
Parallel Techniques for Physically-Based Simulation on Multi-Core Processor
Architectures

Bernhard Thomaszewski a,∗ Simon Pabst a Wolfgang Blochinger b

aWSI/GRIS, Universität Tübingen, Germany
bSymbolic Computation Group, Universität Tübingen, Germany

Abstract

As multi-core processor systems become more and more widespread, the demand for efficient parallel algorithms also propagates
into the field of computer graphics. This is especially true for physically-based simulation, which is notorious for expensive
numerical methods. In this work, we explore possibilities for accelerating physically-based simulation algorithms on multi-core
architectures. Two components of physically-based simulation represent a great potential for bottlenecks in parallelisation: implicit
time integration and collision handling. From the parallelisation point of view these two components are substantially different.
Implicit time integration can be treated efficiently using static problem decomposition. The linear system arising in this context
is solved using a data-parallel preconditioned conjugate gradient algorithm. The collision handling stage, however, requires a
different approach, due to its dynamic structure. This stage is handled using multi-threaded programming with fully dynamic task
decomposition. In particular, we propose a new task splitting approach based on a reasonable estimation of work, which analyses
previous simulation steps. Altogether, the combination of different parallelisation techniques leads to a concise and yet versatile
framework for highly efficient physical simulation.

Key words:

Physically-Based Simulation, Parallel Collision Detection, Parallel Conjugate Gradients, Multi-Core Processors

1. Introduction

Physically-based simulation is an important component
of many applications in current research areas of computer
graphics. The most prominent examples are fluid, soft body,
and cloth simulation. All of these applications utilise com-
putationally intensive methods and runtimes for realistic
scenarios are often excessive. Obviously, increasing the re-
alism of the simulation by using more accurate methods,
like finite elements, further aggravates the problem. In this
paper we investigate on parallel techniques for improving
the performance of physically-based simulation codes on
multi-core architectures.

Generally, most of the computation time is spent on
two stages, time integration and collision handling. In
the following, we will therefore consider these two major

∗ Corresponding author.
Email address: b.thomaszewski@gris.uni-tuebingen.de

(Bernhard Thomaszewski).
URL: www.gris.uni-tuebingen.de/∼thomasze (Bernhard

Thomaszewski).

bottlenecks, which are present in almost every physically-
based simulation. Although we focus on cloth simulation
in this work, the techniques proposed herein transfer to
many other applications, like e.g. thin-shell and three-
dimensional soft body simulation.

1.1. Implicit time integration

Often, the physical model at the centre of a specific sim-
ulator gives rise to stiff differential equations with respect
to time. For stability reasons implicit schemes are widely
accepted as the method of choice for numerical time inte-
gration (cf. [1]). Implicit schemes require the solution of a
(non-)linear system of equations at each time step. As a
result of the spatial discretisation, the matrix of this sys-
tem is usually very sparse. There are essentially two alter-
natives for the numerical solution of the system. One is to
use an iterative method such as the popular conjugate gra-
dients (cg) algorithm [2]. Another is to use direct sparse
solvers, which are usually based on fill-reducing reordering
and factorisation. The cg-method is favoured in computer

Preprint submitted to Computers and Graphics 11 April 2008

graphics as it offers much simpler user interaction, allevi-
ates the integration of arbitrary boundary conditions and
allows balancing accuracy against speed. We will therefore
focus on the cg-method in this work.

1.2. Collision Handling

Most practical applications for deformable objects in-
clude collision and contact situations. Maintaining an
intersection-free state at every instant is of utmost im-
portance in this context and involves the detection of
proximities (collision detection) and the reaction necessary
to prevent interpenetrations (collision response). In the
remainder, we refer to these two components collectively
as collision handling. We usually distinguish between ex-
ternal collisions (with other objects in the scene) and self-
collisions. Both of these types require specifically tailored
algorithms for an efficient treatment. Even with common
acceleration structures (see Sec. 3.4) these algorithms are
still computationally expensive. For complex scenarios
with complicated self-collisions, the collision handling can
easily make up more than half of the overall computation
time. It is therefore a second bottleneck for the physical
simulation and hence deserves special attention.

1.3. Overview and Contributions

In our previous work towards distributed-memory archi-
tecture we developed basic parallelization strategies for the
two components of physical simulation. For the time inte-
gration stage, which exhibits a very fine granularity, we pro-
posed a static data-parallel approach. For the highly irreg-
ular collision handling stage we proposed a dynamic task-
parallel approach. In [3] the reader will find more details on
these design decisions. The purpose of this work is to de-
sign efficient implementations of these state-of-the-art par-
allel techniques for physical simulation on shared-memory
based multi-processor systems. We focus on the computa-
tionally most expensive components, which are numerical
time integration and collision handling.

Implicit time integration leads to the solution of linear
systems, for which we propose a parallel preconditioned
conjugate gradient algorithm. We developed an efficient
implementation of this method and provide a detailed ex-
planation of preconditioner application and matrix-vector-
multiplication [4]. In contrast to this, our parallel numer-
ics code for distributed memory architectures employs the
message passing based programming model provided by
the PETSc toolkit [5]. Although this code could theoreti-
cally be ported to shared memory platforms, our aim here
is to explicitly take advantage of the multi-core architec-
ture, which enables a considerably different programming
approach. As an example, inter-task communication can
be implemented far more efficiently in the shared memory
setting by simply sharing data structures among threads.
Furthermore, our shared memory numerics code is entirely

based on OpenMP directives. Therefore, it is much easier to
integrate into existing sequential simulator code. It would
require time-intensive redesign when adapting the code to
the single program multiple data-paradigm of distributed
memory architectures.

The performance of our numerical algorithms can be fur-
ther increased using single precision arithmetic. We discuss
this aspect in detail and explain how to implement the re-
quired modifications. Additionally, we investigate the per-
formance of the parallel numerics code when applied to
large input data.

For parallel collision handling we discuss and evaluate
a novel task decomposition scheme based on temporal co-
herence data. In particular, we take advantage of the tight
coupling of multi-core processors to derive work estimates
for tasks with very low overhead. Moreover, we show how
the resulting highly dynamic task-parallel execution pro-
cess can be efficiently mapped to shared memory archi-
tectures by using lock-free synchronisation mechanisms for
task management. We describe the implementation of this
technique based on specific atomic processor instructions
and experimentally assess the resulting performance gain.

Finally, we present extensive experimental studies for
all of the presented methods on three recent multi-core
systems, showing that our approach scales well on different
platforms.

2. Related Work

Parallel Numerics. The parallel solution of large sparse
linear systems is a well explored but still active field in high
performance computing. Most of the work from this field
focuses on problem sizes that are considerably larger than
the ones dealt with in computer graphics. Therefore, stan-
dard techniques do not necessarily translate directly to our
application area. In general, good overviews on parallel nu-
merical algebra can be found in the textbook by Saad [6]
and the report compiled by Demmel et al. [7]. Parallel im-
plementation of sparse numerical kernels like the ones used
in this work, has already been investigated by O’Hallaron
[8]. Oliker et al. [9] explored node ordering strategies and
programming paradigms for sparse matrix computations.
However, they did not consider parallel preconditioning.

Parallel Cloth Simulation. Previous research on parallel
cloth simulation addressed shared address-space [10–12] as
well as message passing-based architectures [13–16]. Since
the present article specifically deals with multi-core CPUs,
we will restrict our discussion of related work to approaches
designed for shared address-space machines. For a discus-
sion of the different approaches for distributed memory ar-
chitectures we refer the reader to [3].

Lario et al. [11] described the parallelisation of a cloth
simulator that employs multilevel techniques. The authors
focused on the time integration stage and did not address
parallel collision detection. Particularly, they provided a

2

comparison between message passing-based and thread-
based parallelisation of multilevel methods on different
shared address-space architectures.

Mujahid et al. [17] addressed the parallelisation of a cloth
simulation method, which is based on adaptive mesh refine-
ment/coarsening. The resolution of the mesh is dynamically
adapted so that, on the one hand, it represents the cloth
with minimum computational costs and, on the other hand,
the realism of the simulation is preserved. Load balancing
is achieved by maintaining lists of active mesh nodes, which
are equally distributed among the processors employing the
dynamic work-sharing constructs of OpenMP. In contrast
to our work their contribution does not deal with parallel
collision handling.

The work of Gutierréz et al. [12] paid special attention to
histogram reduction computations, which can be found at
the core of numerical simulation codes like cloth simulation.
The authors presented a framework for partitioning-based
methods on NUMA machines, which exploits data affinity.
In the context of this framework, several methods for par-
allel reduction are applied to the force computation loop
of a cloth simulator and compared with each other. While
their work concentrated on optimising a specific aspect,
our approach encompasses all of the computation-intensive
components of physically-based simulation.

Romero et al. [10] presented a parallel cloth simulator de-
signed for non-uniform memory access (NUMA) architec-
tures. Their work addressed the parallelisation of time in-
tegration and collision handling. While the approach taken
for time integration is similar to our work, the way collision
handling is carried out differs significantly. In their work,
parallel collision handling is implemented by a data-parallel
strategy which partitions lists of potentially colliding prim-
itives. These lists are maintained by heuristics. Bounding
volume hierarchy tests (see Sec. 3.4) are only carried out to
initialise the lists and in cases where the size of the lists ex-
ceeds a given threshold. In contrast, a primary design goal
of our approach is to achieve good performance and par-
allel efficiency for a wide spectrum of scenes, in particular
for scenes with rapidly changing and challenging collision
situations. As a consequence, we perform a complete se-
ries of bounding volume hierarchy tests in every collision
handling phase and iterate until all collisions have been
resolved. However, this strategy requires parallelising the
bounding volume hierarchy testing procedure. Due to the
hierarchical and irregular nature of these tests, we apply a
task-parallel method which is based on fully dynamic prob-
lem decomposition.

3. Physically-based Cloth Simulation

The methods described in this article apply to any spe-
cific approach provided it uses implicit time integration and
collision handling based on bounding volume hierarchies.
Details on the modules of the cloth simulation system used
in this work are presented below.

3.1. Simulation Outline

In order to provide context, we will start with a brief
overview of the simulation loop. Fig. 1 shows a schematic
view of the simulation loop as used in our specific im-
plementation. The simulation starts with an initialisation
stage in which meshes for deformable and non-deformable
objects are loaded and bounding volume hierarchies are
constructed. Each iteration of the loop begins with the as-
sembly of the linear system of equations arising from the
implicit time integration scheme. Technically, this amounts
to assembling the matrix and the right hand side of the
system. The basis for parallel matrix assembly is the do-
main partitioning described in Sec. 4.1. The actual parallel
implementation simply corresponds to the sequential algo-
rithm applied to each partition in parallel. The entries of
the matrix are computed according to the underlying phys-
ical model. The next step is the solution of the system with
the method of conjugate gradients, which will supply us
with candidate nodal velocities. The preconditioner is first
updated with the current matrix data before the iteration
starts. The parallel version of this operation follows again
directly from the problem decomposition. Each iteration
of the cg-method involves the application of the precondi-
tioner (pc apply) as well as sparse matrix vector multipli-
cation (spmv). Note that for the sake of brevity, we omit
further operations, such as dot products, which need to be
carried out in each iteration step. After convergence, we are
provided with updated nodal velocities and compute new
positions.

The updated positions are then passed on as candidate
positions to the collision handling stage, where they are
used to update the bounding volumes. Subsequently, the
collision detection scheme is invoked and intersection-
preventing responses are generated as required. Collision
handling is usually invoked after numerical time integra-
tion, but it can also be directly integrated into the solution
of the linear system (see [1]). This stage yields the final,
collision-free nodal positions and velocities, which are used
as the initial values for the next step of the simulation
loop. Lastly, the final positions are also used to create out-
put geometry for visualisation. The following subsections
describe the key steps in greater detail.

3.2. Physical Model and Kinematics

Creating an animation amounts to computing snapshots
of the geometry in the scene at discrete instants in time. We
let x(t+h) stand for the discrete sampling of the nodal tra-
jectories x(t), where h is the time step and bold face letters
denote discrete vectorial quantities. Point-wise kinematics
can be cast as a sequence of coupled initial value problems

3

Fig. 1. Schematic view of the simulation loop according to our implementation. A grey background denotes the components that have been
paralellised. The computationally most expensive parts are printed in bold face.

x(t+h) = x(t) +
∫ t+h

t

v(t) dt (1)

v(t+h) = v(t) +
∫ t+h

t

a(t) dt,

where v and v(t) denote discrete and continuous nodal ve-
locities, respectively. The nodal accelerations a(t) are read-
ily related to forces f(t), using Newton’s second law. The
actual way in which these integral equations are trans-
formed to discrete algebraic equations depends on the nu-
merical time integration scheme. In any case, a method to
compute the internal nodal forces f(t) at a given time t is
required and we refer to it as the physical model.

The basis for the physical model used in our implementa-
tion is a continuum mechanics formulation of linear elastic-
ity theory [18]. The central quantities in this case are strain,
which is a dimensionless deformation measure, and stress,
which is a resulting force per area. These two variables are
related to each other through a material law, which in our
case is simply linear. The resulting partial differential equa-
tion is discretised using a linear finite element approach as
described in [19]. For dynamic simulation, inertia effects
have to be included, as well as viscosity and possibly exter-
nal forces.

3.3. Numerical Time Integration

The stiffness of the differential equations (1) suggests
using implicit numerical time integration. We adopt the
first order accurate implicit Euler scheme, which seeks to
find v(t+h) and x(t+h) such that

v(t+h) = v(t) + h M−1(f(t,x(t+h),v(t+h)) + fext) (2)

x(t+h) = x(t) + h v(t + h) .

Here, M denotes the diagonal mass matrix and fext ac-
counts for external forces like gravity. Note that the inter-
nal forces f are evaluated at the end of the time step, giv-
ing rise to a system of implicit equations. Generally, f is a
nonlinear function in terms of x and v and the system has
to be solved using Newton’s method. Anyhow, this breaks

down to repeatedly solving linear systems. In our particular
case, Eq. (2) can be cast into a formulation which is linear
with respect to positions and velocities (see [19]). Hence,
we need only solve one linear system per time step. The ac-
tual parallel solution of this system using the cg-method is
described in Sec. 4.

3.4. Collision Handling

Collision Detection. As a first step, possible interferences
have to be detected for the deformable objects in the scene.
Since all objects are represented as polygonal meshes, this
could be accomplished by testing every pair of primitives,
i.e. polygons, geometrically for intersection. Because the av-
erage runtime of this naive approach is unacceptably high,
bounding volume hierarchies are usually used for acceler-
ation [20]. In this way, non-intersecting parts are quickly
ruled out for a given object pair. Such hierarchies consist
of two components: a tree representing the topological sub-
division of the object into increasingly finer regions and
bounding volumes enclosing the geometry associated with
every node in the tree. In our implementation we use dis-
crete oriented polytopes (k-DOPs) as bounding volumes
(see [21,22]).
Testing two objects for interference using bounding volume
hierarchies is a recursive process. First, the bounding vol-
umes associated with the roots of the two hierarchies are
tested for intersection. Only if they overlap, are the respec-
tive children tested recursively against each other. Finally,
the leaves of the tree need to be checked for intersection us-
ing exact geometric tests. If a test signals close proximity
or intersection, an appropriate collision response has to be
generated.

Collision Response. Generally speaking, the task of the
collision response stage is to prevent intersections. There
are various methods for achieving this, ranging from mo-
tion constraints over repulsion forces to stopping impulses.
Constraints are simple to enforce and do a good job when it
comes to preventing intersections with external objects in

4

rather simple scenes. However, releasing constraints is usu-
ally cumbersome and often leads to nodes being arbitrarily
fixed at some point in space. This is particularly disturbing
for self-collisions and literally breaks the simulation.

In our implementation we therefore use a combination of
repelling forces and stopping impulses (see [23]). If the dis-
tance between two approaching objects falls below a certain
threshold, we apply a repulsion force. If the objects can-
not be stopped in this way during the next few time steps,
we apply stopping impulses, which reliably prevent immi-
nent intersections. While this is a straightforward concept
in the sequential case, there are some important implica-
tions for parallel implementations. We will discuss these is-
sues in Sec. 5. Collision response to complex self-collisions
often leads to secondary collisions, which also need to be
handled to enable high quality simulations. If, after the
first iteration of the collision handling phase, there are still
remaining or newly introduced collisions, we handle those
and do another collision detection step, until all collisions
are resolved.

The output of the collision handling stage are new nodal
velocities, which are then finally used to advance the system
to the next time step, i.e., to compute new, collision-free
nodal positions. This update is efficiently carried out in
parallel using simple loop-level parallelism.

4. Parallel Solution of Sparse Linear Systems

In the following we assume a sparse linear system of the
form Ax = b, which is to be solved numerically using
the cg-method. The iteration stops when the norm of the
residual has been decreased by a given factor (e.g., between
10−6 and 10−8 in our case) compared to the initial norm.
The number of necessary iterations and therefore the speed
of convergence depends on the condition number of the
matrix A. Usually, this condition number is improved using
a preconditioning matrix P leading to a modified system

P−1Ax = P−1b,

where P−1A is supposed to have a better condition num-
ber and P−1 is fairly easy to compute. The choice of an
appropriate preconditioner is crucial because it can reduce
the iteration count substantially.

The setup and solution of the linear system now breaks
down to a sequence of operations in which (due to their com-
putational complexity) the sparse matrix vector (spmv)
multiplication and the application of the preconditioner
are most important. Before we discuss these operations in
more detail, we will first describe the underlying problem
decomposition, which forms the basis for the actual paral-
lelisation.

4.1. Problem Decomposition

As a basis for the following discussion, we assume the
compressed row storage format for sparse matrices in which

nonzero entries are stored in an array along with a row
pointer and a column index array (see [6]). The most intu-
itive way to decompose the spmv-operation into a number
of smaller sub-problems is to simply partition the matrix
into sets of contiguous rows. The multiplication can then
be carried out in parallel among the sets. This simple ap-
proach applies to the general sparse matrices. However, the
matrices we deal with are always symmetric, which is due
to the underlying partial differential equation. Hence, only
the upper triangular part, including the diagonal, has to be
stored. This leads to smaller memory requirements for the
data as well as the index structure. The numerical kernel
for symmetric matrices, which is described in Algorithm 1,
is more efficient than the non-symmetric version (cf. [24]):

Algorithm 1 Symmetric Spmv-Multiplication
1: for i = 1 to nrows do
2: start = ptr[i], end = ptr[i + 1];
3: for j = start to end do
4: y[i]+= A[j] ∗ x[ind[j]];
5: if i 6= ind[j] then
6: y[ind[j]]+= A[j] ∗ x[i];
7: end if
8: end for
9: end for

Here, ptr denotes the row pointer, ind refers to the
pointer to the index structure, and A denotes the ma-
trix data. Furthermore, x and y refer to the source and
destination vector, respectively. The algorithm performs
dot products between matrix columns and the source vec-
tor (line 4). During the same sweep through the matrix
data, it also computes vector scalar products (or so called
axpy-operations) between rows of the matrix and entries
of the source vector (line 6). Hence, the algorithm visits
every matrix entry only once, which gives rise to a com-
putationally efficient implementation. However, a parallel
implementation of the symmetric spmv-algorithm is more
complicated: the access pattern to the solution vector is
not as local as for the non-symmetric case since the entry
which is written in line 6 can virtually be at any location
in y. The required synchronisation would make a direct
parallel implementation of the symmetric spmv-kernel in-
efficient. Clearly, the simple row-based partitioning of the
matrix A is not an adequate basis here.

Methods based on domain decomposition are better
suited in this case. They divide the input data geomet-
rically into disjoint regions. Here, we will only consider
non-overlapping vertex decompositions, which result in a
partitioning P of the domain Ω into subdomains Ωi such
that Ω = ∪iΩi and Ωi ∩ Ωj = ∅, for i 6= j. Decompositions
can be obtained using graph partitioning methods [25]. An
example of this can be seen in Fig. 2, which also shows a
special vertex classification. This will be explained in the
next section.

5

Fig. 2. Decomposition of a mesh into four disjoint partitions indicated
by different colours. The vertex ordering and the resulting matrix

structure for one of the partitions are shown to the right. The matrix
Aloc describes the internal coupling of the nodes belonging to the

partition (depicted as a square block). The dashed lines indicate the

matrix entries corresponding to boundary vertices of the partition.
The rectangular matrix Aext describes the coupling between internal

and external interface nodes.

4.2. Parallel Sparse Matrix Vector Multiplication

Let ni,loc be the number of local vertices belonging to par-
tition i and let Vi be the set of corresponding indices. These
vertices can be decomposed into nint internal vertices and
nbnd interface or boundary vertices, which are adjacent to
next vertices from other partitions (see Fig. 2). If we reorder
the vertices globally such that vertices in one partition are
enumerated sequentially, we obtain again a partitioning of
the matrix into a set of contiguous rows. The rows ai,0 to
ai,n of matrix A where i ∈ Vi have the following special
structure: the set of entries defined by {alm|l ∈ Vi,m ∈ Vi}
forms a symmetric submatrix Ai,loc lying on the diagonal
of A. The nonzero entries in this block describe the inter-
action between the local nodes of partition i. More specif-
ically, this means that when nodes l and m are connected
by an edge in the mesh, there is a nonzero entry alm in the
corresponding submatrix of A. Apart from this symmetric
block on the diagonal there are further nonzero entries ale

where l ∈ Vi is an interface node and e /∈ Vi. These entries
describe the coupling between the local interface nodes and
neighbouring external nodes.

The matrix vector multiplication can be carried out ef-
ficiently in parallel if we adopt the following local vertex
numbering scheme (cf. [6]). The local vertices are reordered
such that all internal nodes precede the interface nodes.
For further performance enhancement, a numbering scheme
that exploits locality (such as a self avoiding walk [9]) can
be used to sort the local vertices. Then, external interface
nodes from neighbouring partitions are locally renumbered
as well. Let Aext be the matrix which describes the cou-
pling between internal and external interface nodes for a
given partition. Notice that Aext is a sparse rectangular
matrix with nbnd rows. With this setup the multiplication
proceeds as follows:

(i) y(0, nloc) = Aloc · x(0, nloc)

(ii) y(nint, nloc) = y(nint, nloc) + Aext · xext(0, next)

The first operation is a symmetric spmv-multiplication,
the second one is a non-symmetric spmv-multiplication fol-
lowed by an addition. Both these operations can be carried
out in parallel among all partitions. This decomposition is
not only used for the spmv-kernel but also as a basis for
the parallel matrix assembly as well as for the parallel pre-
conditioner, which will be presented next.

4.3. Parallel Preconditioning

In order to make the cg-method fast, it is indispensable
to use an efficient preconditioner. There are a broad vari-
ety of different preconditioners ranging from simple diago-
nal scaling (Jacobi preconditioning) to sophisticated mul-
tilevel variants. For an actual choice one has to weigh the
time saved from the reduced iteration count against the
cost for setup and repeated application of the precondi-
tioner. Additionally, one has to take into account how well
a specific preconditioner can be parallelised. Unfortunately,
designing efficient preconditioners is usually the most dif-
ficult part in the parallel cg-method [7]. As an example,
the Jacobi preconditioner is very simple to set up and ap-
ply, even in parallel, but the reduction of necessary itera-
tions is rather limited. Preconditioners based on (usually
incomplete) factorisation of the matrix itself or an approx-
imation of it are more promising. One example from this
class is the Symmetric Successive Overrelaxation (SSOR)
preconditioner. It is fairly cheap to set up and leads to the
solution of two triangular systems. For the sequential case,
this preconditioner has proven to be a good choice in terms
of efficiency [26]. However, parallelising the solution of the
triangular systems is very difficult. Even if it is not possible
to decouple the solution of the original triangular systems
into independent problems we can devise an approximation
with the desired properties. Let Ā be the block diagonal
matrix with block entries Aii = Ai,loc (see Fig. 2). Visu-
ally, the external matrices Aext are dropped from A to give
Ā. Setting up the SSOR-preconditioner on this modified
matrix leads again to the solution of two triangular sys-
tems. However, solving these systems breaks down to the
solution of decoupled triangular systems corresponding to
the Ai,loc blocks on the diagonal. This means that they can
be carried out in parallel for every partition.

Approximating A with Ā means a loss of information,
which in turn leads to an increased iteration count. The ac-
tual overhead resulting from this approximation depends
on the number of partitions used for the problem decompo-
sition. Hence, the increased parallelism has to be weighed
against this additional overhead when deciding on an ac-
tual number of partitions. For our experiments we gener-
ally set the number of partitions equal to the number of
cores available (see subsequent discussion). For this spe-
cific choice the incurred overhead remains small compared
to the speedup obtained through parallelisation.

6

Fig. 3. A comparison of performance obtained for single and double precision arithmetic. The diagram shows sequential runtimes (left),
parallel runtimes (middle), and corresponding speedups (right) obtained for preconditioner application (pc apply) and sparse matrix vector

multiplication (spmv) on the three test platforms.

4.4. Parallel Efficiency Considerations

There are further important aspects that have to be
taken into consideration in order to set up an efficient par-
allel implementation of the cg-method. Dense matrix mul-
tiplications usually scale very well since they have regular
access patterns to memory and a high computational in-
tensity per data reference. For the spmv-kernel, however,
the picture is quite different. Considering the structure of
this kernel (see Algorithm 1), it can be seen that the actual
matrix data, as well as the index structure, are traversed
linearly while accesses to the data of the source vector and
the data of the destination vector occur in a non-contiguous
fashion, i.e., the locality of these data accesses cannot be as-
sumed. The performance of the spmv-algorithm is therefore
mostly limited by memory latency and bandwidth, as well
as cache performance. As a result, only a fraction of the the-
oretical peak performance for floating point operations can
be attained for the cg-method on a given machine. Accord-
ing to Vuduk et al. [27] this fraction is often less than 10%.
This dependence is even more pronounced for multi-core
processors, where typically two or more cores share a single
memory interface. It is therefore important to improve data
locality and thus cache performance. One way to achieve
better locality is to exploit the natural block layout of the
matrix as determined by the underlying partial differential
equation: the coupling between two vertices is described by
a 3×3 block – therefore nonzero entries in the matrix always
occur in blocks. Using a block data layout already leads
to a significant improvement. Additional benefits can be
achieved using single precision floating point data instead
of double precision. This reduces the necessary matrix data
(not including index structure) transferred from memory
by a factor of two. In order to determine the resulting per-
formance benefit experimentally, we use a simple test case
as a synthetic benchmark. The input for this test is a flat
elastic surface with very high resolution (91,200 vertices).
The surface is first isotropically stretched by a factor of
1.05 and then released at the beginning of the simulation.
For simplicity, gravity was turned off for this test. Since the
surface remains perfectly flat, collisions do not occur and
collision handling was therefore deactivated. We used four
partitions for the problem decomposition and four threads
for parallel computations. In order to reduce the overall
computation time we simulated only 1/30 seconds in this

test. Nevertheless, this period is long enough to capture
the numerical performance since it includes roughly 1300
preconditioner applications and spmv-operations.

The results of this experiment are summarised in Dia-
gram 3 (see Appendix A for a detailed description of the
systems used). The measurements for the sequential runs
already reveal some interesting aspects. The application of
the preconditioner is computationally more expensive than
the spmv-operation on all three systems. This is not sur-
prising since both operations are called in every iteration of
the cg-method and one preconditioner application, involv-
ing the solution of two triangular system, is more expensive
than one spmv-operation. The diagram also shows that the
performance difference between single and double precision
is not very pronounced. This rather unexpected behaviour
could be the manifestation of very effective latency hiding
by the CPUs and the compiler. Moreover, neither alter-
native can consistently outperform the other on all three
systems. Considering the parallel timings, however, we can
conclude that the single precision variant performs consis-
tently better on all systems. The corresponding speedup
values are shown on the right in Diagram 3. Depending on
the actual system, a performance gain between 2.0 and 3.7
for the preconditioner application and even 3.4 to 3.7 for
the spmv-operation can be obtained for single precision.
The speedup values for double precision are not as good
on all three systems and, in particular, there is virtually no
speedup for system 3. We conjecture that this is due to the
fact that the four cores of system 3 share a single memory
interface.

In conclusion, the parallel timings obtained for this ex-
periment suggest that single precision arithmetic should
generally be preferred over double precision. In conse-
quence, the remaining investigations as well as the nu-
merical experiments are solely based on single precision
arithmetic.

In the following section we will discuss some implemen-
tation related issues, which have to be considered in order
to implement the single precision variants of the algorithms
in a stable way.

Using Single Precision Floating Point Data In engineer-
ing applications absolute accuracy is often of utmost im-
portance. It is therefore mandatory to use double preci-
sion arithmetic for the numerical algorithms resulting from

7

finite element discretisations. For the case of physically-
based simulation in computer graphics, however, visual
quality is usually more important than absolute numeri-
cal accuracy. For our cloth simulator, we found that, with
only minor modifications, even the largest examples led to
no problems using single precision arithmetic. There are,
however, a few pitfalls to avoid. The critical arithmetic op-
erations where accuracy might potentially be lost are not
divisions or multiplications but additions and subtractions
where so called cancellation occurs. This can be illustrated
with a simple example: Consider the following sequence of
summations

a = b + c, d = a− c,

where b = 10−7 and c = 10. Using a 32-Bit single precision
data type for the variables involved, the numerical result
is d = 0 where it should be d = 10−7. This behaviour
can be explained by considering the definition of this data
type. Assuming the IEEE754 standard, a single precision
floating point value consists of 1 bit sign s, 23 bit mantissa
m and 8 bit exponent p, leading to the representation f =
(−1)s ·m ·2p (see the standard for more precise definitions).
Therefore, if, for a large summand f1 = m1 ·2p1 and a small
summand f2 = m2 · 2p2 , it holds that

2−23 · 2p1 > m2 · 2p2 ⇔ p1 − p2 > 23,

then the small summand will be absorbed in the summa-
tion, i.e. f1 + f2 = f1. Generally, such situations cannot
be avoided in advance since the relative sizes of the sum-
mands are not known. However, in many cases it is either
possible to reorder summations by hand or to resort to dou-
ble precision floating point data for intermediate results.
In our implementation, for example, we reordered arith-
metic operations for the singular value decomposition of a
2×2 matrix necessary for extracting rotations from the dis-
placement field (see [19]). Furthermore, we eliminated ac-
curacy concerns in the computation of the bending forces,
involving trigonometric functions and square root opera-
tions (see [28]), by using double precision for intermedi-
ate results. Another example is the computation of inter-
nal forces which can be done as f = Ku, where K is the
stiffness matrix and u = x− x0 is the vector of nodal dis-
placements defined as the difference between current po-
sitions x and rest positions x0. For technical reasons we
originally separated this expression into the sequence f =
Kx − Kx0. Although convenient when using double pre-
cision, we found that this degrades accuracy when using
single precision floating point arithmetic. We therefore re-
arranged this expression and compute the displacement u
first, before carrying out matrix multiplication.

In summary, switching to single precision arithmetic re-
quires only a few modifications to yield a stable implemen-
tation. In particular, we did not encounter any accuracy
degradations or convergence problems for the solution of
the linear system of equations.

Influence of the Number of Threads and Partitions When
setting up the problem decomposition for solutions of the

linear system of equations, the intuitive choice for the num-
ber of partitions is to use as many as there are cores avail-
able in the parallel system. For distributed memory systems
this one-to-one correspondence is often the only practically
realisable choice. Furthermore, a partition count exceeding
the number of nodes in a cluster would result in an increase
in communication, which is usually prohibitively expensive
in the context of distributed memory computing.

Shared memory parallel systems are not as restrictive
in terms of communication costs such that using a higher
number of partitions can be considered. In fact, memory
latency may actually be hidden using more partitions than
available cores. Additionally, it may be beneficial to adjust
the number of partitions in such a way that the data (or
working set) for a single partition fits into the cache of pro-
cessors. We tested the influence of this parameter experi-
mentally using the synthetic benchmark described above.
The performance differences were, however, rather small
and no improvements could be obtained by using partition
counts higher than four.

Besides the number of partitions, a further parameter
that can be considered in this context is the number of
threads used for parallel computations. Again, it seems an
obvious choice to use as many threads as there are parti-
tions. However, provided that the number of threads re-
mains within reasonable bounds (say two to four times the
number of cores available in the system), we should at least
not expect a negative impact. In order to determine the in-
fluence of the number of threads experimentally, we used
again the synthetic benchmark. This time we varied both
the number of partitions as well as the number of threads.
For the sake of conciseness, we only show the results ob-
tained for the four partition case (see Diagram 4).

Again, the differences are only marginal and no advan-
tages result from using a higher number of threads than
cores available. In summary, we can state that it does not
pay off to increase the number of partitions or threads.

5. Parallel Collision Handling

From the parallelisation point of view, the collision han-
dling stage differs substantially from the problem of implicit
numerical time integration. Collisions can be distributed
very unevenly in the scene and their typically changing lo-
cations cannot be determined statically. This is why the
naive approach of letting each processor handle the colli-
sions of its own partition can lead to considerable processor
idling, which seriously affects the overall parallel efficiency.
Therefore, a dynamic problem decomposition is manda-
tory. Our basic parallelisation strategy is similar compared
to previous work aimed at distributed memory architec-
tures [16]. However, the shared-memory setting enables us
to set up heuristics exploiting temporal and spatial coher-
ence. In this way, we can effectively control thread creation
overhead.

8

Fig. 4. Influence of the number of threads used for parallel computations. Values on the vertical axis refer to speedup while values on the

horizontal axis denote the number of threads.

5.1. Basic Problem Decomposition

The recursive collision test of two bounding volume hier-
archies can be considered a case of depth-first tree traver-
sal. For inducing parallelism, we implemented this pro-
cedure using a stack which holds individual tests of two
bounding volumes. During the traversal, the expansion of a
node yields n additional child nodes. We process one node
immediately while the others are pushed onto the stack.
The traversal proceeds downwards until a leaf is reached.
Upward traversal begins by processing elements from the
stack. In this way, all of the nodes in the tree are visited.
The basic idea for dynamically generating parallelism is to
now remove nodes from the stack in an asynchronous way
and to create tasks from them. One or more tasks can then
be assigned to a thread and executed on an idle core.

Unlike in the distributed memory setting, we do not have
to consider load balancing explicitly. As long as there are
enough threads ready for execution the scheduler of the op-
erating systems will keep all cores busy. However, for prob-
lems with high irregularity, like parallel collision handling,
it is generally impossible to precisely adjust the amount of
logical parallelism to be exploited to the amount of available
parallelism, i.e., idle processors. Thread creation overhead
can contribute considerably to the overall parallel overhead,
especially on shared memory architectures. Therefore, an
over-saturation of threads has to be avoided as well.

In our approach, we minimise thread creation overhead
on two levels. At the algorithmic level, we employ an
heuristics-based approach which prevents threads with too
fine a granularity from being generated. At the implemen-
tation level, we decouple the process of thread creation and
thread execution by using an execution model based on a
task-pool. Specifically, we employ lock-free data structures
for implementing the task pool such that thread execution
overhead is further minimised. The next two paragraphs
explain these optimisations in more detail.

5.2. Controlling Task Granularity

To effectively control the granularity of a task, we need a
good estimate of how much work corresponds to a certain

task. The computational cost for carrying out a test in the
collision tree is determined by the number of nodes in its
subtree. Generally, this number is not known in advance.
Because of the temporal locality inherent in dynamic simu-
lation we can, however, exploit coherence between two suc-
cessive time steps. During each collision detection pass we
keep track of the number of tests in the respective subtree
for every node in the collision tree using back propagation.
This information is then used as a work estimate for tasks
in the subsequent collision handling phase. Thus, the com-
putation of the work estimate is fully integrated into the
collision detection phase and its overhead is well below the
measurement threshold.

Fig. 5. Work estimate error for scene 2. The diagram shows the
deviation from the actual amount of work over time as a percentage.

Even in this very dynamic scene, the temporal coherence is high.

In this way, we can avoid creating tasks with too small an
amount of work. Additionally, we can use this information
to determine which tests should be carried out immediately.
The error involved in the work estimation is usually very
small. This can be seen in Fig. 5, which shows the error
made by our work predictor for 5.5 seconds of simulation
of our second test scene (refer to Appendix B for a detailed
description). Even though this is a highly dynamic scene,
the prediction error quickly drops to less than 5% and after
a short while stabilises below 1%. For the test scenes (1a)
and (1b), the error drops even faster, since these scenes
are far less dynamic. After an initial phase where the cloth
settles on the avatar, the error falls below 1% for the rest
of the simulation, for both external and self-collisions.

To evaluate the benefit arising from this new task split-
ting scheme, we performed comparisons with two alterna-

9

tive approaches. The first one, being the simplest variant,
carries out the test corresponding to the leftmost subnode
immediately and assigns the remaining subnodes to tasks.
The second one is based on randomisation, which is a widely
adopted paradigm for achieving well-balanced load distri-
bution in parallel applications. In this case, we randomly
select the subnode to be treated immediately.

The results of these comparisons are visualised in Fig.
6, which shows that our new scheme is very competitive.
While the randomised variant performs similarly to the
simple approach, our work estimation scheme can improve
on this. We found that it yields an improvement even in
scenes with a high number of collisions like test scene (1a).
In this scene, the high number of collisions is due to the
dense meshes, and it is thus relatively easy to schedule the
tasks efficiently. Even the simple and the random scheme
achieve speedups of about 3.5. Using our work estimate,
we can slightly improve on this and bring the speedup to
a solid 3.6 on all three test systems. The overhead for the
computation of the work estimate is negligible and already
included in the speedup shown in the diagrams. A greater
improvement from the optimised task creation strategy can
be seen in test scene (1b), which has a smaller number of
nodes. Since, in this case, the number of collision events
is considerably lower than in the almost saturated high
polygon count scene, it is more important to avoid creating
tasks with little or no work (see Fig. 6). Neither the simple
nor the random scheme are able to attain a speedup of
greater than 3.0, while the coherence-based scheme easily
achieves 3.1 to 3.4 on the different test systems.

More challenging is test scene (2) with its highly dynamic
movements. Even though there is less temporal and spa-
tial coherence to exploit than in test scenes (1a) and (1b),
our work estimate can still improve on the random scheme
for test systems 1 and 2. The simple and random schemes
only yield a speedup of slightly greater than 3.0, while the
coherence scheme achieves about 3.3. The third test sys-
tem shows a very good speedup of 3.5 with the random
scheme, and a still very good one of 3.4 with the coherence
scheme. All in all, our new work predictor seems to be able
to improve on the simple and random scheme in almost all
test cases, and even in those where it does not improve the
speedup, it still delivers a performance that is little worse
than the simpler approaches. The work estimate predictor
was employed for all measurements of the test scenes dis-
cussed in Sec. 6.

Ground Truth To verify that our work estimate is close to
optimal, we compared the speedup obtained with our pre-
dictor to the one obtainable with a ground truth data set.
We computed this ground truth data using an additional
pass. During this first pass, the precise number of collision
events for the subtree under each inner node in the collision
test tree was written out to disk. In a second pass, we used
this information instead of our prediction. Thus, our algo-
rithm could make the decision of whether or not to create

Fig. 6. Comparison of different strategies used for task generation in

scenes (1a), (1b) and (2). The overhead for the computation of the

work estimate is included.

a task based on the actual number of collisions that would
occur in this time step, instead of a prediction based on the
number of collisions in the last time step. The results are
shown in Fig. 6. They clearly show that the prediction is
almost as good a decision factor as the true number of col-
lision events obtained from the ground truth dataset. This
attests to the fact that temporal coherence in dynamic col-
lision detection is a valuable source for performance im-
provement.

5.3. Implementation

As in our previous work, which addressed distributed
memory architectures, we employed the DOTS system plat-
form [29] for parallelising collision handling.

DOTS especially supports highly irregular task paral-
lel applications by means of the multithreading program-
ming model (not to be confused with the shared-memory
model). The DOTS programming model is an extension of
the Cilk model [30] designed to support shared and dis-
tributed memory architectures.

In [3] the interested reader will find a detailed descrip-
tion of how we have modelled the fully dynamic problem
decomposition process (see Sec. 5.1) with the strict multi-

10

threading parallel programming model provided by DOTS.
In this section we discuss how we have modified the core

of the run-time system of DOTS in order to further op-
timise the execution process on shared-memory architec-
tures. Our main design goal was to minimise thread ex-
ecution overhead while at the same time keeping all spe-
cific functionality of DOTS required to efficiently support
highly irregular applications, e.g., the decoupling of thread
creation and execution or control of non-determinism.

Basically, DOTS employs lightweight mechanisms for
manipulating threads. Forking a thread results in creating
a (passive) thread object, which can later be instantiated
for execution. Thread objects are either executed by a pre-
forked (OS native) worker thread or can be executed as
continuation of a thread that would otherwise be blocked,
e.g., a thread reaching a synchronisation primitive.

The run-time system of DOTS is based on a task pool ex-
ecution model. When a thread is spawned (by the dots fork
primitive), the corresponding thread object is placed into
a task pool, which is basically a queue data structure. On
program startup, a worker thread is created for each core
in the system. Worker threads take thread objects out of
the task pool and process their run method. In our case
the run method executes the bounding volume hierarchy
testing procedure, as discussed in Sec. 5.1. Upon comple-
tion of a thread, the corresponding thread object (includ-
ing the result of the thread) is placed into a second data
structure called the ready queue. Subsequently, the worker
thread gets the next thread object from the task pool and
executes it. The dots join primitive removes thread objects
from the ready queue and delivers the result of the corre-
sponding thread to the calling thread. Note that the run-
time system of DOTS is only active during the task-parallel
collision handling phase. When program execution is out-
side collision handling, the task pool and the ready queue
are empty and the worker threads are suspended.

In a shared-memory setting, the task pool and the ready
queue are both concurrently accessed by several threads.
The original version of DOTS used mutual exclusion lock-
ing primitives for ensuring the consistency of the shared
data structures. In our new approach the task pool and
the ready queue are implemented using lock-free techniques
[31].

Lock-free synchronisation is based on an atomic update
operation, which must be supported by the processor. This
operation, commonly referred to as CAS (compare and
swap), atomically updates a memory location provided its
initial content has some expected value. If the value is dif-
ferent, the update fails. For example, on the x64 architec-
ture family the lock cmpxchg16b instruction provides ap-
propriate CAS functionality.

Basically, lock-free techniques employ the CAS operation
to realise an optimistic approach for ensuring consistency
of concurrent data structures. A thread loads a value from
a shared memory location and stores it in a local variable.
The thread now performs a calculation on the local copy
resulting in a new value. Finally, the thread tries to update

the original memory location with the CAS instruction,
supplying the original and the updated value for compari-
son. If the content of the shared memory location has not
been changed, the update succeeds and the algorithm can
proceed. It fails, however, if another thread has updated the
shared-memory location during the calculation of the new
value. In this case, the memory location is re-read and the
update is tried again with a newly calculated value, until
the CAS operation succeeds.

In the case of lock-free queues, the shared-memory loca-
tion is typically a pointer variable, which is part of a linked
list. This pointer is updated in order to insert or remove
a list element. In this context, a subtle problem can occur
when applying the described techniques. When a memory
location is reused after the corresponding element has been
removed from the list the same pointer again becomes part
of the list but now represents a different element. How-
ever, this change cannot be detected by the CAS operation
since the two elements are represented by the same pointer.
Thus, when such a situation occurs during another update,
the previous update will be lost. This issue is commonly re-
ferred to as the ABA problem. To avoid the ABA problem,
reference counters can be associated with pointer variables,
which are both compared by the CAS operation. In [32]
further details on the implementation of a lock-free queue
data structure are discussed.

Compared to the mutual exclusion approach, lock-free
programming reduces overheads since no system calls are
needed for acquiring and releasing locks. Lock-free data
structures also scale well to a larger number of proces-
sors/cores since they considerably reduce contention.

We conducted performance measurements to compare
our new lock-free approach with the original implementa-
tion based on mutual exclusion locks. To assess the effi-
ciency of the implementations we determined the execution
overhead of DOTS threads, which is the execution time of
a DOTS thread performing no computation.

Our first test series focuses on latency aspects of thread
execution, which is a measure of the isolated thread ex-
ecution overhead. In the corresponding test program one
core forks a thread and immediately joins it. The thread
is executed by another idle core. For computing the mean
thread execution overhead this fork-join sequence is re-
peated 1,000,000 times. The second test series investigates
throughput aspects of thread execution, which indicates
the granularity of thread execution. Here, one core forks
1,000,000 threads at once, which are concurrently executed
by the remaining cores. Fig. 7 shows the resulting mean
thread execution overhead for the discussed tests executed
on our test systems 2 and 3 (see Appendix A for a detailed
description). On system 1 the lock cmpxchg16b instruction
is not available. However, it has been added on subsequent
processor generations of the AMD64 architecture, see [33].
Thus, the described lock-free techniques cannot be realised
on system 1. For all measurements presented later in this
paper the original version of DOTS (based on mutual ex-
clusion locks) has been used for system 1 .

11

Fig. 7. Thread execution overhead for latency and throughput oriented test scenarios.

For all settings the execution overhead of DOTS threads
is significantly lower when our new lock-free implementa-
tion is used. Moreover, with lock-free techniques the over-
head increases only slightly for a larger number of cores,
revealing a considerably improved scalability.

In our latency oriented test scenario, threads are more
frequently blocked and unblocked than in the throughput
oriented tests. Thus, OS overhead for thread management
represents a substantial fraction of the execution overhead
of DOTS threads for the version based on mutual exclu-
sion locks. Moreover, the throughput oriented test scenario
enables parallel execution of DOTS threads, which further
reduces the measured execution overhead. This holds also
for the lock-free version. These two observations explain the
higher execution overhead of the latency tests compared to
the throughput oriented tests.

When the results for 4 cores are compared on the two
systems one can see that system 2 performs better than
system 3. This can be explained by the limited scalability of
the memory interface of system 3. This effect is especially
pronounced for the implementation based on locks, since
it involves considerably more instructions and thus more
memory accesses.

6. Results

This section presents the results of the experimental
studies used to evaluate the methods presented in this
work. The tests were run on three different platforms,
which are desribed in Appendix A. Detailed descriptions of
the test scenes can be found in Appendix B. Separate tim-
ings are given for the three important phases, i.e., applica-
tion of the preconditioner (pc apply), sparse matrix vector
product (spmv) and the collision handling stage (collision
handling). All results are averaged from three test runs,

and all simulations were run using single precision floating
point arithmetic.

Scene 1. The left plot in Fig. 8 shows the results obtained
for the first version of scene 1, indicating a high parallel
efficiency for all stages. The speedup stays nearly constant
over time for this rather static scene, as can be seen in the
leftmost plot of Fig. 9. Due to the high number of collisions
that occur, a convincing sustained speedup of about 3.6 is
attained for the collision handling phase. The speedup over
time is plotted only for measurements on test system 1,
since the plots of the other test systems are very similar and
exhibit the same features. The only noticeable differences
are that the respective plot curves are shifted slightly up or
down, as compared to the speedup on test system 1. These
offsets can be found in Fig. 8, by comparing the speedups
of the other test systems to the first one.

The centre diagram of Fig. 8 and the centre plot of Fig.
9 show the speedup for the second version of scene 1, us-
ing a much lower resolution for the avatar. This reduces
the number of collisions drastically, making it more dif-
ficult to achieve good speedups. Still, our work estimate
keeps the parallel workload well distributed and achieves a
speedup of well over 3.2 on the Intel-based systems 2 and
3, and 3.4 on the Opteron-based system 1. Refer to Fig. 6
for a comparison of the different work distribution strate-
gies for all the test scenes. Although the resolution of the
textile is unchanged, the numerics behave differently. This
is most likely due to changed cache utilisation, since the
total problem size is much smaller than in the first version.
This hypothesis is supported by the fact that test system 1,
with the smallest L2 cache, yields much better results with
the smaller version of the test scene, up to a close-to-ideal
speedup of 3.9 for the application of the preconditioner.

The evolution of the speedup over time is not as constant
as with the high resolution version (1a). There is a peak

12

Fig. 8. Integral speedups obtained for test scenes (1a), (1b) and (2). The diagrams show the average speedups of the different stages for both
numerics and collision handling.

Fig. 9. The plots shows the evolution of the speedups for numerics and collision handling over time, measured for scenes (1a), (1b) and (2)

on System 1.

during the first 300ms of simulation, which corresponds
to the cloth settling on the avatar. This initial phase of
the simulation has a high amount of work for both stages
of the simulation, both numerics and collision handling,
and is thus easier to distribute efficiently. Afterwards, the
cloth has settled down on the avatar, and both the iteration
count of the cg-method, as well as the number of handled
collisions, goes down, making it harder to find enough work
to keep the cores busy.

Scene 2. The rightmost plot in Fig. 8 shows the results
for scene (2). Even though this scene exhibits much more
complicated collisions than the first test scene, particularly
with respect to self-collisions, the speedup of about 3.3 ob-
tained for the collision handling stage is not as good as for
the high resolution version of the first test scene. This is
due to the fact that scene (2) is much more dynamic, and
the collisions are distributed more irregularly, making it
harder to schedule them efficiently. Our work predictor still
manages to keep the speedup at a good level of 3.4, but for
this scene we do not improve on the randomised approach
for all test systems. Still, as can be seen from Fig. 6, the
difference is not large and we feel that it is practically more
relevant to achieve good speedups on scenes like (1a) and
(1b). The results are also much more consistent when using
our work predictor: all three systems exhibit speedups of
about 3.3, while with the randomised approach the range
is from 3.0 for test system 2 to 3.5 for test system 3.

The evolution of the speedup over time plotted in Fig.
9 shows a steep increase in the collision handling speedup
during the first second. At the beginning of the simulation,
no collisions occur at all, and then as the ribbon falls onto
the inclined plates their number increases rapidly, until af-
ter about 1s of simulation time the speedup is at its peak

of 3.5. The numerics speedups stay mostly constant, with a
small peak after about 4s, which corresponds to the ribbon
hitting the ground plate. During this impact, the ribbon ex-
periences higher deformations leads, which, in turn, results
in a slightly increased iteration count of the cg-method

7. Conclusions and Future Work

In this work we have presented key techniques for parallel
physically-based simulations on multi-core architectures.
We focused on the two major bottlenecks of the simulation,
namely the solution of the linear system and the collision
handling stage, and proposed efficient parallel algorithms
to accelerate these problems. Our performance measure-
ments confirm the parallel efficiency of these methods and
indicate that physically-based simulations on modern com-
modity platforms can be greatly accelerated if parallelism is
exploited. Because the scalability is encouraging, we would
like to further explore these methods using more processors.
Furthermore, we envisage transferring our framework to a
hierarchically structured parallel environment, in which the
nodes of a distributed memory cluster are each symmetric
multi-processor machines with multiple cores.

8. Acknowledgements

The second author was supported by DFG grant STR
465/21-1. The third author was supported in part by the
Ohio Supercomputer Center. We also thank our reviewers
for their constructive critique.

13

Appendix A. Test Systems

Because the aim of this work is to accelerate computa-
tions for physically-based simulations on commodity plat-
forms, we decided to use systems that are easily available
at the current time. In order to show that our approach
is general and not limited to a specific type of multi-core
system, we carried out the tests on three different systems.
All computers are equipped with 4 CPUs of similar clock
speeds, but differ in their approach to multi-processing.
Comparing the scaling on three distinct platforms should
create useful data points, as compared to just analysing a
single platform.

Architecture Cores L2 Cache RAM

1 AMD Opteron 2×2@2.00Ghz 4×1MB 2GB

2 Intel Xeon 2×2@2.33Ghz 2×4MB 4GB

3 Intel Core2 1×4@2.40Ghz 2×4MB 2GB

Table A.1
Systems used for performance experiments

System 1. The first system is based on a dual AMD
Opteron 270 (Italy) machine with 2GB of main memory.
Each of the Opterons is a dual core processor running at
2.0GHz. The memory architecture is shared address-space,
more specifically cc-NUMA (cache-coherent-NUMA). Each
Opteron core has 1MB of dedicated L2 cache.

System 2. The second platform is a dual Intel Xeon 5140
(Woodcrest) running at 2.33GHz and equipped with 4GB
of main memory. Again, each of the CPUs is a dual core
processor, but each core has access to a much larger unified
L2 cache of 4MB. It is based on a classic SMP (symmet-
ric multi-processor) system, but has an additional memory
bus. This means that both of the dual-core processors have
their own dedicated memory interface.

System 3. The third test platform is an Intel Core 2 Quad
Q6600 (Kentsfield) running at 2.40GHz equipped with 2GB
of main memory. Again, each core has access to 4MB of
unified L2 cache, for a total of 8MB on die L2 cache. Com-
pared to the second system an important difference is that
the four cores share a single memory interface. As a result,
the total memory bandwidth is approximately half that of
the Woodcrest-based system. This characteristic may have
a negative impact on the overall performance when it comes
to memory-intensive applications.

Appendix B. Test Scenes

We tested our approach with two scenes, which highlight
different aspects of the simulation. Since the focus is on ac-
celerating commonly used scenarios, we decided to use only
moderately large input data. This is an important differ-
ence to the distributed memory setting, which traditionally

aims at problem sizes exceeding the capacity of a single
workstation.

Scene 1. The first example (1a) (see Fig. B.1) is a sim-
ulation of a dress worn by a female avatar with a fairly
complex geometry (over 27,000 vertices). The dress, con-
sisting of roughly 4,500 vertices, is pre-positioned around
the body and drapes under gravity during one second of
simulation. This test scene focuses primarily on the paral-
lel performance of the numerical time integration and on
cases with mostly evenly distributed collisions. Most of the
collisions in this scene occur between the avatar and the
dress, with only very few self-collisions in the lower part of
the dress. A second version (1b) of this test scene includes a
lower resolution avatar (roughly 1,800 vertices) and is oth-
erwise identical to (1a). It serves as a test of how well our
approach copes with scenes of lower resolution, where less
work is available for distribution to the available cores.

Relatively static scenes like this are typical for virtual-
try-on scenarios and for applications in the apparel indus-
try, e.g. as a visualisation step during clothing design in a
CAD system. Temporal and spatial coherence are high and
can easily be exploited to speed up the simulation.

Scene 2. The second test scene is much more dynamic
and puts special emphasis on collision handling. The de-
formable object is a long vertically oriented ribbon, com-
prised of 4,141 vertices (see Fig. B.2). It first falls onto two
differently inclined planes, from which it rebounds towards
the floor, where it finally comes to rest. The planes and the
floor consist of 13,600 vertices in total. In the course of the
simulation, external collisions as well as complicated self-
collisions occur. The collisions are, however, not as evenly
distributed as in the first example and change dynamically
over time. Hence, the temporal and spatial coherence is
considerably lower than in the first scene. Another compli-
cation is that many multi-collisions occur, forcing the col-
lision handling to iterate several times until a collision-free
state is attained. Multi-collisions arise when many textile
layers are in close proximity, so that handling one collision
causes new secondary collisions. Thus, this very dynamic
test scene, with its many and irregularly distributed colli-
sions, serves as an extreme challenge for the parallel colli-
sion handling stage of our approach.

14

References

[1] D. Baraff, A. Witkin, Large steps in cloth simulation, in:
Proceedings of ACM SIGGRAPH ’98, 1998, pp. 43–54.

[2] J. R. Shewchuk, An introduction to the conjugate gradient

method without the agonizing pain, Tech. Rep. CS-94-125,
Carnegie Mellon University, Pittsburgh, PA, USA (1994).

[3] B. Thomaszewski, W. Blochinger, Physically based simulation of
cloth on distributed memory architectures, Parallel Computing

33 (6) (2007) 377–390.
[4] B. Thomaszewski, S. Pabst, W. Blochinger, Exploiting

parallelism in physically-based simulations on multi-core

processor architectures, in: Proc. of Eurographics Symposium

on Parallel Graphics and Visualization, 2007, pp. 69–76.
[5] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik,

M. G. Knepley, L. C. McInnes, B. F. Smith, H. Zhang, PETSc
users manual, Tech. Rep. ANL-95/11 - Revision 2.1.5, Argonne

National Laboratory (2004).
[6] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd

Edition, SIAM, 2003.
[7] J. Demmel, M. Heath, H. van der Vorst, Parallel numerical linear

algebra, in: Acta Numerica 1993, Cambridge University Press,

Cambridge, UK, 1993, pp. 111–198.
[8] D. O’Hallaron, Spark98: Sparse matrix kernels for shared

memory and message passing systems, Tech. Rep. CMU-CS-97-

178, Carnegie Mellon University, School of Computer Science

(1997).
[9] L. Oliker, R. Biswas, P. Husbands, X. Li, Effects of ordering

strategies and programming paradigms on sparse matrix
computations, Siam Review 44 (3) (2002) 373–393.

[10] S. Romero, L. F. Romero, E. L. Zapata, Fast cloth simulation

with parallel computers, in: Proc. 6th International Euro-Par
Conference on Parallel Processing, Lecture Notes In Computer

Science, 2000, pp. 491–499.
[11] R. Lario, C. Garcia, M. Prieto, F. Tirado, Rapid parallelization

of a multilevel cloth simulator using OpenMP, in: Proc. Third

European Workshop on OpenMP, 2001, pp. 21–29.
[12] E. Gutierréz, S. Romero, L. F. Romero, O. Plata, E. L. Zapata,

Parallel techniques in irregular codes: cloth simulation as case

of study, Journal of Parallel and Distributed Computing 65 (4)
(2005) 424–436.

[13] F. Zara, F. Faure, J.-M. Vincent, Physical cloth animation on
a PC cluster, in: Proc. of Fourth Eurographics Workshop on

Parallel Graphics and Visualization, 2002, pp. 105–112.
[14] F. Zara, F. Faure, J.-M. Vincent, Parallel simulation of

large dynamic system on a PCs cluster: Application to cloth

simulation, International Journal of Computers and Applications

26 (3) (2004) 173–180.
[15] M. Keckeisen, W. Blochinger, Parallel implicit integration

for cloth animations on distributed memory architectures, in:
Proc. of Eurographics Symposium on Parallel Graphics and

Visualization, 2004, pp. 119–126.
[16] B. Thomaszewski, W. Blochinger, Parallel simulation of cloth

on distributed memory architectures, in: Proc. of Eurographics

Symposium on Parallel Graphics and Visualization, 2006, pp.
35–42.

[17] A. Mujahid, K. Kakusho, M. Minoh, Y. Nakashima, S. Mori,
S. Tomita, Simulating realistic force and shape of virtual
cloth with adaptive meshes and its parallel implementation in
OpenMP, in: Proc. of Intl. Conf. on Parallel and Distributed

Computing and Networks (PDCN2004), 2004, pp. 386–391.
[18] P. G. Ciarlet, Mathematical Elasticity. Vol. I, North-Holland

Publishing Co., 1992.
[19] O. Etzmuß, M. Keckeisen, W. Straßer, A fast finite element

solution for cloth modelling, in: Proc. 11th Pacific Conference

on Computer Graphics and Applications, 2003, pp. 244–251.
[20] M. Teschner, B. Heidelberger, D. Manocha, N. Govindaraju,

G. Zachmann, S. Kimmerle, J. Mezger, A. Fuhrmann, Collision

handling in dynamic simulation environments, in: Eurographics

Tutorials, 2005, pp. 79–185.

[21] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, K. Zikan,
Efficient collision detection using bounding volume hierarchies

of k-DOPs, IEEE Transactions on Visualization and Computer

Graphics 4 (1) (1998) 21–36.
[22] J. Mezger, S. Kimmerle, O. Etzmuß, Hierarchical techniques in

collision detection for cloth animation, Journal of WSCG 11 (2)

(2003) 322–329.
[23] R. Bridson, R. P. Fedkiw, J. Anderson, Robust treatment of

collisions, contact, and friction for cloth animation, in: Proc. of

ACM SIGGRAPH, 2002, pp. 594–603.
[24] B. C. Lee, R. W. Vuduc, J. W. Demmel, K. A. Yelick,

Performance models for evaluation and automatic tuning
of symmetric sparse matrix-vector multiply, in: Proc. of

International Conference on Parallel Processing (ICPP’04),

2004, pp. 169–176.
[25] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for

irregular graphs, Journal of Parallel and Distributed Computing

48 (1) (1998) 96–129.
[26] M. Hauth, O. Etzmuß, A high performance solver for the

animation of deformable objects using advanced numerical

methods, Computer Graphics Forum 20 (3) (2001) 319–328.
[27] R. Vuduc, J. Demmel, K. Yelick, S. Kamil, R. Nishtala, B. Lee,

Performance optimizations and bounds for sparse matrix-vector

multiply, in: Proc. of ACM/IEEE Supercomputing, 2002, p. 26.
[28] R. Bridson, S. Marino, R. Fedkiw, Simulation of clothing with

folds and wrinkles, in: Proc. of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA 2003), 2003, pp. 28–

36.

[29] W. Blochinger, W. Küchlin, C. Ludwig, A. Weber, An object-
oriented platform for distributed high-performance Symbolic

Computation, Mathematics and Computers in Simulation 49 (3)

(1999) 161–178.
[30] K. H. Randall, Cilk: Efficient multithreaded computing, Ph.D.

thesis, MIT Department of Electrical Engineering and Computer

Science (Jun. 1998).
[31] J. M. Mellor-Crummey, M. L. Scott, Algorithms for scalable

synchronization on shared-memory multiprocessors, ACM

Transactions on Computer Systems 9 (1) (1991) 21–65.
[32] M. M. Michael, M. L. Scott, Simple, fast, and practical non-

blocking and blocking concurrent queue algorithms, in: Proc.
of the 15th ACM Symposium on Principles of Distributed

Computing, 1996, pp. 267–275.

[33] Advanced Micro Devices, AMD64 Architecture Programmers
Manual Volume 3: General-Purpose and System Instructions

(2007).

15

Fig. B.1. A snapshot from test scene 1a. A woman wearing a dress is simulated under the influence of gravity. The dress is comprised of slightly

more than 4,500 vertices while the avatar consists of 27,000 vertices. Different colours have been used to indicate problem decomposition of

the time integration stage.

Fig. B.2. Four shots from the second test scene. A long (0.5m × 20.0m) ribbon consisting of 4,141 vertices falls on two slightly inclined
planes and slides onto the floor. Due to surface friction complex folds are formed as it slides over the planes. This again leads to complicated
self-collisions which are handled flawlessly by our parallel collision handling algorithm. Different colours have been used to indicate problem

decomposition of the time integration stage. 16

