,cl ,ck), applyTorque(j,cl , ck);
13: end for
14: end for
15: end for
16: end for

Once forces and torques between a pair of dipoles are computed, they can
either be fed directly into the rigid body dynamics solver (ll.11-12) or be accumu-
lated first. The latter is typically more efficient, especially in a parallel implemen-
tation where thread-safety of the rigid body dynamics code might be an issue. The
actual parallelization is simple and efficient since all operations for one iteration
are independent of other iterations.

For practical reasons, the decomposition of objects into dipole cells is con-
structed in such a way that the distance between two cells can never fall below
the cell diameter, even in the case of contact. This is not a fundamental restriction
since in the limit of an infinite number of cells the model is still accurate (see Sec.
6.2.1). For reasonable magnetization densities, the magnetic forces are thus safely
bounded such that explicit time stepping provides sufficient stability. However,
we cannot rely on the collision code to always guarantee an intersection-free state
and cells may in fact become arbitrarily close. This problem can be dealt with

6except for visualizing magnetic field lines
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by limiting force and torque to the maximum values corresponding to the closest
possible distance between two cells without intersections.

The run time of algorithm 6.1 scales quadratically with respect to the total
number of cells in the scene. An adaptive approach is therefore mandatory in
order to decrease the average computational costs and still guarantee sufficient
resolution where necessary. As explained subsequently, we can leverage the con-
trollable accuracy of magnetic induction (6.5), force (6.10) and torque (6.11) for
constructing an adaptive multi-resolution cell hierarchy.

6.3.2 Adaptive Refinement

As indicated in Sec. 6.2, a higher cell density increases the approximation quality
of magnetic fields, forces and torques. For complex scenes, however, using a
uniformly high cell resolution is prohibitively expensive and we therefore resort
to adaptivity. The central observation for our adaptive strategy is the fact that the
magnetic induction decays very rapidly away from its source. More precisely, the
magnetic induction B(r) of a dipole is proportional to 1/r3, where r denotes the
distance to the dipole. If we prescribe a sufficient ratio between the magnitude
||B|| and the spatial cell density ρ as ||B||/ρ = c0 = const. we obtain a means
of adapting the number of cells in a region of space to the local magnetic field.
The remainder of this section describes the adaptive scheme that builds upon this
measure.

Cell Hierarchy The basis for the adaptive refinement scheme is formed by a
multi-resolution hierarchy of cells, which bears some similarity to the octree struc-
ture used by Barnes and Hut [BH86]. Related is also the work of Klein and Ertl
[KE04], who use a spatial subdivision scheme to accelerate the computation of po-
tential energies for distant particle pairs. However, instead of partitioning space
we construct hierarchies on a per-object basis. For a given object, the construction
of the hierarchy starts with a single cell at level zero, which corresponds to its
bounding box. Although a cell itself has only volume and no particular shape, we
associate with it the bounding box of the geometry that it represents and define
its center as the position of the cell. The cells on level i + 1 are obtained through
bisection of the cells on level i along their longest axis. We prefer bisection over
octasection as it leads to slower growth in the number of cells per level. If we
find that a newly created cell lies completely outside the object, it is immediately
discarded. The process stops when the cell density of the finest level reaches a
prescribed value ρ0. An indication of an appropriate value for ρ0 can be obtained
from Fig. 6.7 (e.g., eight cells per cubic centimeter), but in general, this value has
to be set in relation to the dimensions of the objects. Subsequently, we eliminate
all those leaf cells whose positions lie outside the object or which are closer to the
object boundary than half their diameter. This process is applied to each level in
order to remove all empty cells without children. Finally, we rescale the magneti-
zations of all child cells evenly such that their sum matches the total magnetization
of the corresponding parent cells. This step is necessary to guarantee that force
and torque computations are consistent among the levels: for sufficiently large
distances, a dipole will thus experience the same force and torque from any level
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Figure 6.6: Left: schematic view of proximity-based adaptive refinement in two
dimensions. Right: cell front for a dragon model with respect to a given point in
space (blue box).

of a magnetized object.

Cell Front As mentioned in Sec. 6.3.1, magnetic forces, torques and fields are
always computed for pairs of magnets. Given such a pair, we have to select a
resolution level based on the geometric distance between the two objects. Using
a single hierarchy level would mean fixing the cell density throughout the entire
objects, which is inefficient if only small regions are close, but large parts are far
away from each other (see Fig. 6.6, left). Instead, we compute an adapted cell
sampling or cell front for each of the two objects as follows: starting with the top
level cell of one object, we first determine the distance rc that would be sufficiently
large for the current cell density ρc = 1/vc, with vc being the object’s volume. By
construction we have

ρ0

ρc
=

r3
c

r3
0

such that rc = 3

√
ρ0

ρc
r0 . (6.19)

We then determine whether the geometric distance d of the cell to the other ob-
ject is smaller than rc. To accelerate this process, we first check the corresponding
bounding spheres for overlap and, if they intersect, compute d using a GJK-test
[GJK88] on the oriented bounding boxes. The current cell density is sufficient if
d >= rc. Otherwise, we apply the same process recursively to all children of the
current cell until a sufficient density is reached. This process is applied to both ob-
jects, yielding cell fronts which reflect the continuous geometric distance between
the objects (see Fig. 6.6). Note that the hierarchy needs only be constructed once at
the beginning of the simulation. Additionally, Algorithm 6.1 requires only minor
changes to ll.8-9 in order to support adaptive refinement.

6.3.3 Numerical Validation

The method presented in this chapter is intended for physically-based simulations
and we provide several examples in Sec. 6.4. However, we also explicitly verified
its validity and accuracy with respect to force computations and momentum con-
servation.

Analytical Comparison In order to assess the accuracy of the magnetic forces,
we applied our method to a test configuration consisting of two cube-shaped fer-
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Figure 6.7: Comparison of the total force calculated using our method with exact
results for a test configuration consisting of two ferromagnetic cubes with homo-
geneous magnetization. With increasing number of cells per object, (given by N3

with N as indicated), the results for the force converge to the exact solution.

romagnets with volume V = (1cm)3 and a homogeneous remanent magnetic in-
duction Br of 1 Tesla (see Fig. 6.7). Using Eq. (6.2), the corresponding magnetiza-
tion is found to be M = Br/µ0. This test case has been used by de Medeiros et
al. [dMRM98] for comparing several alternative force calculation methods and an
analytical solution has been derived by Akoun and Yonnet [AY84].

The results shown in Fig. 6.7 were obtained using N3 uniformly distributed
cells for each cube. For the fixed distance of d = 0.5 cm used in [dMRM98], our
method reproduces the correct result for the attractive force already with a very
low number of cells. For lower distances, the results of our method converge to
the exact solution as the number of cells is increased.

The results for the total force as given in Fig. 6.7 further emphasize the useful-
ness of adaptivity: for close proximity a high cell resolution is mandatory in order
to obtain good accuracy. However, the number of cells necessary for maintaining
good approximation quality rapidly decreases with growing inter-object distance.

Momentum Conservation The conservation of linear and angular momentum is
an important property of the approach presented in this chapter. Additionally, it
also provides a simple way to check the implementation. For testing purposes,
linear and angular momentum are readily computed during the simulation. If the
implementation is correct, the sum of both quantities over all objects has to be
time-invariant. We verified this for our code on a number of simulations and ob-
tained very good conservation behavior for the frictionless and non-contact case.
During and after contact situations, the conservation deteriorates even for com-
pletely elastic collisions. However, this behavior is fully attributable to the rigid
body dynamics solver and not a defect of our method.
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6.4 Results

This section presents examples of magnetic interactions obtained with the method
presented in this chapter. As the basis of our implementation, we used the freely
available rigid body dynamics library ODE [Smi06]. Many of our examples use
toy magnets, which consist of a plastic-coated cylinder with two small permanent
magnets at the ends (see Figs. 6.1, 6.8 and 6.9). Simulated toy magnets can easily
be compared to their real-world counterparts using simple experiments and offer
a great potential for discovering a variety of magnetic interactions. The magnetic
field of a toy magnet is visualized in Fig. 6.1.

6.4.1 Examples

The first test case (Example 6.1) demonstrates the effect of inhomogeneous in-
duced magnetization. As shown in Fig. 6.8, a magnetized sphere is held in contact
with a toy magnet, while a second toy magnet is placed at some distance.

Figure 6.8: Induced inhomogeneous magnetization illustrated on a soft-
ferromagnetic sphere and two toy magnets with parallel (top row) and anti-parallel
(bottom row) magnetizations.

In the first case, the toy magnets have the same magnetization and are therefore
attracted uniformly to each other (Fig. 6.8, top). Consequently, the sphere is
magnetized homogeneously (identical direction) according to the external field
and attracts the left toy magnet as well. In the second and more interesting case,
the toy magnets have opposite magnetizations leading to a point of zero resulting
magnetic field, clearly distinguishable in the left-most figure of the bottom row.
Initially, the sphere assumes the magnetization of the right toy magnet, to which
it is attached. As the left toy magnet is gradually moved to the right, its magnetic
field starts to induce a corresponding magnetization in the sphere, resulting in a
directionally inhomogeneous magnetization. However, the left toy magnet is still
repelled from the right one. Forcing it to move further rightwards, the repelling
forces increase but, at the same time, the attracting field induced in the sphere
grows up to the point, where the resulting attraction forces exceed the repelling
forces and the toy magnet snaps to the sphere. This fascinating effect, which can
be described as passing a potential barrier, is clearly perceptible in reality and
faithfully reproduced by our method. Note that although the final geometries of
the top and bottom sequences are identical, the resulting fields exhibit subtle local
differences.
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Figure 6.9: Left: snapshots of an interactive simulation in which soft-ferromagnetic
spheres are lifted by a permanent magnet. Right: corresponding real-world exper-
iment.

Example 6.2 is another illustration of the complex behavior obtained with mul-
tiple induced magnets. The left part of Fig. 6.9 shows a sequence of four images
taken from a simulation of a permanent magnet lifting several soft-ferromagnetic
spheres out of a bowl. As the permanent magnet is moved downwards it starts to
induce a magnetization in the spheres. At a certain distance, one of the spheres
is picked up by the permanent magnet (see upper two images of Fig. 6.9). Sub-
sequently, the other spheres are further drawn towards the magnet and are lifted
as well. Finally, five spheres are attached to the permanent magnet and lifted
above the bowl (lower two figures). In the final position, only one of the spheres
is directly attached to the permanent magnet whereas the other four spheres are
hanging below the first one, forming a symmetric configuration. As can be seen in
the right part of Fig. 6.9, this example is in good correspondence with the behavior
observed in a real-world experiment.

Figure 6.10: A permanently magnetized simple dragon model is exposed to a
downpour of soft-ferromagnetic spheres. Some of the spheres are held on the
surface of the dragon due to magnetic attraction.

Two further examples are intended to demonstrate that our method is ca-
pable of handling a large number of objects as well as magnets with arbitrary
non-convex geometry. Fig. 6.10 shows an image from Example 6.3 in which 250
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soft-ferromagnetic spheres are dropped onto a permanently magnetized dragon
model. As soon as they approach the dragon, a magnetization is induced in the
spheres and they start to interact magnetically with each other and the dragon.

Fig. 6.11 shows a sequence of images from Example 6.4 in which a rectangular
permanent magnet lifts four soft-ferromagnetic characters out of a pool of non-
magnetic spheres.

Figure 6.11: A strong permanent magnet lifts four soft-ferromagnetic characters.

Our method also offers the possibility to experiment with effects of magnetism
that are difficult to produce or access in reality such as superconductivity. If a
superconductor is placed in the vicinity of a hard ferromagnet, the induced mag-
netization within the superconductor is oriented anti-parallel to the field of the
ferromagnet. According to Eq. (6.18), the induced magnetization exactly balances
the external field and can thus be of considerable strength. With a sufficiently
strong magnetization of the ferromagnet the repelling forces on the superconduc-
tor can be large enough to overcome gravity.

Figure 6.12: Rendered frame and field line visualization for a superconducting
cube levitating above a ferromagnetic ring.

This effect is reproduced in the animation of Example 6.5, shown in Fig. 6.12,
which consists of a superconducting cube levitating above a ferromagnetic ring.
The toroidal shape of the ferromagnet leads to an equilibrium position above the
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center of the ring for the superconducting cube. The corresponding field line plot
shows that the ferromagnetic ring is magnetized in the vertical direction. In two
points above and below the center of the ring, the magnetic field vanishes. Since
the superconductor is repelled from the field, positions close to these two points
are energetically favorable. Once put into the upper of the two, the superconduct-
ing cube remains in this stable position. It can also be observed that the field lines
are repelled from the interior of the superconductor and literally flow around it7.

Apart from dynamic simulation, our method can also be used as a tool for
computing magnetic fields for arbitrary objects (see Fig. 6.13). This is especially
interesting for exploring the relation between field structure and geometric shape
for objects which are difficult to manufacture.

Figure 6.13: Detailed visualizations of magnetic fields created with a standard
streamline technique.

6.4.2 Performance

The computational impact of our method is determined by the number of cells
used to compute magnetic forces and torques. Compared to the worst case perfor-
mance, which scales quadratically with the number of cells, the average run time
is greatly reduced using the adaptive sampling described in section 6.3.2. The ben-
efit of adaptivity depends, however, on the scene under consideration (see Table
6.1) and is generally not constant over time. For the examples described above,
the average reduction in computation time due to adaptivity ranges from 1.3 for
Example 6.1 to 11.1 for Example 6.3.

7this is the Meißner-Ochsenfeld effect mentioned above
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Example Figure #cells Tmag Trbd Ttot Gain f ps

6.1 6.8 48 0.29 0.09 0.38 1.30 65
6.2 6.9 256 3.9 0.25 4.16 3.76 6
6.3 (1) 6.10 1824 53.1 2.76 55.85 6.72 0.45
6.3 (2) 6.10 3628 57.6 2.92 60.5 11.1 0.41
6.4 6.11 128 1.65 2.39 4.05 1.97 6.2
6.5 6.12 142 0.33 0.02 0.35 5.97 71.4

Table 6.1: Average computation times in milliseconds for a single time step of
0.001s on an Intel Core2Duo 2.4GHz CPU (using only one core). Computation
times for magnetic forces (Tmag) and time spent in the RBD code (Trbd) are listed
separately. #cells refers to the total number of cells in the scene and Gain denotes
the speedup for magnetic force computations due to adaptivity, which was used
in all examples. The setup for Examples 6.3 (1) and (2) is identical except for the
number of cells.
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Table 6.1 summarizes the performance for the examples presented in this sec-
tion, showing total computation times and the time spent on computing magnetic
forces and torques. To facilitate interpretation, computation times are provided
for the sequential version of Algorithm 6.1. However, many parts of the method
lend themselves to easy parallelization strategies and a prototype implementation
showed nearly optimal speedup on a workstation with four CPUs. As expected,
computing the magnetic interaction takes up most of the simulation time. De-
pending on the nature of the individual scenes, however, rigid body dynamics
and especially collision handling can also require a considerable part of the total
computation time. Nevertheless, simulations with dozens of magnets and up to
several hundreds of cells run at interactive rates.

6.5 Conclusion

Summary This chapter introduced a computational method for modeling mag-
netic interactions in rigid body simulations. Its central idea is to compute forces
and torques between magnetized objects from pairwise interactions between mag-
netic dipole cells. Decomposing magnets into aggregates of dipole cells directly
leads to a discrete approach such that expensive numerical discretization tech-
niques are avoided. We have advocated a symmetric approach in which dipole
approximations are used for magnetic fields as well as for the resulting forces and
torques. This allowed us to derive closed-form expressions for forces and torques
in such a way that linear and angular momentum are automatically conserved in
the discrete setting. Furthermore, we proposed an adaptive hierarchical sampling
scheme that exploits the rapid decay of the magnetic field in order to accelerate
computations.

The qualitative performance of this method has been investigated on a number
of practical animations, which also demonstrated its ability to reproduce a wide
range of macroscopic magnetic effects. Finally, the quantitative performance was
assessed in terms of computation times, which indicated good efficiency suitable
for interactive applications.

Limitations and Future Directions Perhaps the most fundamental difference be-
tween the method presented in this chapter and approaches based on a numerical
solution of Maxwell’s equations is the fact that constitutive relations are not accu-
rately taken into account. The simplifying assumptions on the material behavior
(see Sec. 6.2.4) were made deliberately in order to increase computational effi-
ciency. While these approximations are probably tolerable for hard ferromagnets,
they are too inaccurate for soft ferromagnets in order to be useful in engineering
applications. In our approach, induced magnets exert forces on each other but
their magnetizations are only influenced by the fields of permanent magnets and
not by the fields due to other induced magnets. A correct treatment would be
to compute a steady-state solution by solving Maxwell’s equations together with
constitutive relations and appropriate boundary conditions at media interfaces. In
the context of our approach, accuracy could be improved by reiterating the mag-
netic field computation, including induced fields, until a steady-state is reached.
Our experiments in this direction indicated that additional effort is necessary to
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ensure convergence, which seems very sensitive to the strength of the magnetic
field as well as the magnetic susceptibility of the material.

The approach described in this chapter conserves linear and angular momenta,
but this does not imply energy conservation. A theoretical analysis of the latter
seems difficult because of the energy accumulated in the magnetic field. Since the
rigid body solver used in our implementation does not conserve energy, we did
not try to assess this behavior experimentally.

An interesting extension could also be to include electric currents as sources
of magnetic fields and to take into account corresponding forces and torques on
these currents. In this way, it would be possible to model a virtual electric motor
and simulate the interplay of electric, mechanical and magnetic parts.



Appendix A

Derivation of
Finite Element Forces

This Appendix provides a brief derivation of the nodal forces resulting from the fi-
nite element membrane model described in Chapter 2. For a more comprehensive
derivation of the governing equations of nonlinear continuum mechanics and their
finite element discretization, we refer to the textbooks by Bathe [Bat96] and Bonet
and Wood [BW97]. We start with equilibrium considerations in the continuous
setting that will give rise to the virtual work equation.

A.1 Virtual Work Equation

As in Sec. 2.1, we let B denote a deformable body that is subjected to surface
tractions s per unit area and body forces b per unit volume. Assuming that B is
in static equilibrium, we have

ˆ
v

b dv +
ˆ

∂v
s da = 0 , (A.1)

where v denotes the deformed volume of B and ∂v its boundary. According to
Eq. (2.14), the traction forces cause stress on the boundary, s = σn, where n is the
outward normal on ∂v. Using this in (A.1) and transforming the surface integral
according to the divergence theorem, we obtain

ˆ
v

b dv +
ˆ

∂v
σn da =

ˆ
v

div σ + b dv = 0 . (A.2)

Since this statement must hold for any enclosed region inside the body B, the
point-wise equilibrium equations of continuum mechanics are recovered as

div σ + b = 0 . (A.3)

This strong form of equilibrium condition is not an adequate starting point for
numerical treatment. We begin the transformation to a more accessible weak form
by multiplying Eq. (A.2) by a test function δu ∈ R3 to obtain

ˆ
v
(δutdiv σ + δutb) dv = 0 . (A.4)
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Here, δu is arbitrary but has to be sufficiently smooth1 and compatible with the
boundary conditions. We first transform2

δutdiv σ = div (σδu)− σ : ∇δu (A.5)

and then apply the divergence theorem to the first term on the right hand side to
obtain ˆ

v
div (σδu) dv =

ˆ
∂v

(σδu) · n dv =
ˆ

∂v
δutσn dv . (A.6)

Recalling that σn = s on the boundary and using Eqs. (A.5,A.6) in (A.4), we obtain
the virtual work equation in the deformed configuration as

ˆ
v
∇δu : σ dv−

ˆ
v

δutb dv−
ˆ

∂v
δuts da = 0 . (A.7)

This expression owes its name to the fact that, when interpreting δu as virtual dis-
placements, the last two terms are products of external force and virtual displace-
ment, i.e., external virtual work. Similarly, the first integral term corresponds to
internal virtual work.

The integration domain in Eq. (A.7) as well as the Cauchy stress and the
gradient operator refer to the deformed configuration. Since the deformed state
is unknown, we have to rephrase this expression in terms of a known reference
configuration. In the Total Lagrangian finite element formulation [Bat96], which
we pursue here, this reference configuration is the rest state, also referred to as
the material configuration. In the following, we will focus on the first part of Eq.
(A.7) that corresponds to the internal virtual work and start by emphasizing the
spatial nature of the gradient operator,

∇δu =
∂δu(x)

∂x
= ∇tδu . (A.8)

Next, we observe the relation between material and spatial gradient operators

∇0δu =
∂δu(x̄)

∂x̄
=

∂δu(x)
∂x

∂x
∂x̄

= ∇tδuF . (A.9)

Furthermore, we note the fact that an element of current volume dv is related to
its undeformed counterpart dV as dv = JdV, where J = det F. We can thus relate
the internal virtual work in the deformed state to the material configuration as

ˆ
v

σ(x) : ∇tδu(x) dv =
ˆ

V
Jσ(x̄) : ∇0δu(x̄)F−1 dV . (A.10)

This expression is not yet satisfying since it uses the Cauchy stress σ, which is
a spatial quantity. In order to arrive at a pure material formulation, we have to
apply further transformations. Using the properties of the trace operator

A : B = tr(AtB) = tr(BAt) = tr(BtA) = tr(ABt) (A.11)

1differential operators will be applied to the test functions
2This identity follows from the product rule and can be verified in component form (see Bonet

et al. [BW97]).
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we transform the integrand on the right hand side of (A.10) as

Jσ : ∇0δuF−1 = Jtr(σ∇0δuF−1) = Jtr(∇0δuF−1σ) (A.12)
= Jtr(F−1σ∇0δu) = JσF−t : ∇0δu
= P : δF

where P is the first Piola-Kirchhoff tensor and δF denotes the variation of the
deformation gradient. The occurrence of P is still inconvenient since it is an un-
symmetric tensor that maps normal directions in the material configuration to
traction forces in the deformed configuration. A pure material formulation is fi-
nally obtained by symmetrizing P as

P : δF = JFF−1σF : ∇0δu = Jtr(FtσF−tFt∇0δu) (A.13)
= JFtσF−t : Ft∇0δu
= S : δE ,

where S is the second Piola-Kirchhoff tensor and δE is the variation of the Green
strain

δE =
1
2

Ft∇0δu +∇0δutF . (A.14)

Note that S is a symmetric tensor that maps normal directions in the material
configuration to traction forces in the material configuration. To summarize, we
restate the internal virtual work in the material configuration,

δWint =
ˆ

V
S : δE dV , (A.15)

which is the basis for the finite element discretization introduced subsequently.

A.2 Finite Element Discretization

A finite element mesh provides a geometric decomposition of the domain Ω into
elemental domains Ωe ⊂ Ω which satisfy Ω = ∪iΩi. An analogous decomposition
holds for the integral of the internal virtual work

δWint =
ˆ

V
S : δE dV = ∑

e

ˆ
Ωe

S : δE dV = ∑
e

δWe
int . (A.16)

In order to simplify notation, we will only consider the contribution of a single
element in the following. For further convenience, we assemble the current nodal
positions of the element into a matrix xe ∈ R3×3 and write its nodal shape func-
tions as a vector N ∈ R3. Our goal is to establish discrete expressions for the
integral term Eq. (A.16) and we begin by replacing the virtual displacement field
with its finite element approximation

δu = (δue)tN . (A.17)



112 A Derivation of Finite Element Forces

Recalling the definition of the variation of Green’s strain from Eq. (A.14), we have

S : δE = S :
1
2
(Ft∇0δu +∇0δutF) = S : Ft∇0δu = ∇0δu : FS . (A.18)

Inserting (A.17) for δu yields

∇0δu : FS = tr((∇0N)tδueFS) = tr((δue)t∇0NSFt) (A.19)
= δue : ∇0NSFt , (A.20)

from which we identify the matrix of nodal force densities as

fe = ∇0NSFt . (A.21)

Finally, discrete nodal forces are obtained by integrating over the element (2.32)
and evaluating the integral using numerical quadrature (2.33) as explained in Sec.
2.2.1.
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