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Fig. 1. We automatically simplify a user-provided curve network on a surface (a) to fit a given material budget with nearly optimal stability (b). Since the
directions of applied loads are hard to predict, we optimize for worst-case stability and minimize the maximum deformation induced by a worst-case external
force of unit norm in total (c), implying smaller deformations for all other unit-norm forces, in particular, for the standard gravitational load (d).

Designing curve networks for fabrication requires simultaneous considera-
tion of structural stability, cost effectiveness, and visual appeal—complex,
interrelated objectives that make manual design a difficult and tedious task.
We present a novel method for fabrication-aware simplification of curve
networks, algorithmically selecting a stable subset of given 3D curves. While
traditionally stability is measured as magnitude of deformation induced by
a set of pre-defined loads, predicting applied forces for common day objects
can be challenging. Instead, we directly optimize for minimal deformation
under the worst-case load.

Our technical contribution is a novel formulation of 3D curve network sim-
plification for worst-case stability, leading to a mixed-integer semi-definite
programming problem (MI-SDP). We show that while solving MI-SDP di-
rectly is infeasible, a physical insight suggests an efficient greedy approxima-
tion algorithm. We demonstrate the potential of our approach on a variety
of curve network designs and validate its effectiveness compared to simpler
alternatives using numerical experiments.

CCS Concepts: • Computing methodologies→ Parametric curve and
surface models; Physical simulation.
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1 INTRODUCTION
From birds’ nests to modern stadiums, from weaved baskets to envi-
ronmental sculpture, from spiderwebs to rooftops, curve networks
are found commonly in nature, used in art and crafts, architecture
and engineering (Fig. 2). Made out of wicker, wire, bent wooden
or metallic beams, these curves are an aesthetically pleasing and
functional means to convey complex 3D surfaces. However, design-
ing such curve networks for fabrication is challenging. Artists have
to manage requirements of very different, often contradicting, na-
ture: create appealing designs, use little material, and make sure
the structure is stable. This often forces artists to follow a cumber-
some process where they iteratively adjust their design and test its
stability via simulation or prototyping.
In traditional drawing, artists often ideate via a freeform rough

sketch, which they then clean up, taking engineering requirements
into account [Eissen and Steur 2007]. Similarly, one natural work-
flow to create a 3D curve network is to first draft a complex curve
network on the target surface, guided only by aesthetics, then sim-
plify it, taking into account engineering and budget constraints.

Inspired by thismetaphor, we present a newmethod for fabrication-
aware simplification of a given curve network. More specifically, our
method selects a subset of given curves on a 3D surface to maximize
the curve network’s worst-case stability. The initial set of curves
may be created by sketching interfaces [Arora and Singh 2020],

1

https://doi.org/10.1145/3528233.3530711
https://doi.org/10.1145/3528233.3530711
https://doi.org/10.1145/3528233.3530711


SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Neveu et al.

Fig. 2. Examples of curve networks in architecture, visual art, and design.
(a) The roof of the NationalMaritimeMuseum in Amsterdam, (b) A sculpture
by Patrick Dougherty at Smithsonian American Art Museum, (c) Beijing
National Stadium. Images by BristolIcarus, Eb0178a (cropped), Peter23 re-
spectively, licensed under CC BY-SA.

traditional modeling software [Autodesk 2022], or various curve
tracing algorithms. We demonstrate our method produces complex
yet stable simplified curve networks (Fig. 1).
Traditionally, stability of a structure is expressed as the amount

of deformation induced by a particular set of loads. Yet, loads for
common-day objects, small-scale architecture, or sculpture are hard
to predict. Therefore, we focus on an alternative definition of stabil-
ity, measuring the deformation of the structure under the worst-case
load, i.e., an external force vector of fixed magnitude but a priori un-
known direction. Thus, our problem is selecting a subset of the given
curves, within a fixed material budget, maximizing the structure’s
worst-case stability.

Our technical innovation is a novel formulation of this problem,
where the notion of worst-case stability, related to eigenanalysis of
the network’s stiffness matrix, leads us to a mixed-integer semidefi-
nite programming (MI-SDP) instance. MI-SDP problems are known
to be NP-hard and we show that optimization via modern solvers is
infeasible. Instead, we leverage intuition from the physical world
that suggests an elegant and simple greedy approximation approach,
which we demonstrate to be efficient and accurate.

We validate our method numerically by analyzing its approxima-
tion properties, comparing it to a random subset selection scheme,
and demonstrating its applications on a gallery of curve networks.

2 RELATED WORK
Our work is inspired by the progress in two areas: computational
design of curve networks and truss topology optimization. We focus
only on the most relevant works.

Fabrication-Aware Surface Design. The graphics community has
seen a significant progress in fabrication-aware design of surfaces,
including self-supporting surfaces [de Goes et al. 2013; Liu et al. 2013;
Panozzo et al. 2013; Vouga et al. 2012], auxetic [Konaković-Luković
et al. 2018], zippables [Schüller et al. 2018], and others. These works
often focus on either surface approximation only [Schüller et al.
2018] or surface-specific aspects such as paneling and mold reuse
[Eigensatz et al. 2010; Fu et al. 2010; Pellis et al. 2021] or face regu-
larity [Vaxman et al. 2017]. In contrast, we focus on simplification
of curve networks, whose faces may not be regular or even closed
(Fig. 1).

Stability Optimization. Detecting and improving structural weak-
nesses in objects designed for 3D printing is a problem that has

received considerable attention from the graphics community. One
line of research aims at identifying regions of high stresses using
simulation with user-defined or heuristically determined loads [Lu
et al. 2014; Stava et al. 2012]. Instead of depending on pre-defined
applied forces, Langlois et al. [2016] use stochastic optimization to
estimate worst case loads. Cui et al. [2020] expand on this approach
with a linear-time algorithm for probability gradient computation.
Rather than relying on purely stochastic forces, Schumacher et al.
[2018] account for uncertainties in load locations and directions
by parameterizing the space of expected deviations. While they
optimize for worst-case loads within a low-dimensional subspace,
our eigenvalue optimization method considers all possible load di-
rections simultaneously. The idea of using eigenanalysis to discover
structural weaknesses has been explored before, including works
by de Gournay et al. [2008], Zhou et al. [2013], or Zehnder et al.
[2016]. These approaches use eigenanalysis to detect weak regions,
but resort to other means for improving strength. In contrast, our
method directly maximizes its worst-case stability measure, i.e., the
minimum eigenvalue of the system’s stiffness matrix.

Eigenvalue Optimization. Our worst-case stability criterion gives
rise to a constrained optimization problem with bounds on the
minimum eigenvalue of the stiffness matrix. Eigenvalue optimiza-
tion problems occur naturally in many applications of engineering
design, e.g., when tuning the frequency response of a structure
[Torigaki et al. 1994] or optimizing a continuous elastic structure to
minimize its worst-case compliance [Cherkaev and Cherkaev 2004].
In the graphics community, eigenvalue optimization problems have
been investigated, e.g., in geometry processing as a means of enforc-
ing bounds on deformation [Kovalsky et al. 2014]. Our approach
likewise gives rise to a semi-definite programming problem, but
whereas those works optimize over a set of continuous parameters,
our decision variables are binary. Eigenvalue optimization problems
have also been investigated in the context of computational design
using both gradient-free [Bharaj et al. 2015] and gradient-based
methods [Musialski et al. 2016; Panetta et al. 2017]. Rather than op-
timizing for target eigenvalues, Chen et al. [2017] aim at preserving
the smallest eigenvalue during mesh coarsening for elastodynamics
applications. A generalization of this idea to spectrum-preserving
coarsening of geometric linear operators was proposed by Liu et al.
[2019]. While all of these methods work on continuous variables,
we address the discrete problem of selecting an optimal subset from
a large set of pre-defined candidate curves.

Computational Design of Curve Networks. A number of works
consider the design of curve networks on surfaces. One line of
research focuses on biaxial or triaxial weaving to create regular
ribbon structures [Akleman et al. 2009; Campen and Kobbelt 2014;
Ren et al. 2021; Takezawa et al. 2016; Tao et al. 2016, 2017; Vekhter
et al. 2019]. Other physical curve networks that have been explored
include wire meshes [Garg et al. 2014], structures made from planar
pre-bent rods [Miguel et al. 2016] and circular arcs [Bo et al. 2011],
3D-printed curve networks [Pérez et al. 2017; Perez et al. 2015], and
regular gridshells [Lienhard and Knippers 2015; Panetta et al. 2019;
Pillwein and Musialski 2021; Schling et al. 2018]. While the above
methods focus on highly regular networks and/or fixed topology,
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Fig. 3. Typical truss topology optimization approaches (a) optimize a 2D/3D
network of straight bars (black) connecting at predefined nodes (red), either
optimizing the compliance for a set of loads or satisfying vibration con-
straints. In contrast, we simplify a curve network on a given surface where
the set of nodes, i.e., curve intersections, is not known beforehand (b).

we target curve networks that are not necessarily regular with a
priori unknown combinatorics.
Following previous work on curve network design, our method

relies on discrete elastic rods [Bergou et al. 2010, 2008] and its
extension to network connections [Panetta et al. 2019; Perez et al.
2015] as an underlying simulation model.

Truss Topology Optimization For Structural Design. Our optimiza-
tion method (Sec. 3) is inspired by progress in truss topology opti-
mization (TTO) for structural systems, where a network of straight
bars connected at a predefined set of nodes is optimized to sustain a
fixed load or satisfy a vibration constraint (Fig. 3). We outline only
the most relevant works, see [Stolpe 2016] for an in-depth overview.

Many TTO approaches, starting from the classical work of Dorn
et al. [1964], find thicknesses of the straight bars, assuming a prede-
fined set of nodes where the loads are applied. For instance, [Ben-Tal
and Nemirovski 1997] optimize straight bar widths with respect to
a set of load cases. Achtziger and Kočvara [2007] introduce TTO
formulations using the minimum eigenvalues to analyze the free
vibrations of the structures. More recently, Kočvara [2015] consider
a variant of TTO, where widths can take only integer values, includ-
ing 0, leading to an integer linear SDP problem. These works rely on
knowing beforehand the set of nodes where the bars connect, neces-
sary to define loads or vibration modes. In our case, however, nodes,
i.e. curve intersections, are not fixed and may appear or disappear
during optimization, leading to a strictly harder problem.

A small number of works address this problem by including the set
of nodes as binary variables in the overall optimization, focusing on
constraining feasible topologies [Cerveira et al. 2010] or preventing
buckling [Mela 2014].
In a recent work, Arora et al. [2019] find a regular, structurally

sound truss configuration given a load, using mesh parameterization
and quad meshing methods, where parameterization directions are
aligned with principal stresses. Jiang et al. [2019] optimize structure
weight and compliance, given a load case, via a combination of
geometrical and topological optimization.

Trusses, however, support the load only via compression of straight
rods. In our setup, however, both compression and bending of curvi-
linear rods are important load-bearing mechanisms, requiring a
different formulation.
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Fig. 4. Curves are represented as polylines on the input mesh. Intersecting
curves share their common vertices. Each curve is modeled as a discrete
elastic rod.

3 CURVE NETWORK SIMPLIFICATION
At the foundation of our method lies the mathematical model to
simulate the deformation of a network of bent rods. We first fo-
cus on the physical model for the simulation of a curve network
with known geometry and connectivity (Sec. 3.1), then describe our
algorithm to simplify a curve network (Sec. 3.2).

3.1 Computational model of a curve network
Wemodel each curve, a polyline initially lying on the target mesh, as
a discrete elastic rod [Bergou et al. 2010, 2008]. Curves are connected
to each other at the intersection points and their endpoints are fixed
at the boundary of the given surface (Fig. 4).
For the simplicity of exposition, we assume each rod is straight

whenmanufactured and then bent during assembly. Initial curvature
can be incorporated into the model with no changes to our algo-
rithm. We do not enforce relative curve orientations at intersections
since this would lead to large moments at the joints. Furthermore,
we neither constrain cross sectional orientations of curves at inter-
sections, nor at their ends. The lowest energy configuration thus
will always be twist-free, regardless of how bent curves are. We
therefore omit the twisting energy from Bergou et al. [2008].
Therefore, the elastic energy of each curve � with vertex coor-

dinates ��
�
∈ R3, � = 0, . . . ,� is a sum of stretching and bending

terms

��stretch =
�∑
�=1

�
�, �

stretch =
�∑
�=1

��

( |� � |
|�̄ � |

− 1
)2

|�̄ � | (1)

��bend =
�−1∑
�=1

�
�, �

bend =
�−1∑
�=1

��

ℓ�

��� �
��2

2 , (2)

with the binormal curvature

� � =
2� �−1 × � �

| |�̄ �−1 | | · | |�̄ � | | + � �−1 · � �
,

where �� and �� are the rods’ bending and stretching stiffness coeffi-
cients respectively, �̄ � is an edge in the original polyline that becomes
� � = ��

�
− ��

�−1 after the deformation, and ℓ� = 0.5( | |�̄ � | | + | |�̄ �−1 | |).
Here we omit some subscripts � for brevity. Note that the stretching
energy is discretized per edge, while bending energy depends on an
angle between edges and hence is discretized per vertex.
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Fig. 5. For each curve, the parameter �� controls the stiffness of the two
edges next to the intersections (dashed lines) with other curves (a). We
interpret the extreme case of �� = 0, which effectively splits the curve into
disconnected pieces, as removing the curve from the network.

Each pair of intersecting curves �, �′ is coupled via a shared vertex,
i.e. ��

�
≡ ��

′
� ′ . Physically, this is equivalent to a rotational joint at

the intersection allowing curve rotations but not translations. The
first and the last vertices of each curve are fixed via a soft penalty
constraint with� = 80:

��endpoints = � ( | |��0 − �̄�0 | |
2 + ||��� − �̄�� | |2). (3)

The total energy of the curve network with � curves is then a
sum of their the stretching, bending, and endpoint energies:

� =
�∑
�=1

��stretch + ��bend + ��endpoints . (4)

3.2 Simplification Framework
Using this basic model, we now formulate our simplification prob-
lem. This stage chooses a subset of the curve network within a given
budget, maximizing the worst-case stability of the structure. Here
we define material budget as an upper bound on the total length of
the curves in the simplified network.
For each curve � = 1, . . . , �, we need to decide whether to keep

it or reject it, encoded as �� = 1 or �� = 0, respectively. In the
following algorithm, we perform a relaxation �� ∈ [0, 1], so we treat
�� as a factor controlling stiffnesses �� , �� of two edges around each
intersection of that curve with the other curves (Fig. 5a). Thus, ��
can be seen as a factor of cross-section area of those edges for the
stretching energy and of the squared area for the bending energy.
To define this formally, let V be the set of the vertices shared

between curve � and the curves intersecting it. Then we can rewrite
energies Eq. 1 and 2 as functions of �� (Fig. 5):

��stretch (�� ) =
∑

� and �+1∉V
�
�, �

stretch + ��

∑
� or�+1∈V

�
�, �

stretch (5)

��bend (�� ) =
∑
�∉V

�
�, �

bend + ��

∑
�∈V

�
�, �

bend . (6)

Then, grouping the terms with and without �� and denoting the cor-
responding partial sums as �� and ��0 respectively, the total energy
in Eq. 4 can then be expressed as:

� (�1, . . . , ��) =
�∑
�=1

��stretch+�
�
bend+�

�
endpoints =

�∑
�=1

��0+���
� . (7)

(a) (b)

Fig. 6. Once a curve is disconnected from the rest of the network, some
segments can be easily translated and rotated (a) and some can be rotated
around the fixed endpoint (b).

Structural stability. Our goal is to find a set of �� ∈ {0, 1}, � =
1, . . . , �, within the given budget, such that wemaximize the stability
of the structure. We define the structural stability of a set of curves
via studying its worst-case load, a set of external forces, of unit
norm in total, applied to the vertices of the structure that causes
the largest displacements � . Such structural stability is known to
be equivalent to computing the smallest eigenvalue of the Hessian
H = H(�1, ..., ��) of the elastic energy [Achtziger and Kočvara 2007],
a symmetric semi-positive definite matrix:

H� = ��. (8)

Naively defining the smallest eigenvalue �1 (H) as the stability
of a structure, however, would fail in our setup, since if �� = 0,
the Hessian H(�1, ..., ��) may become singular, yielding �1 (H) = 0.
Intuitively, if a curve � has at least two other curves intersecting it,
as soon as �� = 0, the curve segment between those intersections
becomes disconnected from the rest of the structure and can be
moved freely (Fig. 6a). Similarly, the segments next to the boundary
become free to rotate around fixed endpoint (Fig. 6b). Furthermore,
when two intersecting curves �, � have both �� = � � = 0, their shared
vertex becomes disconnected from the overall structure and can be
translated in any direction without resistance, again making the
Hessian singular.
Instead, following Achtziger and Kočvara [2007], we define the

structural stability of our structure for given �1, . . . , �� as the small-
est non-zero eigenvalue value, which we denote as �̃1 (H). We first
give a formulation of our problem using �̃1, then give an equivalent
formulation using the standard minimum eigenvalue �1 via Hessian
regularization (Sec. 3.3).
We first represent the Hessian � of the total elastic energy as a

function of �� . Elastic energy is a linear function with respect to
�� , so the Hessian is also a linear function of the corresponding
Hessians:

H(�1, ..., ��) =
∑
�=1

H�
0 +

�∑
�=1

��H� , (9)

where H� and H�
0 are Hessians of �� and ��0 in Eq. 7 respectively.
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input results

n = 78 n = 42 n = 23

n = 40 n = 7n = 75

n = 114

Fig. 7. The user-provided budget constraint can be used to control the final
number of curves. Since we store all intermediate results, we allow user to
instantaneously revert to any higher number of curves, if desired.

Finally, our curve network simplification can then be formulated
as follows:

max �̃1

(∑
�=1

H�
0 +

�∑
�=1

��H�

)

s.t. �1, ..., �� ∈ {0, 1}
�∑
�=1

���� ≤ �

(10)

where �� is the initial length of the ��ℎ curve and � is the user-
defined material budget.

The curves with �� = 0 are considered to be removed from the sys-
tem, hence we compute the cost of the curve network as

∑�
�=1 ����

for the budget constraint.

3.3 Mixed-Integer Semidefinite Programming (MISDP)
formulation

Unfortunately, �̃1 (H(�1, . . . , ��)) is discontinuous as a function of
�� , and thus cannot be directly used in a gradient-based

λ1
~

0
0

1 0 1
αi

1
αiαi

optimization (inset, left).
Intuitively, as �� is ap-
proaching 0, �̃1 is also de-
creasing, until it becomes
equal to a different eigen-
value when �� = 0 —
hence the discontinuity.
To alleviate this problem,
we propose to use Hessian
regularization. Namely, we can express the minimum non-zero
eigenvalue �̃1 of the original Hessian as the ordinary minimum
eigenvalue �1 of the regularized Hessian (inset, right):

�̃1 = �1
��
�

�∑
�=1

H�
0 +

�∑
�=1

[
��H� + (1 − �� )Q�

]
+
∑
�, �


�, �Q�, �
��
�
,

where 
�, � are auxiliary variables. Here Q� and Q�, � are diagonal
Tikhonov regularization matrices. We define Q� as 1 on the diagonal

for all the vertices of curve � except for shared intersections, and
Q�, � as 1 for all the shared intersection vertices between curves �
and � , and 0 otherwise. Note that since the non-zero column-vectors
of our regularizer form a basis of the Hessian null space for �� = 0,
such regularization preserves the non-zero minimum eigenvalue,
i.e., the values of �̃1 for �� ∈ {0, 1} are the same with and without
regularization, as illustrated by the two dashed horizontal lines in
the inset.
We need to regularize the shared vertices at the intersections

of curves �, � only when both curves are removed, adding 
�, ���, � ,
where 
�, � = 1 when �� = � � = 0. A naive implementation of
this requirement on 
�, � would lead to a quadratic constraint and
therefore a nonlinear SDP formulation, notoriously hard to solve
efficiently. Instead, we observe that for � ∈ {0, 1} this constraint is
equivalent to 
�, � ≤ min(1 − �� , 1 − � � ), or two linear inequalities.
Finally, finding �1 (�) is equivalent to a maximization problem

max � with a semidefinite constraint � � �
 [Vandenberghe and
Boyd 1999]. Using the regularization of the Hessian, we come to our
final formulation of curve network simplification as an instance of
mixed-integer semidefinite programming (MI-SDP):

max
�

�

s.t.
∑
�=1

H�
0 +

�∑
�=1

[
��H� + (1 − �� )Q�

]
+
∑
�, �


�, �Q�, � � �


�� , 
�, � ∈ {0, 1}

�, � ≤ 1 − �� ; 
�, � ≤ 1 − � �

�∑
�=1

���� ≤ �

(11)

To eliminate the trivial solution �1 = . . . = �� = 0, when there
are no curves left and the minimum eigenvalue � is driven by the
regularization, we add a constraint

∑�
�=1 �� ≥ 1.

4 SOLVER MECHANISM
A natural approach to solving formulation in Eq. 11 is via its re-
laxation into an instance of semidefinite programming (SDP) by
replacing the integer constraints �� ∈ {0, 1} with a continuous con-
straint 0 ≤ �� ≤ 1. This relaxation gives an upper bound to the
mixed-integer problem. This can be easily seen from the previous
inset, right: the function is concave and has maximum inside the
interval, not on the endpoints that would correspond to the integer
solution �� = 0 or �� = 1. The relaxed solution ���� can be either
used directly as an approximation via rounding each element to
the nearest integer, or as a conservative upper bound for mixed-
integer optimization algorithms such as branch and bound [Gally
et al. 2018].
We tried a standard MI-SDP solver YALMIP [Löfberg 2004] and

implemented a custom branch and bound method using MOSEK
[ApS 2020] as the SDP solver. Our experiments showed that SDP
relaxation significantly reduces the space of branch and bound as
compared to an exhaustive search (cutting out 50% − 70% of the
search space). Unfortunately, for small to medium number of curves
the overhead of solving SDP makes branch and bound significantly
slower than the exhaustive search. For instance, for 9 initial curves,
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(a) (b) (c)

Fig. 8. Many of our initial networks are nearly at their equilibrium state (e.g.
(a), blue: initial curves, pink: the curves at the equilibrium). The equilibrium
configuration for a simplified curve network might deviate from the target
surface (b). For this example, however, adding a single, manually selected,
rigid pre-bent curve (c, yellow) is enough to alleviate the deviation

.

branch and bound takes several hours, while the exhaustive search
is nearly instant. While theoretically for larger number exhaustive
search should become more expensive, for those numbers of curves
both approaches are infeasible.

Instead, we propose an efficient and straightforward approxima-
tion algorithm. We observe that intuitively, removing any curve
from a set can only decrease the stability of the structure. This sug-
gests a process where, starting with the original curve network, we
iteratively remove the curve that is the least important for the over-
all stability, until the budget constraint is satisfied. At each iteration,
we compute the equilibrium configuration via Newton method. We
denote the initial set of curves 	 , and �̃1 (�) as the minimum non-
zero eigenvalue of the Hessian for the structure made of curves in
� ⊆ 	 . Using Eq. 9, we set �̃1 (�) = �̃1 (H(�1, . . . , ��)), where �� = 1
for all � ∈ � and 0 otherwise. Finally, denoting ��� (�) = ∑

�∈� �� ,
we get Algorithm 1. Here the maximization is performed by simply
trying to remove each curve from the current set.

Set � = 	 ;
while ��� (�) > � do

Find �′ = arg max�∈� �̃1 (� \ {�});
Set � = � \ {�′};

end
Algorithm 1: Greedy Approximation Algorithm

Note that while formally �̃1 (� \ {�}) can be larger than �̃1 (�), e.g.
when a rare especially weak curve, for instance long with high cur-
vature, exhibits localized buckling, this does not change or impede
the algorithm; no special treatment is needed for such cases.
As we discuss in the following section, we find that this sim-

ple algorithm approximates the optimal solution with a high ratio,
is efficient, parallelizable per iteration, and outperforms naive ap-
proaches.

5 RESULTS, VALIDATION, AND DISCUSSION
Using our method, we have simplified a number of curve networks,
depicted in 1, 7, 10 and 11. The input surfaces include positive
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Fig. 9. (a) The approximation ratio of our algorithm, �ours/�optimum > 80%
for a sufficient number of curves. (b) Percentile of our solutions among
all combinations; typically within the 90-99% percentile. (c) The ratio
�ours/�random search; average in blue, median in orange. Our solutions are
more stable than random, sometimes by 40%.

(a) (b) (c)

(d) (e) ()

Fig. 10. Compared to the results of random search algorithm (b,e), our
results (c,f) are significantly more stable (186% for (c), 116% for (f)). For a
highly irregular input curve network (a), worst-case stability may not be an
intuitive notion (cf. b, c). For a regular curve network (d), stability may be
related to irregularities and thus is easier to see (cf. e, f).

(e.g. tower in Fig. 10d) and negative Gaussian curvature (e.g. tent,
Fig. 11b), surfaces with one or two boundaries (stadium in Fig. 11d).

Initial Curve Networks. The curves on a surface can be modeled
via conventional [Autodesk 2022] or modern interfaces [Arora and
Singh 2020]. To demonstrate our method, we automatically generate
random geodesic curves for the bunny (Fig. 11b), the hill (Fig. 1),
the stadium (Fig. 10a), and the tent examples (Fig. 11c), or trace two-
and three-direction frame fields [Panozzo et al. 2014] for the arched
and regular shells (Fig. 11a,d respectively) and the kagome pattern
example respectively (Fig. 7a). We modeled the initial curve network
on the tower example (Fig. 10d) in a modeling software.
To generate a frame field, we use the representation and the

optimization of PolyVector fields [Diamanti et al. 2014]. We use
PolyVector polynomials of degree 4 or 6, to capture 2 or 3 directions
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(a) (b)
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Fig. 11. A gallery of additional results.

Table 1. Algorithm statistics for different curve networks.

Surface Fig. initial #
of curves

initial #
of vertices

final # of
curves

time
(min.)

hill 1 73 6319 9 17.7
kagome 7a 114 10224 23 53.9
roof 7b 75 2813 7 4.62

stadium 10a 100 6646 25 16.9
tower 10d 33 5699 9 2.46
shell 11a 63 5504 5 7.06
bunny 11b 75 25442 7 266
tent 11c 112 6107 42 24.7

arched shell 11d 67 3514 21 2.60

per triangle respectively. We then sample the surface boundaries
and trace the curves using the classical Euler integration method
[Polthier and Schmies 2006]. To trace the frame fields, we use prin-
cipal matching, removing any traced curve that hits a frame field
singularity. We follow the standard definition of a singularity as
either a zero of one of the directions of a field, or an inconsistency
of matching directions around a given vertex.

Equilibrium Configurations. We explicitly compute the equilib-
rium configuration for all the curve networks via Newton’s method.
Most of the initial configurations are close to the equilibrium (Fig. 8
and Supplementary). The final curve networks at their equilibrium
might deviate from the target surface (e.g., Fig. 8b). If undesired, this
effect can be reduced for fabrication by adding pre-bent stiff curves
to the initial curve network (yellow curve in Fig. 8c).

Quantitative Evaluation. We numerically compare our algorithm
against two baseline algorithms: exhaustive and random searches.

The exhaustive search simply tries all subsets of the given curves
and selects the most stable combination within a budget. Clearly,
the algorithm has exponential complexity, yet produces the true

optimum. We plotted the approximation ratio of our algorithm com-
pared to this true optimum, i.e. the ratio of �ours, the stability of our
result, and �optimum in Fig. 9a. We tested 200 random curves on each
of 4 simple test surfaces and averaged the ratios. We were able to run
the exhaustive search in a reasonable time for 17 curves maximum.
As seen from the plot, our approximation ratio is increasing with
the number of curves and reaches roughly 85%. For comparison, for
19 curves, our algorithm takes less than 1 second, while exhaustive
search takes around 45 minutes.

We furthermore display the percentile of our solution among all
the combinations (Fig. 9b). Our solution is always in the top 90−99%
percentile for a sufficient number of curves.

Finally, we compare our algorithm to a random search algorithm,
which generates uniformly distributed random combinations within
the budget and chooses the most stable one using the definition in
Eq. 10. For a fair comparison, we run the random search for the
same time as our algorithm. The ratio of �ours divided by the best �
of the random search is presented in Fig. 9c. We run this experiment
400 times, each time generating a fixed number of random geodesics
on a given surface, and display average (blue) and median values
(orange). As indicated by the plot, our algorithmic solution is roughly
20% − 40% more stable than the solution obtained by the random
search, and this ratio increases as the space of possible combinations
grows.

Performance. The performance of our algorithm depends on the
number of the initial curves, the material budget, and the vertex
sampling density of the polylines. On a desktop computer, our com-
putation time typically varies from 2 minutes for the tower (Fig. 10f)
to 1 hour for the kagome pattern example (Fig. 7a). The only excep-
tion is the bunny (Fig. 11b) that took 4.5 hours. See Table 1 for the
full statistics.

Limitations and Future Work. A natural extension of our work
is to optimize the shapes of the selected curves to further improve
the network’s stability while preserving the artist intent; we only
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focus on selecting a subset of curves with fixed geometry. Another
exciting direction is to perform a simultaneous simplification and
stylization of curve networks, akin to sketch stylization.

6 CONCLUSIONS
We presented a novel formulation and an efficient method for simpli-
fication of 3D curve networks focusing on their worst-case stability.
Our method is compatible with standard interfaces for creating 3D
curves and thus has immediate applications in fabrication-aware
modeling. We hope that it will form the core of a future fabrication-
aware design system allowing users to interactively create, edit, and
simplify curve networks.
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