
CGI 2008 Conference Proceedings

Bernhard Thomaszewski · Simon Pabst · Wolfgang Straßer
WSI/GRIS, Universität Tübingen, Germany

Asynchronous Cloth Simulation

Abstract This paper presents a new method for cloth
simulation, which uses asynchronous variants of both
time integration and collision handling. Implicit integra-
tion methods like backward Euler and BDF-2 are very
popular in computer graphics, since they allow for fast
and stable animations. However, when combined with
large time steps, their inherent numerical dissipation re-
sults in over-damped simulations, which lack high fre-
quency details such as small folds and wrinkles.

In this paper, we present a computationally efficient
method which does not suffer from these restrictions.
The time integration component uses an asynchronous
variational integrator (AVI), which allows dedicated time
steps for every element. Thanks to its energy preserving
nature, low-damped cloth materials can be simulated
without compromising dynamic motion or suppressing
important details. Our collision handling scheme com-
bines both synchronous and asynchronous strategies and,
in this way, allows focusing computation power on the
important regions where collisions actually occur. We
provide timings for several integration methods and show
that our AVI-based scheme performs consistently better
than synchronous explicit variants. Compared to impli-
cit schemes, superior quality is obtained while remaining
comparable in terms of computation times. Finally, we
demonstrate the robustness of our method on a series of
challenging animations.

Keywords Asynchronous Time Integration · Cloth
Simulation · Collision Handling · Explicit Integrators

1 Introduction

The physically-based simulation of deformable objects
has been an active research area in computer graphics
for more than two decades. Since the work of Baraff

WSI/GRIS, Universität Tübingen
Tel.: +49-7071-2970425
Web: www.gris.uni-tuebingen.de/∼thomasze
eMail: {thomaszewski,pabst,strasser}@gris.uni-tuebingen.de

Fig. 1 Snapshots of an obstacle-walk animation.

et al. [BW98], A-stable (or unconditionally stable) im-
plicit methods like backward Euler and BDF-2 have be-
come predominant in computer graphics, since they al-
low fast computations when combined with large time
steps [HE01]. However, this combination is known to suf-
fer from significant numerical dissipation [CK02,OAW04,
VMT05]. This manifests as over-damped simulations in
which the formation of high frequency details such as
small folds and wrinkles is suppressed (see Fig. 2, left).
As a promising alternative, variational integrators like
the symplectic Euler, the Verlet scheme or the implicit
midpoint scheme exhibit excellent energy conservation
properties [HLW06]. However, these methods are not
widely used for computer animation because of their in-
herent stability limitations: the time step has to be small
enough to match the stability requirements of the stiffest
component of the system. This is especially unfortunate
when using unstructured meshes, where a few small ele-
ments (e.g. in regions of high curvature) can drastically
limit the global time step and thus computational effi-
ciency. This situation gets even worse for collision han-
dling, which in many implementations is performed once
every time step. Although there is some room for op-
timisation, it is in general not advisable to carry out
collision handling at a significantly lower frequency than



2 Bernhard Thomaszewski et al.

Fig. 2 Views of a representative frame from a 4s simulation of a low-damped textile (5016 faces). Left to right: backward
Euler (∆t 0.033s), backward Euler (∆t 0.00075s), implicit Midpoint Rule (∆t 0.001s), symplectic Euler (∆t 0.0005s), AVI
(∆te 0.00037s). Notice the lack of detailed folds when using backward Euler with a large time step (left). For the computation
time, the visual quality obtained with our method (right) is better than for backward Euler (2nd from left).

time integration, since explicit methods can, unlike im-
plicit schemes, usually not recover from large strains or
strain rates due to abrupt collision response. In sum-
mary, the computational costs associated with standard
explicit cloth simulation make this approach less attrac-
tive in practice.

In this paper, we describe how an explicit and yet
computationally efficient method can be designed using
both asynchronous time stepping and asynchronous col-
lision handling. The time integration component uses an
explicit variant of asynchronous variational integrators
[LMOW04]. Because of its symplecticity and associated
energy conservation properties, low-damped cloth mate-
rials can be simulated without compromising their dy-
namic character (see Fig. 1) or suppressing important
details such as small folds and wrinkles (see Fig. 2, left).
Furthermore, the AVI scheme automatically distributes
computation power by assigning a dedicated elemental
time step to every element according to local stability
requirements. This is especially advantageous when ma-
terials of different stiffness are used or when the mesh
has differently sized elements. In order to further im-
prove the stability and performance of the method we
use element-based strain and strain rate limiting. This
enables us to use softer materials and thus larger time
steps without affecting the realism of the simulation.

Our collision handling scheme overcomes the above
mentioned problems using a three-stage strategy, which
combines both synchronous and asynchronous techniques.
A global (synchronous) detection pass determines poten-
tially colliding elements at equidistant instants in time,
defined by a global detection step size. The second and
computationally most intensive phase is tightly coupled
to the element updates during asynchronous time inte-
gration. Here, fast geometric proximity tests are applied
to the potentially colliding triangle pairs obtained in the
first phase and impulse-based responses are generated
when necessary. Finally, the third, global pass ensures
that no collisions are missed during a global detection
step. We further exploit the flexibility of AVIs to selec-
tively reduce elemental times steps in critical situations,
when sudden character motion or high-velocity collisions
threaten to destabilise the animation.

An advantage of this approach is that, due to the
comparably small elemental time steps, the resolution at
which collision handling is carried out is much higher
than for implicit integrators with large time steps. Still,
the computational burden is significantly lower as when
using standard explicit integration with collision han-
dling after every global time step. As a result, stable
and intersection-free simulations are obtained even for
complex scenarios with multi-layer self-collisions and low
inter-layer distance. Since this is achieved without exces-
sive damping, the vivid character and lively motion of
cloth is preserved (see Fig. 1). Before we start the de-
tailed exposition of our method we briefly comment on
previous and related research.

1.1 Related Work

In the early work of Terzopolous et al. [TPBF87] im-
plicit integration was used for simulating the dynamics
of elastically deformable objects. Because this was com-
monly believed to be too expensive, explicit integration
methods like the Symplectic Euler (or Euler-Cromer)
[VCMT95] or the 4th order Runge-Kutta scheme [EWS96]
were preferred subsequently. In 1998 Baraff et al. [BW98]
introduced a semi-implicit integration scheme for solving
the linearised equations of motion. Its superior stability
allowed using large time steps, which leads to fast com-
putations. Subsequent work identified poor accuracy and
unrealistically high damping as a shortcoming of semi-
implicit schemes and suggested solving the full nonlin-
ear equations [HE01], using higher order implicit meth-
ods such as BDF-2 [CK02], or extracting the damping
of rotation-modes explicitly [OAW04]. Recent work also
considered the Newmark scheme [BMF03,GHDS03], the
implicit midpoint rule [VMT05] and other variational in-
tegrators for computer animation [KYT+06]. A different
approach to variational time integration has been pre-
sented by Lew et al. [LMOW04], who derived a fully
asynchronous scheme based on discrete Lagrangian me-
chanics.

Collision handling is a well studied field in computer
graphics field and literature is abundant. We therefore
refer the reader to the overview compiled by Teschner
et al. [THM+05]. For cloth simulation, bounding vol-
ume hierarchies (BVH) based on e.g. k-Dops [MKE03]



Asynchronous Cloth Simulation 3

are commonly used to accelerate the proximity detec-
tion. The collision response which prevents intersections
is usually based on constraints, forces or, as in our case,
impulses (see [BFA02]).

There are only a few works concerned with asyn-
chronous physically-based simulation in computer graph-
ics. Celes [Cel98] describes an approach for simulating
multi-body systems in which different bodies move with
different time-steps. The method described in [DGC04]
is based on a similar idea but also accounts for sim-
ple inter-object collisions. To our knowledge, the method
presented in this work is the first to consider the asyn-
chronous treatment of elemental collisions for highly de-
formable objects.

The rest of this paper is organised as follows. The
next section is a brief description of explicit AVI scheme
by Lew et al. [LMOW04], which we included for the
reader’s convenience. The subsequent section presents
our mechanical model including AVI-specific extensions.
Our approach to asynchronous collision handling is de-
tailed in section 4 and the paper concludes with Sec. 5,
in which the performance of this approach is evaluated.

2 Asynchronous Time Stepping Framework

The most distinguishing aspect of AVIs is that they al-
low each element to have its dedicated time step and
do not impose restrictions with respect to neighbouring
elements. Unlike in conventional synchronous methods,
with each element having a potentially different time
step, the nodes of the mechanical system evolve asyn-
chronously in time as can be seen in Fig. 3. It is there-
fore necessary to keep track of both elemental and nodal
times. The figure also shows a further aspect of the AVI

Fig. 3 A 1D-chain containing 3 elements with different step
sizes is fixed at one point and subjected to gravity. Left : the
number of times an element is updated depends on its step
size. Right : element activations over time are indicated by
their associated colours.

scheme: the time dimension is discretised with events,
each corresponding to the activation of an element. An
element becomes active whenever the continuous flow
of time reaches a point at which, according to its lo-
cal step size, the element has to be updated. Obviously,
for maintaining causality, the order of elemental updates
is of paramount importance. A convenient and efficient

data structure to enforce this causality algorithmically is
a priority queue. We provide a brief version of the update
algorithm described in the original work [LMOW04], also
indicating the extensions we made:

Algorithm 1 AVI Outline
1: //Initialization:
2: for i = 1 to nelem do
3: compute elemental time step ∆te,i

4: push element (i; ∆te,i) into queue
5: end for
6: //Main loop
7: while queue is not empty do
8: (i; te,i) ⇐ queue.pop() //get top element from queue
9: for j = 1 to 3 do

10: xi,j = xi,j + vi,j(te,i − ti,j) //Update positions
11: ti,j = te,i //Update nodal times
12: checkAndHandleCollisions()

13: vi,j = vi,j −∆te,i
∂Ve,i

∂xi,j
/mi,j //Update velocities

14: limitStrainAndStrainRate()
15: end for
16: if (te,i + ∆te,i) ≤ tend then
17: queue.push(i, (te,i + ∆te,i))
18: end if
19: end while

Here, the subscript (e, i) refers to quantities related
to element i and (i, j) indicates a variable related to its
jth node. Moreover, ∆te,i is the elemental time step and
m(i,j) are corresponding nodal masses. In the initializa-
tion stage (ll.2-5) a time step is computed for each el-
ement according to the Courant criterion (see Sec. 3)
and the elements are inserted into the queue. During
the main simulation loop the element which has to be
updated next is retrieved from the top of the priority
queue (l.8). The three nodal positions are then updated
using the current velocities (l.10) and nodal times are
set to the current element time (l.11). Subsequently, the
energy stored during the previous time step is released
by applying impulses to the element thus changing its
nodal velocities (l.13). Finally, if the end of the simu-
lation is not yet reached, the element is rescheduled for
evaluation (l.16) using the elemental time step (which, in
fact, does not need to stay constant over time). In order
to create geometry output, a snapshot of the system is
generated in a regular manner. This is done by extrap-
olating the nodal positions to the global time using the
current velocities.

3 Mechanical Model and Extensions for AVI

Our simulator for deformable objects is built upon non-
linear continuum mechanics [BW97] with a Total La-
grangian formulation of linear Finite Elements for dis-
cretisation [Bat96]. Deformations of thin structures can
generally be decomposed into membrane and bending
components and we organise the following description
accordingly.



4 Bernhard Thomaszewski et al.

Membrane Model The in-plane behaviour of our simula-
tor is based on a nonlinear variant of the constant strain
triangle (CST) [Bat96]. For a deformed CST element,
the elastic forces (i.e. the gradients of strain energy with
respect to nodal positions) needed in l.12 of Alg. 1 are
obtained as follows. We first compute the deformation
gradient F as

Fij = ΣkdNk,jxk,i (1)

where xk,i are current nodal positions and dNk,j are the
partial derivatives of the element’s three linear shape
functions with respect to reference coordinates. The non-
linear Green strain then follows as E = 1

2 (FT F−I), with
I denoting the identity. From this we obtain the second
Piola-Kirchhoff stress tensor as S = C : E, where C is the
elasticity tensor describing the material. Using a simple
isotropic St. Venant-Kirchhoff material [BW97], we have
S = λ(E11 + E22)I + 2µE, where λ and µ are the Lamé
constants. S (and also E) is a symmetric 2 × 2 tensor,
which is stored as a 3-vector S for computational conve-
nience. The nodal elastic forces are finally obtained as

fk = ∂Ve

∂xk
= FBT

k SA0 , (2)

where A0 is the area of the undeformed triangle and
Bk is the 2× 3 strain-displacement matrix whose entries
consist of the shape function derivatives for node k. The
advantage of this model is that all involved quantities
are easy to evaluate and, due to the non-linear strain
measure, no rotations need to be explicitly extracted.

Although the explicit variational integrator excels at
long term energy conservation, one will most likely want
to add a small amount of dissipation for practical ani-
mations. In this case the Lagrange D’Alembert Principle
has to be used, which extends the Lagrangian theory to
dissipative and forced systems (see [KMOW00]). We im-
plement energy dissipation as viscous stress, which in our
case is a linear function of the strain rate. Since we use
only low damping, the resulting viscous forces are smaller
than the elastic forces and stability is not affected.

Bending Model There are several alternatives to integrate
bending resistance into the AVI framework. The most
accurate way is to augment the elastic potential in Eq.
(2) with a thin-shell energy. In this way, both membrane
and bending forces could be evaluated at the same time
using a single element type. However, thin shell solu-
tions from engineering are notoriously complex and lead
to higher computational costs. As a more efficient alter-
native, discrete bending energies as used in computer
graphics like [GHDS03], [BMF03] or [BWH+06] seem
attractive. For our implementation we chose to model
bending directly as an external force and follow the for-
mulation of Bridson et al., which is particularly simple.
Here, a bending element is defined by two adjacent tri-
angles (forming a hinge). Evaluating the bending forces
acting on the nodes of a given triangle requires the evalu-
ation of all hinge elements which share at least one node

Fig. 4 Connectivity for bend force computation. Left : 24
hinge elements have influence on the membrane triangle (cen-
tre), defining a 22-triangle neighbourhood. Right : the simpli-
fied force computation considers only immediate neighbours.

with the triangle. Since elements in this neighbourhood
generally have different times, their positions have to be
synchronised to the current element time, first. As can
be seen in Fig. 4, the bending connectivity of a triangle
with regular neighbourhood extents over 22 triangles and
21 nodes. Synchronizing and evaluating forces over this
large neighbourhood is an expensive process. We there-
fore choose a simplified bending force computation which
only considers the three hinge elements corresponding to
the edges of the membrane triangle. This approach is in
a way similar to the bending element described e.g. in
[FO01], which can be shown to capture all curvature di-
rections. As a result, we obtain a simple and accurate
way to implement bending forces at low computational
costs, which integrates seamlessly with the membrane
force computation.

It should be noted that we implicitly assumed that
bending forces never become the limiting factor for sta-
bility, which is true for cloth, but not for general thin
shell materials with high bending stiffness. In this case,
separate hinge elements with their own dedicated time
step should be employed.

Time Step Selection and Stability For explicit integration
schemes, stability is only guaranteed when certain con-
ditions on the time step are met. The critical time step
beyond which stability is threatened can be determined
using the Courant-Friedrich-Lewy (CFL) condition (see
e.g. [Bat96]). For the specific case of linear-elastic mate-
rials, it is common to use an estimate of the form

∆tcr,i = α hi

√
ρ/(λ + 2µ) , (3)

where hi is related to the size of element i (its inter-
nal radius) and α is a scalar (usually 0 < α < 1). The
Lamé constants λ and µ describe an isotropic material
and ρ denotes the mass density. This condition requires
that the elemental time step should be less than the
time it takes a material wave to pass the element. Obvi-
ously, a less stiff material allows taking larger time steps.
Textiles usually exhibit a highly nonlinear stress-strain
relationship, which can be roughly characterised as bi-
phasic: the stretch resistance for small deformations is
only weak but becomes very stiff for large strains. Hence,
using a soft material for the small deformation range is
a reasonable approach if it is possible to reliably pre-
vent large deformations, which are unphysical anyway.
A computationally efficient way to do so was presented



Asynchronous Cloth Simulation 5

by Provot [Pro95] who used geometric elongation cor-
rection, or strain limiting. This approach has proven ef-
ficient for computer animations and was adopted e.g. in
[BFA02], who extended it to strain rate limiting. A dif-
ferent approach was recently proposed by Goldenthal et
al. [GHF+07] who used implicit constraints to enforce
inextensiblity.

Algorithm 1 offers a very simple way to integrate
strain and strain rate limiting (see l.14). We first de-
fine two thresholds εc and εn, which, depending on the
amount of deformation, indicate when to active strain
(e.g. εc,lim = 10%) and strain rate (e.g. εn,lim = 7.5%)
limiting. Having computed new positions and updated
velocities for an element, we compute the current strain
εc, the strain rate ε̇, and the predicted next strain εn =
εc + ∆teε̇ for the edges of the element. We apply strain
rate limiting impulses whenever εn > εn,lim. In the rare
cases when εc > εc,lim we additionally correct positions
geometrically.

For synchronous integrators deformation limiting is
usually implemented as multiple correction passes over
the edges of the mesh. As pointed out e.g. in [BFA02], a
problem arising in this context is the biasing caused by
the fixed ordering of the edges. Although randomization
can help alleviate this concern, it may also have a neg-
ative effect on convergence. Especially for unstructured
meshes, bias is very unlikely to occur in the asynchronous
implementation, since there is no static element order-
ing. Due to the relatively small elemental time steps, a
single correction step after each element update is suffi-
cient to enforce e.g. a strain limit of 10% in the first test
scene, showing a low average strain of only 1.2% (see Fig.
2). In practice, this method allows taking larger average
time steps and, depending on the actual scene, signifi-
cant accelerations (5 times and higher) can be achieved.
It should, however, be noted that this technique can-
not entirely replace the physical membrane model since
it dissipates energy from the system and degrades the
accuracy of the simulation. It rather complements the
physical model and helps to maintain stability in critical
situations when energy conservation is a lesser concern
anyway.

4 Asynchronous Collision Handling

In most practically interesting scenarios, cloth collides
with other objects in the environment and with itself.
It is therefore necessary to account for collision detec-
tion and response in the asynchronous framework. The
simplest method would be to synchronise the system (in
analogy to how frames are generated) and invoke a stan-
dard collision handling scheme at regular intervals. As
mentioned in the introduction, stability reasons call for
small intervals, which lead to high computation times. As
a consequence we choose to integrate collision handling
directly into the asynchronous update scheme.

Fig. 5 Complicated multi-layer self-collisions are reliably re-
solved using our 3-stage collision handling pipeline. The rib-
bon consists of 8000 faces.

4.1 Algorithm

The asynchronous collision handling scheme builds upon
techniques commonly used in standard approaches as
[BFA02]. Bounding volume hierarchies are used to quickly
detect potentially colliding close face pairs (cfp). These
cfps are subsequently checked for actual proximity using
geometric distance tests. If a cfp passes this test, it is de-
composed into elementary edge-edge and vertex-triangle
collisions. These elementary collisions are then used to
compute stopping impulses, which prevent any imminent
intersection.

The asynchronous handling scheme is organised into
three stages. The pre- and post-handling stage act glob-
ally on the synchronised system state using a dedicated
collision time step ∆tc (usually 0.01s). The second stage,
which is coupled with the element update scheme, han-
dles the actual collisions asynchronously. The following
paragraphs explain each of these stages in more detail.

Pre-Handling Stage The task of this stage is to detect any
cfps that may potentially collide in the interval [t, t + ∆tc].
Here, a conservative scheme that captures collisions as
robustly as possible is preferred. To this end, we first up-
date the BVH using the current nodal positions. We then
compute candidate positions at the time t + ∆tc using
a simple explicit integration step. These candidate posi-
tions are then used to enlarge the BVH, i.e. to extend
the bounding volumes (BVs) in such a way that they in-
clude both initial and candidate positions. This is done
for both deformable and rigid moving objects. The global
collision detection step yields a list of cfps valid for the
entire interval [t, t + ∆tc] and its entries are mapped to
the corresponding elements of the cloth object.

Asynchronous Collision Handling Upon activation of an
element its nodal positions are first updated according to
algorithm 1, l.10. If the list of potentially colliding faces
for this element is empty the algorithm proceeds as usual.



6 Bernhard Thomaszewski et al.

However, if there are close faces in the list, the computed
nodal positions are reconsidered as candidate positions
for the subsequently invoked local collision handling step.
For every close element in the list, its nodal positions are
first synchronised with the time of the current element.
Subsequently, a geometric distance computation is car-
ried out. If the distance is smaller than a user supplied
threshold value, elementary collisions are created and ap-
propriate responses are computed. In order to speed up
the response calculation (involving 9 edge-edge and 6
vertex-triangle pairs) we use elementary bounding vol-
umes for quickly ruling out pairs whose distance exceeds
the threshold. Stopping impulses that prevent imminent
intersections and repelling impulses that push too close
elements apart are then generated for both of the faces
(in the case of self or inter-cloth collisions) as described
in [BFA02]. After all elements in the list have been pro-
cessed, the changed velocities of the current element are
used to compute its final nodal positions for this update
step.

Post-Handling Stage Even with a conservative detection
approach there might still be collisions left that have not
been captured by the first stage or could not be resolved
in the second one. For a robust collision handling scheme
it is indispensable to have a fail-safe post-processing step
which reliably resolves any collisions remaining at the
end of interval [t, t + ∆tc]. For this purpose, we carry
out an additional collision detection step which is iden-
tical to the first stage, except that the candidate posi-
tions are now known from the asynchronous simulation
stage. A continuous collision detection and handling pass
is then applied iteratively until all remaining collisions
are resolved. Corrections made in this third stage can be
considered as rather strict interventions since, unlike the
responses computed in the second stage, they can con-
stitute a rough discontinuity in the simulation. However,
the second stage is usually capable of resolving almost
all of the collisions, leaving no or very little work to do
for the third stage.

Continuous Geometric Culling The number of cfps de-
tected in the first stage can become very high for com-
plicated scenarios, thus slowing down simulation. This
situation can be significantly improved using the fact
that usually only a small fraction of the detected cfps
are actually handled subsequently. We therefore carry
out an additional continuous geometric culling step after
the first stage, which tests for every cfp whether the lin-
early extrapolated trajectories of the involved triangles
(determined by their initial and candidate positions) ac-
tually intersect. If this is not the case, they are pruned
from the input list for the second stage. The geometric
intersection test is very fast and since it is applied only
in the broad phase (i.e. once every collision time step)
it does not have a significant impact on overall perfor-
mance. Yet, the improvement in the ratio between de-
tected and actually handled cfps can be significant: for

our ribbon test scene (Fig. 5) we obtained an average
culling rate of roughly 55% (see Fig. 6).

Fig. 6 Culling efficiency and incurred approximation error
for the ribbon scene. Left : percentage of actually handled
close face pairs in the asynchronous phase over time. right :
number of close face pairs missed in the asynchronous stage,
which have to be handled by the third pipeline stage.

As can be seen in the right diagram of Fig. 6 the num-
ber of cfps that are missed in the asynchronous stage is
slightly higher when using culling. However, this value is
still very small compared to the number of asynchronously
handled collision and all of these remaining pairs can be
resolved in the third stage.

Preventing Instabilities in Collision Response When sud-
den character motion or high-velocity impacts occur, the
collision response can lead to large strains and strain
rates which threaten to destabilise the simulation. Most
cases can be handled using the strain and strain rate
limiting described in Sec. 3. In cases of excessive defor-
mation, which we define as εn > 2·εn,lim, we additionally
reduce the step size such that the condition holds for the
new time step. Although the number of times that this
correction needs to be applied is usually small, it is still
an important component for stable simulation.

Discussion There are situations in which it is not enough
to check only the element that is currently updated for
collisions. By advancing the particular element forward
in time adjacent elements are automatically affected and
collisions might be introduced without being noticed. We
are aware of this issue, but since a complete collision
check of the element’s entire neighbourhood would dras-
tically increase computation costs, we leave this to the
third stage. In practice, this decision does not have a
negative effect on the robustness of our scheme. Finally,
since we use large collision time steps of 0.01-0.05 sec-
onds, the computational costs for the global pre- and
post-handling stages become negligible and most of the
computation time is spent on the actual asynchronous
handling.



Asynchronous Cloth Simulation 7

Integrator Timestep Tsolve

backward Euler 0.0333 5.66
backward Euler 0.01 17.05
backward Euler 0.00075 218.4
forward Euler 0.00020 265.0
symplectic Euler 0.00025 208.0
semi-implicit MPR 0.001 247.4
AVI 0.00037 215.0

Table 1 Computation times in seconds for scene 1 in sec-
onds. The scene consists of a simple piece of cloth swinging
for 4s, consisting of 5016 faces.

5 Results

We evaluated our method on several test cases. In the
first test we compare the performance of different explicit
and implicit integration schemes with respect to both
computation times and especially their visual quality.
The latter is, to some extent, subjective and we therefore
chose a traditional example that clearly demonstrates
the differences between the methods: a piece of cloth
with 5016 faces is pinned at two corners and left swing-
ing for 4 seconds. For this example, we used a material
with Young’s modulus of E = 300N/m, a shear mod-
ulus of G = 150N/m and mass density ρ = 500g/m2.
Moreover, strain limiting with 10% allowed strain was
used. Fig. 2 shows a representative frame of this anima-
tion. Using a large time step of dt = 0.03s, the backward
Euler integrator damps out almost all of the important
features (Fig. 2, left). Decreasing the time step helps, but
compared to the implicit midpoint rule, which performs
slightly better, and especially the explicit integrators, the
overall appearance still looks rather flat. This behaviour
can be explained by the numerical dissipation inherent
to the backward Euler scheme, which becomes particu-
larly apparent when large time steps are used. The other
integration schemes perform considerably better in this
regard, which can be attributed to their symplectic na-
ture and the associated energy conservation properties.

Table 1 shows the computation times for the first
scene. With a time step of dt = 0.03s impressive com-
putation times can be obtained for the backward Euler.
However, the result appears overly flat and lacks detail.
The situation becomes better when using dt = 0.00075s,
which leads to roughly the same computation time as
for our method. Still, folds are not reproduced as de-
tailed as with our AVI-based scheme or the symplectic
Euler scheme, which yields similar visual results. Balanc-
ing visual quality against computation times, the implicit
midpoint rule shows a rather deceiving performance. De-
spite its symplectic nature, results look still too smooth,
which is due to the fact that we had to use a high damp-
ing value of 0.1 to maintain stability even for a small
time step of dt = 0.001. We conjecture that in order to
be of practical use, the variant described in [VMT05] has
to be used. Note that although our AVI-based method
has some overhead for managing asynchronicity, it still
performs almost as well as the symplectic Euler, which

Integrator Time-
step

Tsolve Tcoll Ttot

backward Euler 0.005 7.74 4.31 12.05
backward Euler 0.001 16.1 9.7 25.8
forward Euler 0.00001 571.5 213.3 784.8
symplectic Euler 0.00005 109.5 62.09 171.59
semi-implicit MPR 0.0001 323.9 51.98 375.88
AVI 0.0002 47.2 21.12 68.32

Table 2 Computation times in seconds for scene 2. The
scene consists of an unstructured mesh of 2304 faces with
non-flat rest geometry falling onto the floor.

shows the best overall performance in this test. This is
also due to the fact that an unstructured mesh is used for
simulation, which, having triangles with slightly differ-
ent sizes, leads to a higher average elemental time step.
This advantage is even more pronounced for meshes opti-
mised for accurately capturing regions of high curvatures
with small triangles, but which are otherwise coarse in
flat parts (see Fig. 5). The second test scene uses such
a mesh with non-flat rest geometry. During 4 seconds
of simulation, the object falls from 50 cm height onto a
flat floor, where it comes to rest. The parameters are the
same as in scene 1 except for a higher bending stiffness,
which lets the object keep its shape after the impact.
Table 2 shows the computation times for this scene with
separate timings for time stepping and collision handling.
Backward Euler is again the fastest, but our method per-
forms significantly better than the other explicit schemes
and the implicit midpoint rule.

The two remaining scenes show that our method can
be used for creating standard cloth simulations in combi-
nation with character animations (see Fig. 1) as well as
challenging self-collision scenarios (see Fig. 5). The ac-
companying video also shows a comparison between the
results obtained with our method and using backward
Euler.

Fig. 7 Simulation of an unstructured mesh containing ele-
ments of different sizes. The ratio between the area of the
largest and the smallest element is 160:1. The mesh consists
of 2304 faces.

6 Conclusion

We presented an asynchronous simulation method for
thin flexible objects, which enables efficient simulation
of low damped cloth. Thanks to the energy conserva-
tion properties of the underlying symplectic time inte-
gration scheme, lively cloth motion is obtained, exhibit-



8 Bernhard Thomaszewski et al.

ing important details like small folds and wrinkles. The
computational costs of our method are similar to back-
ward Euler with a time step of dt = 0.001. Yet it re-
veals more surface details and leads to results which are
less damped. Our method is particularly attractive when
combined with unstructured meshes having elements of
different sizes. For future work we would like to extend
our simulator to account for spatially adaptive meshes
since in this way computation times could be further re-
duced.

Acknowledgments

The first author would like to thank the DAAD for grant
D/07/45108. The second author was supported by DFG
grant STR465/21-1.

References

[Bat96] K.-J. Bathe. Finite element procedures. Prentice
Hall, New Jersey, 1996.

[BFA02] R. Bridson, R. Fedkiw, and J. Anderson. Robust
treatment of collisions, contact and friction for
cloth animation. In Proceedings of ACM SIG-
GRAPH ’02, pages 594–603, 2002.

[BMF03] R. Bridson, S. Marino, and R. Fedkiw. Simu-
lation of clothing with folds and wrinkles. In
Proceedings of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA
2003), pages 28–36, 2003.

[BW97] J. Bonet and R. D. Wood. Nonlinear Continuum
Mechanics for Finite Element Analysis. Cam-
bridge University Press, Cambridge, 1997.

[BW98] D. Baraff and A. Witkin. Large steps in cloth
simulation. In Proceedings of ACM SIGGRAPH
’98, pages 43–54, 1998.

[BWH+06] M. Bergou, M. Wardetzky, D. Harmon, D. Zorin,
and E. Grinspun. A Quadratic Bending Model
for Inextensible Surfaces. In Fourth Eurograph-
ics Symposium on Geometry Processing (SGP),
pages 227–230, Jun 2006.

[Cel98] W. Celes. Efficient asynchronous evolution of
physical simulations. In Proceedings of SIB-
GRAPI’98, pages 224–231, 1998.

[CK02] K. J. Choi and H. S. Ko. Stable but responsive
cloth. In Proceedings of ACM SIGGRAPH ’02,
pages 604–611, 2002.

[DGC04] J. Dequidt, L. Grisoni, and C. Chaillou. Asyn-
chronous interactive physical simulation. Tech-
nical Report RR-5338, INRIA, October 2004.

[EWS96] B. Eberhardt, A. Weber, and W. Straßer. A fast,
flexible, particle-system model for cloth drap-
ing. IEEE Computer Graphics and Applications,
16(5):52–59, 1996.

[FO01] F. Flores and E. Onate. A basic thin shell tri-
angle with only translational dofs for large strain
plasticity. International Journal for Numerical
Methods in Engineering, 51:57–83, 2001.

[GHDS03] E. Grinspun, A. Hirani, M. Desbrun, and
P. Schröder. Discrete shells. In Proceedings of
ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA 2003), pages 62–67,
2003.

[GHF+07] R. Goldenthal, D. Harmon, R. Fattal,
M. Bercovier, and E. Grinspun. Efficient
simulation of inextensible cloth. In Proceedings
of ACM SIGGRAPH ’07, pages 281–290, 2007.

[HE01] M. Hauth and O. Etzmuss. A high performance
solver for the animation of deformable objects
using advanced numerical methods. In EG 2001
Proceedings, pages 319–328. Blackwell Publish-
ing, 2001.

[HLW06] E. Hairer, C. Lubich, and G. Wanner. Geometric
numerical integration. Springer-Verlag, Berlin,
5th edition, 2006.

[KMOW00] C. Kane, J. Marsden, M. Ortiz, and M. West.
Variational integrators and the newmark algo-
rithm for conservative and dissipative mechani-
cal systems. International Journal for Numerical
Methods in Engineering, 49:1295–1325, 2000.

[KYT+06] L. Kharevych, W. Yang, Y. Tong, E. Kanso,
J. E. Marsden, P. Schröder, and M. Des-
brun. Geometric, variational integrators for com-
puter animation. In Proceedings of ACM SIG-
GRAPH/Eurographics Symposium on Computer
Animation (SCA 2006), pages 43–51, 2006.

[LMOW04] A. Lew, J. E. Marsden, M. Ortiz, and M. West.
Variational time integrators. International
Journal for Numerical Methods in Engineering,
60:153–212, 2004.

[MKE03] J. Mezger, S. Kimmerle, and O. Etzmuß. Hi-
erarchical Techniques in Collision Detection for
Cloth Animation. Journal of WSCG, 11(2):322–
329, 2003.

[OAW04] S. Oh, J. Ahn, and K. Wohn. A new implicit
integration method for low damped cloth sim-
ulation. In Proceedings of GMCG 2004, pages
115–121, 2004.

[Pro95] X. Provot. Deformation constraints in a mass-
spring model to describe rigid cloth behavior. In
Graphics Interface ’95, pages 147–154, 1995.

[THM+05] M. Teschner, B. Heidelberger, D. Manocha,
N. Govindaraju, G. Zachmann, S. Kimmerle,
J. Mezger, and A. Fuhrmann. Collision Handling
in Dynamic Simulation Environments. In Euro-
graphics Tutorials, pages 79–185, 2005.

[TPBF87] D. Terzopoulos, J. Platt, A. Barr, and K. Fleis-
cher. Elastically deformable models. In Proceed-
ings of ACM SIGGRAPH ’87, pages 205–214,
1987.

[VCMT95] P. Volino, M. Courchesne, and N. Magnenat-
Thalmann. Versatile and efficient techniques for
simulating cloth and other deformable objects.
In Proceedings of ACM SIGGRAPH ’95, pages
137–144, 1995.

[VMT05] P. Volino and N. Magnenat-Thalmann. Implicit
midpoint integration and adaptive damping for
efficient cloth simulation: Collision detection and
deformable objects. Computer Animation in Vir-
tual Worlds, 16(3-4):163–175, 2005.


