
Skeleton-Driven Inbetweening of Bitmap Character Drawings
KIRILL BRODT and MIKHAIL BESSMELTSEV, Université de Montréal, Canada

t=0 t=2t=0 t=2t=2t=1 our inbetweening resultsour inbetweening results

Fig. 1. For given bitmap keyframes of a character animation (marked as � = 0, 1, 2) and the desired skeletal motion (blue skeleton overlays), with minimal
annotation (red circles), our system generates a series of high-quality in-between frames smoothly interpolating the input images. Our system does not depend
on pointwise correspondences and therefore does not constrain the geometry nor topology of the input drawings, effectively handling distant keyframes with
occlusions (arms, right leg). Running girl © thornpuck.

One of the primary reasons for the high cost of traditional animation is the
inbetweening process, where artists manually draw each intermediate frame
necessary for smooth motion. Making this process more efficient has been
at the core of computer graphics research for years, yet the industry has
adopted very few solutions. Most existing solutions either require vector
input or resort to tight inbetweening; often, they attempt to fully automate
the process. In industry, however, keyframes are often spaced far apart,
drawn in raster format, and contain occlusions. Moreover, inbetweening is
fundamentally an artistic process, so the artist should maintain high-level
control over it.

We address these issues by proposing a novel inbetweening system for
bitmap character drawings, supporting both tight and far inbetweening. In
our setup, the artist can control motion by animating a skeleton between the
keyframe poses. Our system then performs skeleton-based deformation of
the bitmap drawings into the same pose and employs discrete optimization
and deep learning to blend the deformed images. Besides the skeleton and
the two drawn bitmap keyframes, we require very little annotation.

However, deforming drawings with occlusions is complex, as it requires
a piecewise smooth deformation field. To address this, we observe that this
deformation field is smooth when the drawing is lifted into 3D. Our system
therefore optimizes topology of a 2.5D partially layered template that we use
to lift the drawing into 3D and get the final piecewise-smooth deformaton,
effectively resolving occlusions.

We validate our system through a series of animations, qualitative and
quantitative comparisons, and user studies, demonstrating that our approach
consistently outperforms the state of the art and our results are consistent
with the viewers’ perception.

Authors’ address: Kirill Brodt, kirill.brodt@umontreal.ca; Mikhail Bessmeltsev, bmpix@
iro.umontreal.ca, Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC,
H3T 1J4, Canada.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2024/12-ART246 $15.00
https://doi.org/10.1145/3687955

Code and data for our paper are available at
http://www-labs.iro.umontreal.ca/~bmpix/inbetweening/.

CCS Concepts: • Computing methodologies → Animation; Mesh ge-
ometry models.

Additional Key Words and Phrases: cartoon inbetweening, 2D animation,
mesh deformation

ACM Reference Format:
Kirill Brodt and Mikhail Bessmeltsev. 2024. Skeleton-Driven Inbetween-
ing of Bitmap Character Drawings. ACM Trans. Graph. 43, 6, Article 246
(December 2024), 19 pages. https://doi.org/10.1145/3687955

1 INTRODUCTION
Traditional hand-drawn animation, despite its expressiveness and
visual appeal, has largely been replaced by cheaper digital animation.
One of the main reasons of this transition is the cost of the inbe-
tweening process, where artists need to draw in-betweens, which
are intermediate frames creating an illusion of smooth movement
between keyframes. Inbetweening not only accounts for a signifi-
cant portion of the total time and cost of animation production, but
it also demands great precision and skill. Overall, inbetweening is a
challenging and expensive process that requires specialized training,
making high-quality traditional 2D animation barely accessible to
smaller studios or hobbyists.

Automating inbetweening remains a central challenge in 2D ani-
mation, as most existing solutions have not adopted by the industry.
These solutions often attempt to establish dense correspondences
between two keyframes, a task that is inherently difficult due to
its discrete nature. This challenging problem forces many meth-
ods to resort to tight inbetweening, used when two keyframes are
very close. However, typical keyframe pairs are not close, and may
significantly differ both geometrically and topologically: some mo-
tions are quick, and many keyframes contain occlusions (Fig. 1).
Moreover, some existing methods require vector input [Whited et al.
2010; Yang et al. 2018], while many artists create keyframes in raster
format; vectorizing those keyframes is an open problem [Guţan et al.
2023].

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

HTTPS://ORCID.ORG/0000-0003-3779-3262
HTTPS://ORCID.ORG/
https://orcid.org/0000-0003-3779-3262
https://orcid.org/
https://doi.org/10.1145/3687955
http://www-labs.iro.umontreal.ca/~bmpix/inbetweening/
https://doi.org/10.1145/3687955

246:2 • Brodt and Bessmeltsev

A promising alternative line of deep learning methods explores
a related task of video frame interpolation, often used to increase
video frame rate [Huang et al. 2022; Yu et al. 2022]. Inbetweening
distant keyframes, however, is a more intricate task than increasing
frame rate and should not be fully automated. Inbetweening is an
artistic process, as it requires precise artistic control over the motion
between keyframes.
Frame interpolation methods, trained on high-FPS video, tend

to produce unpleasant artifacts when naïvely applied to distant
animation keyframes (Fig. 3). We observe, however, that for char-
acter animation, many large movements can be explained by the
motion of the skeleton. The secondary deformations, such as facial
expressions, movements of clothing, or muscles jiggles are often
smaller in amplitude and thus can be effectively interpolated by
frame interpolation pipelines.

We thus propose a novel method for inbetweening bitmap charac-
ter drawings, where an artist can specify the target 3D skeletal mo-
tion. In a nutshell, our method deforms the two given keyframes ac-
cording to the skeletal motion into the same pose, and then performs
nonlinear or out-of-plane blending using existing video frame in-
terpolation methods. Essentially, we sidestep the challenging dense
correspondence problem by leveraging the sparse correspondences
provided by the skeleton, and relax all requirements on geometry
and topology of the input keyframes by using a deep learning–based
raster interpolation method.
The key technical contribution of our system is the deforma-

tion of raster character drawings via given skeletal motion. In the
absence of occlusions, for purely 2D motion, this task can be effec-
tively accomplished using standard deformation techniques, such
as As-Rigid-As-Possible deformation [Sorkine and Alexa 2007] or
Linear Blend Skinning. However, in the presence of occlusions, such
techniques typically fail, as they target smooth deformation fields,
whereas for drawings with occlusions, deformation fields are typ-
ically only piecewise smooth (Fig. 2). Our key observation, in line
with previous work, is that this piecewise smooth deformation field
is a projection of a smooth deformation field over a 3D character
shape, with the projection itself creating the discontinuities (Fig. 2).
We therefore propose an algorithm to automatically construct a
2.5D non-manifold template that we use to lift the drawing into 3D,
resolving the occluded regions and enabling smooth deformation
(Fig. 1).

To achieve this, we propose a novel optimization formulation
and a custom discrete-continuous solve strategy that optimizes the
topology of the template while aiming for smooth deformation un-
der the constraints of the skeletal motion. We then perform blending
optimization by generating a series of possible interpolations using
an existing deep learning–based solution and picking the interpo-
lation frames with the optimal quality while producing a smooth
motion via an optimization over a graph. Our optimizations lever-
age insights into the structure of cartoon drawings, as well as deep
learning techniques to resolve occlusions.
We validate our method on a gallery of keyframe animation se-

quences, successfully inbetweening character motions with and
without occlusions (Sec. 6), demonstrating that our method is capa-
ble of inbetweening both close and distant keyframes with vastly
different geometry and topology, thus performing both tight and

far inbetweening. We qualitatively and quantitatively compare our
method to the state-of-the-art alternatives, and validate our algo-
rithmic choices via a series of user studies.

2 RELATED WORK
Our work is inspired by progress in three areas: video frame inter-
polation, inbetweening, and deformable models.

Frame Interpolation. Video frame interpolation aims to synthesize
new frames between existing ones in a video [Bao et al. 2019]. Often
drawing inspiration from optical flow methods [Horn and Schunck
1981], these deep learningmethods interpolate [Bao et al. 2019; Chen
and Zwicker 2022; Huang et al. 2022; Kalluri et al. 2023; Niklaus
and Liu 2020; Siyao et al. 2023, 2021; Yu et al. 2022] video frames
in videos, including cartoons. Typically, those methods are applied
to videos with at least 15 frames per second (FPS) to increase the
frame rate. As a result, when applied to distant key frames, these
methods often yield unsatisfactory results (Fig. 3).

More importantly, traditional cartoon inbetweening is not merely
a technical task, but an art form crucial to the quality of the final
animation [Williams 2001]. Clearly, artists need to have control over
the inbetweens, yet frame interpolation methods typically offer
no such control. In contrast, our inbetweens are controlled by the
provided 3D skeletal animation, allowing the artist to concentrate
on the expressiveness of the motion and let the algorithm handle
the details of inbetweening.

We compare our algorithmic results with several frame interpola-
tion methods in Sec. 6 and Supplementary materials.

Vector and Raster Inbetweening. In computer graphics, inbetween-
ing of two vector or raster images has been a longstanding problem,
with some approaches being common and others different between
the vector and raster worlds.
In vector-based inbetweening, early works [Catmull 1978; Kort

2002] identified finding correspondences as one of the key chal-
lenges. Generally, the search for correspondences is often posed
as a discrete problem, which is difficult to solve efficiently. The
vector structure of the drawings aids in formulating the problem
as correspondence between strokes, thereby reducing the search
space. Unfortunately, stroke connectivity can be an unreliable cue.
To further simplify the search, some previous methods rely on ad-
ditional user input, such as sparse point correspondences [Reeves
1981], guidelines [Carvalho et al. 2017] or require user corrections
[Miyauchi et al. 2021a; Yang et al. 2018]. Others limit the topology
of the keyframes [Whited et al. 2010] or match only closed regions
[Zhu et al. 2016]. Only a few approaches venture to solve the gen-
eral problem of finding correspondences between drawings with
different topology, such as Yu et al. [2012] or Liu et al. [2011]. Our
method targets raster keyframes, which are often challenging to
vectorize with reasonable accuracy [Guţan et al. 2023].

One way to facilitate the search for correspondences is to relax it
into a continuous problem, searching for a displacement field instead
of discrete correspondences, reminiscent of the optical flow men-
tioned above. For instance, Sýkora et al. [2009] apply deformable
image registration to cartoon drawings, a technique that can be

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

Skeleton-Driven Inbetweening of Bitmap Character Drawings • 246:3

(a) (b) (c) (d) (e)

Fig. 2. In contrast with an occlusion-free drawing where a typical deformation between � = 0 and � = 1 is smooth (left), deforming a drawing with occlusions
(running girl on the right) requires a piecewise-smooth deformation field. The vector field discontinuities are often at the occlusion contours (blow-up). The
displacement vector fields are normalized and coloured by the polar angle for visualization. Running girl © thornpuck.

t=0 t=0.5 t=1 t=0 t=1t=0.5t=1 t=0t=1 t=0 t=1t=0.5 t=1t=0.5 t=1t=0.5 t=1t=0.5

(a) (b)

Fig. 3. Video frame interpolation methods, such as [Huang et al. 2022],
trained on videos with relatively high frame rate, often struggle to con-
vincingly interpolate distant frames (a). However, for characters in similar
poses, these methods can effectively blend textures, resulting in a smooth
transition (b). In both examples, � = 0, � = 1 are the input frames, with
� = 0.5 being interpolated.

adapted to produce inbetweens [Noris et al. 2011]. Another relax-
ation approach involves finding correspondences through functional
maps, recently extended to vector sketches [Myronova et al. 2023].
However, such methods generally do not handle occlusions, as oc-
clusions require searching for a piecewise smooth displacements
fields or functional maps — a highly non-trivial task.
A notable exception is the method by Li et al. [2022], which

predicts occlusion regions directly and uses them to estimate the
flow and synthesize new frames from user-provided sketches. The
method produces impressive results, but requires the user to draw
a complete sketch for each in-between frame, which can be time-
consuming. Instead, our system is controlled by a skeletal animation,
which normally takes less time to create than a series of precise
drawings. Skeletal animation is widely accepted as a standard means
of specifying a character motion.
Starting from the pioneering work of Burtnyk and Wein [1976]

and some of the earliest animation software packages [Kitching
1977], skeletons, whether extracted automatically or provided by
a user, have been used to facilitate inbetweening [Miyauchi et al.
2021b]. However, the correspondences or even the final inbetween
frames of these methods are typically confined to the skeletal motion.
In contrast, our method only uses the skeletal motion as a guide
to improve the inbetweening quality and as a constraint to satisfy.
Due to our use of a frame interpolation system, we can interpolate
various motions without such restrictions.

Even et al. [2023] propose an alternative workflow to the inbe-
tweening problem, when the user iteratively selects, deforms, and
overdraws groups of vector strokes; then the system performs in-
terpolation. Instead, we focus on the classical workflow where two
keyframes are drawn in an unrestricted manner.
We are inspired by ToonSynth [Dvorožňák et al. 2018], which

also uses skeletal motion — not for inbetweening, but to drive a
single raster drawing. The core of our algorithm is computing a
template, visually similar to the one they create manually. Our
template is somewhat different: it is not intended to be anatomically
correct, instead it is optimized to be smoothly deformed by the given
animation. Their method requires a whole sequence of images, often
dozens, aligned to a reference motion, and a full and precise manual
puppet construction, as discussed in [Hinz et al. 2022].

Hinz et al. [2022] propose a generative model that can be trained
with just a few images (8-12) and generate animation keyframes
controlled by a few keypoint locations. Despite showing impres-
sive results, they do not interpolate the drawn keyframes, instead
generating similar images, which is typically unacceptable in in-
betweening. Their input is closer to our method’s input (images,
skeletons and simple annotation), but they require a dozen labelled
images and take hours to train per example even for a modest reso-
lution (250x250). In contrast, our method is resolution independent
and takes 32 seconds for a pair of keyframes on average. We com-
pare with [Hinz et al. 2022] and [Dvorožňák et al. 2018] in Sec. 6
(Fig. 16).

A recent work [Mo et al. 2024] performs tight inbetweening via
simultaneous tracing and finding correspondences between two
digital line drawings with no texture. Despite working with raster
images, they require a high-quality vectorization with stroke order
of one of the keyframes. It is unclear whether their system can be
applied to complex drawings with different line styles and textures
(e.g., 16). Our system can work for arbitrary line styles and textures
and does not require any vector input. We compare with [Mo et al.
2024] in Sec. 6 (Fig. 15).
Even if the correspondences are known, interpolating vector

drawings in not trivial. Rough sketches are difficult to interpolate or
synthesize [Ben-Zvi et al. 2016; Chen et al. 2023]. Most importantly,

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

246:4 • Brodt and Bessmeltsev

however, interpolating drawings with varying topology, typical in
the presence of occlusions, is a challenging task [Dalstein et al. 2015;
Jiang et al. 2022]. We are also inspired by the method of Zhu et al.
[2017] that animates planar shapes by using annotations to create
a multimesh structure supporting topological changes. In contrast,
their system is not targeting character animations with occlusions.

Cartoon Deformable Models. Our template-based deformation is
related to deformable models used for cartoon animation. While
the single-layered mesh is standard [Bai et al. 2016; Jacobson et al.
2011], occlusions and out-of-plane rotations are known issues of
such approach. Previous work has proposed using multi-layered
models [Catmull 1978; Fan et al. 2018; Fukusato and Maejima 2022;
Poursaeed et al. 2020; Rivers et al. 2010], adding depth to each
cartoon region [Sýkora et al. 2010], local layering [McCann and
Pollard 2009], 3D proxies [Bessmeltsev et al. 2015; Jain et al. 2012;
Sýkora et al. 2014], or even full 3D models [Dvorožňák et al. 2020].
Our deformable template is not necessarily anatomically correct, nor
does it target to have correct 3D shape as it is never directly rendered,
but is designed to be smoothly deformed by the specified skeletal
animation and carry the drawn keyframe as a texture. Therefore,
our template is a connected partially layered 2.5D mesh structure
that can be non-manifold (Sec. 3). Our template structure is related
to video meshes [Chen et al. 2011], however, our template topology
is driven by the skeletal animation; occluded parts that do not move
are not cut, which helps us preserve texture quality. We express
the piecewise smooth 2D motion of a character with occlusions
as a projection of the smooth motion of our template (Fig. 2). We
compare our system to the one of [Fan et al. 2018] in Sec. 6 (Fig. 16).
Our system is loosely inspired by the work of Bai et al. [2016],

where they use a single-layered mesh with specified handles and
their motions to enable both keyframe animation and simulation of
a drawn image without occlusions. Instead of deformation, [Sýkora
et al. 2014] create impressive global illumination effects by inflat-
ing a mesh at each frame of a dense animation, which may lead to
temporal inconsistencies, as noted by the authors. In contrast, we
optimize for the topology of a template per keyframe, resulting in a
smooth, consistent deformation of the texture and a smooth final in-
betweening. Note that these methods do not perform inbetweening,
i.e., smooth interpolation of arbitrary keyframe images.

3 OVERVIEW AND OBSERVATIONS
Observations. In the absence of occlusions, typical motion of a

character can be represented as a smooth deformation vector field
in 2D (Fig. 2a). In this case, the interior of the input character, i.e.,
the image foreground (textured in Fig. 2ab), can be used as the
deformation domain. Once the domain is triangulated, one can
simply find a smooth deformation field over that domain satisfying
the skeletal motion. Such deformation can be done via standard
techniques, such as As-Rigid-As-Possible [Sorkine and Alexa 2007],
linear blend skinning, or others.

In general, however, drawings contain occlusions. A deformation
vector field over such drawing, for many skeletal motions, will
be only piecewise-continuous (Fig. 2d), so the naïve deformation
strategy fails. We observe that if a full 3D character model were
known, the sought skeletal deformation would be still smooth — it

only becomes piecewise-smooth under projection onto the screen.
Reconstructing a precise 3D character shape from a single drawing,
however, is a complex task. We note that under orthographic or
weak perspective projection often used in sketches, the true depth
of the 3D character is irrelevant for the projection, and only the
depth order matters for the final result.

We are inspired by the concept of branch cuts in complex analysis,
where, intuitively, a function defined on a plane can have multiple
values, but the function is continuous along each sheet; sheets con-
nect along curves called branch cuts (Fig. 5a). In the same way, we
can represent the deformable template as multiple sheets, or lay-
ers, stacked upon each other, each corresponding to an occluded or
occluding body part, connecting along some curves (Fig. 5b). Com-
pared to the traditional layering where all the layers are completely
independent, our template is non-manifold but simply connected
allowing for a simple definition of function smoothness.

Intuitively, this domain can be thought of as a non-planar cross-
section of an unknown 3D character model through its occlusion
contours (Fig. 5b). Reconstructing an anatomically correct template,
however, is a non-trivial task, especially for characters with non-
standard geometry or topology. Instead, we look for a template
topology that has multiple layers at every detected occlusion region,
and that can be smoothly deformed by the given skeletal motion
(Fig. 5b). As the key step in designing such template, we need to
introduce cuts into the foreground mask (Fig. 4c, foreground mask
is grey).

In general, the cuts we need to introduce into the template are con-
sistent with the drawn occlusion contours (cf. Fig. 4a and Fig. 4d), so
an alternative strategy would be to detect the occlusion contours are,
and cut the mesh along them. Unfortunately, such naïve strategy is
bound to fail, as artists often omit parts of the occlusion contours or
draw textural strokes that are barely distinguishable from occlusion
contours (Fig. 4a, folds). Moreover, such task requires a human-
annotated dataset of visible and invisible contours on real drawings,
which might be difficult to create consistently. Instead, we use the
distortion induced by the skeletal animation as the main indicator
of where the cuts should be. We therefore predict occlusion masks
automatically and ask for a simple annotation of T-junctions around
these occlusion regions. The occlusions masks and the T-junctions
make the template topology optimization efficient and robust.

We outline the following requirements for the deformation tem-
plate:

• Connected. The template has to be connected, i.e., have a
single connected component. This is a technical requirement
simplifying optimization of smooth deformations over the
template.
• Locally layered. In each occlusion region the template has to
have two layers resolving the occluding body parts.
• Admitting a smooth deformation. The template should be de-
formed smoothly given the user-provided 3D skeletal defor-
mation as constraints.

Our algorithm below is designed to reconstruct a template satis-
fying these three requirements.
Once such deformation template is found for each of the two

given keyframes, we can deform them to each of the intermediate

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

Skeleton-Driven Inbetweening of Bitmap Character Drawings • 246:5

t=0

t=1
defomation

to the same pose
t=ti

blending
optimization

topology
optimization

template
initialization

mask
prediction to the same pose

t=ti

optimization
defomation blending

optimizationoptimization
blendingtemplate

initializationinitialization
mask

prediction
templatemask

Fig. 4. Method overview: Starting with a pair of bitmap key frames, a corresponding 3D skeletal animation, and a set of T-junctions (a), for each keyframe we
first predict occlusion regions (b, blue), as well as foreground mask (c, grey), using a deep neural network (b), then initialize the deformable template (c),
optimize its topology, and texture it (d). For each intermediate frame, we then deform two textured templates into the same skeletal pose (e), and use a frame
interpolation neural network to blend those into the final inbetween frame (f).

(a) (b) (c)

Fig. 5. Inspired by the concept of branch cuts in complex analysis (a), we
lift the drawing onto a multi-sheet domain – our template (b), where the
deformation is smooth. The multi-sheet domain can be thought of as 2.5D
structure with partial layers, connected along the boundary of each occlu-
sion region. The projection of the smooth deformation field onto the plane
then gives the sought piecewise-smooth deformation field (c).

poses in the input skeletal animation. Having two deformed frames
in the same pose but with different textures, we can blend them
using a pretrained frame interpolation method. Such blends at each
intermediate time frame create a smooth animation connecting the
two input keyframes with the specified skeletal motion.
Unfortunately, drawings containing occlusions exhibit another

challenge: we cannot reliably texture the template with a given
keyframe, as some parts were occluded and therefore contain no
texture. Even with modern inpainting methods, if those occluded
parts become visible during animation, this might lead to visible
artifacts in the final inbetweening. We propose a blending optimiza-
tion approach to tackle this challenge, where we use more of the

keyframe that contains less occlusions while simultaneously picking
the best possible frame interpolation, leading to less artifacts.

Overview. Our input is two bitmap keyframes, the desired 3D
skeletal motion in the image space, and a small set of T-junctions
(Fig. 4a, Sec. 4). We first use our deep network to predict foreground
and occlusion masks on both keyframes (Fig. 4b, Sec. 4.1). Leverag-
ing these masks and the provided T-junctions, we initialize (Sec. 4.2)
and then optimize for the deformation template topology (Fig. 4c,
Sec. 4.3), which allows for a smooth deformation of the drawing
despite the occlusions. Even though formally the problem is NP-
hard, we use occlusion regions–specific observations to formulate a
more efficient optimization problem, linear in the number of occlu-
sion masks boundary edges (Sec. 4.4). We then use the optimized
template to deform the two keyframes into the target pose at each
time frame (Fig. 4d, Sec. 5.1). Finally, now that the two character
drawings are in the same pose at each time frame, we perform
blending optimization (Fig. 4e, Sec. 5.2). To that end, we use a pre-
trained frame interpolation network to generate a series of possible
interpolation frames. Leveraging these series, we pick a sequence
of frames that are using the frame containing less occlusions, while
still providing a smooth interpolation (Sec. 5.2), producing the final
smooth animation (Fig. 4f).

4 ALGORITHM
The input to our algorithm is two bitmap keyframes for times � =
0 and � = 1, and the corresponding animation of the 2D or 3D
skeleton, represented as a hierarchy of joints � = 1, . . . , � with
trajectories �� (�) ∈ R2 or R3. If full automation is required, one
can predict the 3D character pose from the keyframe directly using,
e.g., Sketch2Pose [Brodt and Bessmeltsev 2022] and interpolate the
skeletal poses via modern pose inbetweening methods [Starke et al.

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

246:6 • Brodt and Bessmeltsev

2023]; those are complementary to our system (see Sec. 6). In the
rare case where a drawing contains occlusion regions with more
than two local layers, i.e., where a body part is occluded by more
than one other body part, we require manually annotated occlusion
masks, one per layer, sorted by depth (an example in Fig. 9). A full
3D skeleton is not required, our algorithm only needs a 2D skeletal
motion and, if there are occlusions, depth order of joints near those
occlusion regions.
To disambiguate occlusions, we also require the user to specify

T-junctions around the occlusion regions (Fig. 4a). Usually there
are fewer than 7 points per drawing, which are easy to select once
we display the occlusion regions. We found all the algorithmic
solutions, including deep learning architectures, unreliable to infer
T-junctions robustly: Drawings often contain many T-junctions that
are coincidental and are not indicative of any actual occlusions or
depth ordering (Fig. 4, T-shirt sleeves). In our experiments, placing
the T-junctions takes a user a few seconds, compared to minutes
drawing a single image.

4.1 Foreground and Occlusions Masks
We predict background/foreground (Fig. 4, foreground masks are
grey) and occlusion masks (Fig. 4b, occlusion masks are blue) using
a deep neural network with two prediction heads, trained on their
respective datasets. For both, we use a U-Net, the encoder-decoder
architecture segmentation model [Ronneberger et al. 2015], pre-
dicting a pixel heatmap of the foreground or occlusion regions. To
alleviate the need for a large dataset, as a backbone encoder we
use the pre-trained DINOv2 model [Oquab et al. 2024] producing
reliable visual features, namely vit_large_path14_dinov2. This
setup achieves the intersection over union (IoU) score of 0.65. A dif-
ferent backbone efficientnetv2_m trained from scratch achieves
the score of 0.56. We consider the pixel inside the foreground or
occlusion mask if the corresponding head outputs a value greater
than 0.8. We then convert the boundaries of the occlusion masks to
polylines.

Once the occlusion masks are predicted, we leverage the specified
T-junctions to refine the masks’ shapes. Precisely, we first identify
the specified T-junctions with the occlusion masks by proximity,
and then deform each occlusion mask such that its boundary passes
through the corresponding T-junctions. To this end, we triangulate
the interior of each occlusion mask and deform the triangulation via
minimizing symmetric Dirichlet energy (Eq. 2). For each T-junction,
we find the nearest vertex on the occlusion mask border and pull
the mask towards the T-shaped connection by these vertices fixing
the other points far away from T-junctions, both expressed using
the same energy terms as (Eq. 2), see Sec. 4.3 for more information.

Dataset and Training. We hired a third-party who annotated oc-
clusion masks for 981 drawings from the sketch dataset in [Brodt
and Bessmeltsev 2022]. We additionally annotated 10 high quality
sketches for validation. We extended our dataset by adding 2432 syn-
thetic images, renders of various poses of the SMPL model [Loper
et al. 2015] along with their occlusion masks, in a non-photorealistic
style with occlusion contours highlighted in Blender. We trained the
network with binary cross entropy loss for 15 epochs using AdamW

optimizer [Loshchilov and Hutter 2019]. We used gradually increas-
ing learning rates for each transformer block of layers: 1.25 · 10−6
for layers 1-8, 2.5 · 10−6 for layers 9-16, 5 · 10−6 for 17-24 and 10−5
for 24-32. Without this technique the final accuracy degrades signif-
icantly, resulting in a lower score of 0.62 instead of our score 0.65.
During training we resize all images to 512 × 512px resolution and
use a series of standard image augmentations. The model trains for
2 hours on a single NVIDIA A100 GPU 40GB with the batch size of
2. The synthetic augmentation improves the score by 0.01.

4.2 Template initialization
Once the foreground and the occlusion masks are predicted, we
create the base mesh that will serve as the initialization for our
template optimization (Fig. 4c, grey). To this end, we mesh the fore-
ground mask via Triangle library [Shewchuk 1996] by constructing
a conforming Delaunay triangulation where we enforce edges along
the boundaries of the occlusion masks and the foreground masks.
For quality, we additionally constrain the minimum triangle angle
to be ≥ 20◦. We similarly mesh each occlusion region.
We then initialize the template (Fig. 4c, colored regions; Fig. 6a)

by overlaying each meshed occlusion region on top of the meshed
foreground mask, connecting them at each occlusion region bound-
ary — note that the boundaries of the occlusion masks are meshed
consistently. Simply put, each occlusion region forms a ’pocket’ on
the main mesh, ’sewn’ from all sides. The following optimization
partially cuts off these pockets along their boundaries to minimize
the distortion (Fig. 4c, Fig. 6).

Point Constraints. To simplify implementing the skeletal defor-
mation as point constraints, we additionally insert handle vertices
into the mesh corresponding to each joint and the middle of each
bone, which will ‘pull’ our template into the new pose. For point
handles outside the occlusion regions, we simply insert that point
as a vertex at that location in the mesh. For the point handles inside
an occlusion region, we insert the point as a vertex into an arbi-
trary layer of the two mesh layers inside the region. The subsequent
optimization (Sec. 4.3) finds the topology of the template and thus
implicitly selects which layers is ’forward’ and which one is ’back’.
We refer to this set of constrained vertices as 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 .

4.3 Optimizing the template topology
Our goal is to create the 2.5D template from a key frame, such that
its deformation, induced by the skeletal animation, is smooth.
In the following, we segment the boundary of each occlusion

region into edges that are ‘visible’ occlusion contours (Fig. 6c, red),
‘hidden contours’ (Fig. 6c, blue), and non-manifold edges (Fig. 6c,
orange). Once detected, the initial template pockets will be cut along
the visible and hidden contours, forming two locally disconnected
layers. For the visible contours, we connect the main, i.e., non-
occluded, layer with the back layer of the occlusion mask; for the
hidden contours, we connect it with the front layer. The visible
contours thus allow for a discontinuity after the projection onto
the screen. We do not cut the non-manifold edges, thus allowing
for two layers to locally merge (Fig. 5). Note that visible or hidden
occlusion contours do not necessarily correspond to the contours
explicitly drawn or omitted from the drawing (see Sec. 3).

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

Skeleton-Driven Inbetweening of Bitmap Character Drawings • 246:7

(a) (b) (c)

bi= 0

bi=1

non
manifoldbi= 0

bi=1

non
manifold

(a)(a) (b) (c)

biii=1=1

nonnonnon
manifoldmanifoldmanifold = 0= 0= 0bbbiii= 0= 0= 0manifoldmanifold

bi

non
manifoldmanifoldmanifold

= 0bbbi

=1=1=1

nonnonnon
manifoldmanifoldmanifold

(d)Ed = 7.4 Ed = 5.31 Ed = 4.13

Fig. 6. Optimizing the template connectivity: the initial topology of the template with ’pockets’ for each occlusion region (a), deformation of the initial
template (b), a visualization of suboptimal assignment of the binary variables and its deformation into the target pose (c), and the optimal assignment with its
deformation (d). We visualize the Symmetric Dirichlet energy per triangle from grey (low) to red (high). In 2D views, blue parts of the contour correspond to
the ‘visible’ occlusion contours, and red to the hidden ones.

Requiring a user to manually annotate visible and invisible parts
of the contours is not only tedious and cumbersome, but also re-
quires precision. Small annotation mistakes can manifest as notice-
able artifacts in the final result (see Fig 8). Instead, we optimize the
topology as follows.
We first identify non-manifold edges where different layers of

the final template will merge (Fig. 6d). Heuristically, we choose
multi-valence joints, such as chest or hip joints, and pick the closest
boundary edge of an occlusion region that intersects some bone in
2D.
Inspired by OptCuts [Li et al. 2018], to each other edge of an

occlusion region boundary we assign a binary variable �� ∈ {0, 1},
where �� = 0 indicates that the edge belongs to a hidden occlusion
contour, and �� = 1 indicates the edge is visible. The visible edges
are depth discontinuities, so for each �� = 1 we cut the occlusion
region along that edge from the rest of the template; for �� = 0, we
cut off the occluded region (Fig. 6, �� = 0 are marked red, �� = 1
blue).

We then formulate our problem as follows:

min
��={0,1},�∈R2�

�� (�, �) + ����� (�, �), (1)

where �� is symmetric Dirichlet energy of the deformation of the
template with the given new joint positions. More concretely, for a
fixed set of �� and thus fixed template,

�� (�) =
∑

� ∈�
�� (| |J� (�) | |2� + ||J−1

�
(�) | |2�)

����� (�) =
�

2
∑

�∈�����������
| |�� − �̂� | |22,

where �̂ are the point constraints. Here � iterates over all the faces
of the mesh, �� is the area of � in the original mesh, and J� (�)
is 2x2 Jacobian of the affine transformation between the original
face and the deformed mesh face � . We normalize the areas such
that

∑
� ∈� �� = 1. The constant � controls the balance between the

desired distortion and the precision of the specified joint locations;
in our experiments we kept it as � = 200.

Continuous Optimization. For a fixed set of binary variables, we
optimize the continuous energy using Laplacian-preconditioned

quasi-Newton method, or Sobolev gradient method in Sobolev space
�1, similar to [Kovalsky et al. 2016]. We use the standard cotangent
Laplacian discretization [Pinkall and Polthier 1993] and precompute
its Cholesky decomposition once, as the matrix does not change
during each continuous optimization. Note that for different assign-
ment of binary variables, the topology of the mesh changes, so we
need to recompute the Laplacian. Laplacian is a singular matrix
with a translation as the 1-dimensional null-space, so we project
the null space out to avoid ill-conditioned gradients. We optimize
until the gradient norm is less than a threshold or the maximum
number of iterations is reached (0.01 and 5000 respectively in our
implementation). We use backtracking line search with Armijo and
Wolfe conditions and the constants suggested in Nocedal andWright
[1999].

All the point constraints are in 2D; if a 3D skeleton is supplied, we
use its orthographic projection. Note that in contrast with typical
parameterization problems, in our setup non-bijective deformations
can be perfectly valid. For instance, any new occlusion that was not
present in the original frame is a source of non-bijectivity. However,
we do need local injectivity, i.e., we need to avoid folded triangles
(Fig. 13), as this would cause issues in texturing. To enforce local
injectivity, we use the line search upper bound from Smith and
Schaefer [2015].

4.4 Efficient Formulation
Solving this nonlinear mixed-integer optimization directly, however,
is NP-hard, and practically infeasible: Each edge on the occlusion
region boundary gets a binary variable, so a typical number of
binary variables in our setup would be on the order of hundreds for
a typical drawing.
Instead, our key observation, which we refer to as the switching

rule, consistent with the previous literature [Karpenko and Hughes
2006], is that boundary of each occlusion region switches between
visible and hidden parts only at two kinds of points: T-junctions and
cusps (Fig. 7). Precisely, since T-junctions are often formed by one
body part occluding another, those are the points where the visibility
of the occlusion contour switches. Similarly, at a cusp, located in the
regions of negative Gaussian curvature on the body [Koenderink
and van Doorn 1982], such as shoulders or hips, a visible contour

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

246:8 • Brodt and Bessmeltsev

Fig. 7. T-Junctions (yellow-green circles) and cusps (red crosses) are often the
only locations where a contour of an occlusion region changes its visibility.
We ask the user to specify the T-junction locations and find the cusps
automatically.

is occluded by the surface itself and becomes hidden. While we
do not know the locations of cusps, we observe furthermore that
in all examples we analyzed, an occlusion region boundary may
not contain more than one cusp, as typically there is no body part
connected to hips and shoulders simultaneously.

These observations allow us to significantly simplify the problem.
Knowing that to one side of each T-junction the occlusion region
boundary is necessarily visible, and to the other side it is hidden,
for each region we add equality constraints around the T-junctions,
enforcing the switching rule, and add an inequality constraint al-
lowing for maximum one cusp, i.e., a maximum one switch away
from T-junctions.

The final optimization problem is then as follows:

min
��={0,1},�∈R2�

�� (�, �) + ����� (�, �),

s.t.
∑
�

|�� − ��+ | ≤ 1, for �, �+ not separated by a T-junction

�� = 1 − � � , if �, � are separated by a T-junction,
(2)

where �+ is the next edge along the closed loop, occlusion region
boundary, i.e., �+ = � + 1(mod �).
With these constraints, instead of exponential, the problem be-

comes worst-case linear in the number of edges. With � denoting
the number of annotated T-junctions for a region, depending on the
parity of � , the total number of valid assignments of �� , is either 2
(only two) or 2(� − �) for � even and odd respectively. Indeed, if
� is even, one can easily verify that by a simple parity argument,
there can be no cusp. If � is odd, there will be necessarily one cusp.
Therefore, for an even � , we test exactly two combinations: Setting
�� ∈ {0, 1} for an arbitrary edge, by the switching rule, defines the
binary values for all the other edges. For an odd � , we must find
the location of the cusp, which can be located at any of the vertices
except T-junctions, (� − �) it total; for each location, there are two
valid assignments.

Solver Mechanism. We note that each occlusion region is indepen-
dent of the others. We therefore further simplify the optimization
by optimizing each region separately, keeping the others fixed.
For contours with an even number of T-junctions, we simply

check both valid combinations by running the nonlinear optimiza-
tion twice and choosing the minimal energy. For the odd cases,
while one can use a branch-and-bound nonlinear mixed integer
solver, in our implementation we use an automatic hyperparameter
optimization framework optuna [Akiba et al. 2019] in their default
configuration, implementing the Tree-Structured Parzen estimator
to reduce the search space [Watanabe 2023] (see Algorithm 1). In
our setup, for each occlusion region we typically have � ≤ 4. We
further reduce the number of edges � by simplifying the boundary
of the occlusion masks with Douglas-Peucker algorithm with the
distance � = 2px. In the end, we typically have fewer than 60 edges
for all the occlusion regions in an input image (Table 2).

ALGORITHM 1: Template topology optimization
Function template_optimization(mesh, occlusion_masks) is

forall occlusion_mask in occlusion_masks do
b_assignments := valid_combinations(occlusion_mask);

// returns a set of valid assignments of �

from Eq. (2)

meshes := ∅;
forall b in b_assignments do

m := mesh;
forall contour in occlusion_mask.contours do

m := argmin��
energy(�);

// where � = cut(�, m, contour,

occlusion_mask, b)

end
meshes := meshes ∪ {m};

end
mesh := mesh with minimal energy from meshes;

end
return mesh;

end
Function cut(� , mesh, contour, occlusion_mask, b) is

[�1, . . . , ��] := contour.vertices;
�1 := b[�1]; // returns �1 for edge associated to �1
�� := b[��];
if �1 = �� then

� := �;
end
vertices := [�1, . . . , ��];
occlusion_vertices := occlusion_mask.vertices[�1]; // visible

vertices for �1 = 1 and hidden ones for �1 = 0

mesh := incise(mesh, vertices, occlusion_vertices); // cuts the
mesh along the vertices using vertex reindexing
from occlusion_vertices

if �1 ≠ �� then
mesh := incise(mesh, [��+1, . . . , ��],
occlusion_mask.vertices[��]);

end
return mesh;

end

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

Skeleton-Driven Inbetweening of Bitmap Character Drawings • 246:9

bi=0

bi=1

bi=0
bi=1

t=0 t>0 t=0 t>0

bbii=0=0

bbii=1=1
t=0 t>0t=0 t>0

(a) (b) (c) (e) (f) (g)

bii=0=0=0=0
=1=1bi=1=1=1=1

t=0 t>0 t=0

(e) (f)(e) (f)(e) (f) (g)

t>0

(g)(d) (h)

Fig. 8. Relying on user annotation for template topology is problematic,
as this extra annotation requires precision, while minor mistakes in the
template topology (b, f) can lead to visible artifacts in the final result (c, g).
Visible occlusion contours are blue, hidden are red.

5 INBETWEENING
Once the two template meshes are computed at the initial and final
key frames respectively (Fig. 4d), we now can use these templates to
deform the input images. For any intermediate time 0 < � < 1, we
leverage the input skeletal motion �� (�) to deform both templates
into the same pose (Sec. 5.1, Fig. 4e). Then, in Sec. 5.2, we perform the
blending optimization, where we leverage those deformed frames to
generate series of potential interpolations via a frame interpolation
method, and solve an optimization problem on a graph to find the
optimal inbetweening frame sequence.

5.1 Texturing and Animation
We first texture each template mesh using the input image. If the
input key frame does not have any occlusions, then all the triangles
in the template mesh are visible, so we use the input image directly
as the texture for the overlaid template mesh. As the mesh and the
texture are already in the common coordinate frame, we use the
(�,�) coordinates of the mesh as the (�,) texture coordinates.
If there is at least one occlusion region, however, some triangles

in the template mesh will be occluded. By construction, no template
mesh edge can intersect the boundary of an occlusion region, so each
template triangle (except perhaps its edges) is either fully inside the
occlusion region or fully outside. All the triangles outside occlusions
regions get textured as above.
Inside each occlusion region, containing at least two layers, we

need to first identify the depth order of layers. We leverage the
template, as well as the point constraints (Sec. 4.2), and the depth
order of bones or joints in the occlusion region to estimate average
depth of each layer within the occluded region. To this end, we use
Bounded Biharmonic skinning, which works on the non-manifold
meshes [Jacobson et al. 2011]. Once the skinning weights are com-
puted, we use them to assign the depth value for each vertex as
simply the sum of the depth values for involved joints multiplied
by their skinning weight. We then average these values over each
layer of the occluded region, and select the layer with the smaller
depth as the front layer. The front layer is visible, so we texture it
as previously by simply projecting the input image.
Each occluded layer of triangles, however, is not visible, so the

current key frame does not contain its texture. To texture it, we first
attempt to use the texture from the other key frame: we deform the
template to the other pose using our nonlinear optimization in Eq. 1,
and test whether it falls into any occlusion region of the other key
frame. If it is fully outside, we texture that triangle using that other
key frame. If, however, even after the deformation, the triangle is

either fully or partially occluded, we cannot texture it, so we use
a state-of-the-art inpainting algorithm [Suvorov et al. 2021] which
works for images with high resolution.

We then deform both textured skinned templates for each inter-
mediate time step 0 < � < 1 using the same optimization in Eq. 1,
resulting in two bitmap frame sequences �→(�) and �←(�) for for-
wards and backwards animation sequences respectively (Fig. 4e).
The deformation can be also done with the computed skinning
weights; the difference between those deformations is not very sig-
nificant for our final results.

5.2 Blending Optimization
Two deformed image sequences, �→(�) and �←(�) follow the skeletal
motion, so at every time step they are in the same pose. However,
these deformed templates carry different textures, one from each
keyframe only. In this section, we find an optimal interpolation
between these sequences that becomes our final inbetweening.

First, for each time intermediate time step 0 ≤ � ≤ 1, we compute
a sequence of frames interpolating the pair of images �→(�) and
�←(�) using a pre-trained frame interpolation model RIFE [Huang
et al. 2022] with their default parameters. Even though it is not
currently state of the art, in all our experiments it performed better
than the newer methods. One of the core comporenents of Huang
et al. [2022] is predicting an optical flow vector field deforming one
image into another.
More specifically, at every time step the model interpolates two

images, producing an image � (�, �) =
 (�→(�), �←(�), �). The 0 ≤
� ≤ 1 is the interpolation parameter, such that � (0, �) = �→(�), and
� (1, �) = �←(�). We thus get a matrix of images � (�, �) (Fig. 9a).

We now need to select a sequence of frames � (�� , ��), ��+1 > �� con-
necting the keyframes � (0, 0) and � (1, 1), corresponding to a path in
the image matrix connecting the top-left and bottom-left images. A
naïve choice would be as follows: set � = � , i.e., with increasing time
we increase the weight of the final keyframe. This naïve strategy,
corresponding to the red diagonal of the image matrix in Fig. 9a,
even though it formally interpolates the two drawings, may create
ghosting artifacts and flickering (Fig.9c, bottom and Supplementary
video). There are two main sources of these issues: the quality of
RIFE interpolation and the quality of texture inpainting. RIFE, es-
pecially for two significantly different drawings, even deformed to
the same pose, often fails to find a reasonable optical flow, creating
ghosting artifacts. Similarly, inpainting algorithms are also often
unreliable and can lead to artifacts.
We seek to minimize the visual artifacts of that sort. Our main

observation is that if one of the input keyframes contains less oc-
clusions, we can use more of it in the final optimization to get a
better quality inbetweening. For instance, if the first keyframe in
Fig. 9, corresponding to � (0, 0) contains less occlusions than the
second frame, our path should stay closer to the left side of the
matrix. Furthermore, the quality of RIFE interpolation is different
for different time steps; our path should prefer moving horizontally
for the � values with better interpolations.

Following these observations, we define two metrics, texture qual-
ity, measuring how much inpainting could affect that frame, and
interpolation quality, measuring the quality of RIFE output. At a

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

246:10 • Brodt and Bessmeltsev

time step 𝑡 , for both 𝐼← (𝑡) and 𝐼→ (𝑡), we define texture quality
𝑞(𝐼) as simply intersection over union (IoU) of the inpainted area
in that pose. Note that 𝑞(𝐼→ (0)) = 𝑞(𝐼← (1)) = 1, because in the
original keyframes none of the inpainted areas are visible. As we
deform the keyframes, however, some initial occluded areas become
visible, decreasing 𝑞, indicating the ’loss’ of texture quality. We thus
set 𝑞(0, 𝑡) and 𝑞(1, 𝑡) to these values and set 𝑞(𝛼, 𝑡) using linear
interpolation of those.
To measure the interpolation quality of RIFE, we prefer how in-

compressible, for instance, purely translational, optical flows, deform
the texture.We thereforemeasure𝑄 (𝑡) as

∫
𝐼
| | div 𝑣 (𝑡) | |2, where 𝑣 (𝑡)

is the RIFE optical flow at time 𝑡 , represented as a 2D vector field,
and div is the divergence operator. Note that it does not depend on
𝛼 , only on 𝑡 , so it is a constant per row in the image matrix.

Equipped with those two metrics, we form a graph where each
vertex corresponds to an image in the matrix and edges connect
all the vertices between 𝑡 and 𝑡 + 1 that have 𝛼𝑖 − 𝛼 𝑗 < 𝜀. Here
the parameter 𝜀 controls the smoothness of the final animation; in
our experiments we set it to 0.02. We set a cost of each vertex as
𝑞(𝐼), and cost of each edge as 0.5(𝑄 (𝑡) + 𝑄 (𝑡 + 1)). We then find
the shortest path in that graph connecting 𝐼→ (0) with 𝐼← (1) using
Dijkstra’s algorithm, trivially converting the vertex costs into an
additional term in the edge costs. This graph represents the best
quality interpolation between the two keyframes, completing the
stage of blending optimization, and forming our final result (Fig. 9c,
top).

6 RESULTS AND VALIDATION
So far we have shown a few examples of in-between frames, algo-
rithmically generated from two given bitmap character drawings,
skeletal motions, and T-junctions (Fig. 1, 4). Our system allows to
generate inbetween frames for close or distant key frames, operating
with unrestricted bitmap drawings, but fully controlled by the given
skeletal animation — a task inaccessible to previous work. Our novel
optimization allows us to successfully resolve occlusions typical for
character drawings, see, e.g., Fig. 10, Fig. 11 for additional results.
Note that we support both planar motions (e.g., santa, snowman in
Fig. 10) and complex 3D motions (e.g., pirate in 15). Most of these
input keyframes contain occlusions, such as crossed legs or arms;
our algorithm successfully resolves all of them. A few of our inputs
contain complex occlusions, where more than two body parts oc-
clude each other in the same 2D location (Fig. 9, boy’s right arm is
behind the body that is behind his left arm, snowman in Fig. 11). Our
method successfully handles these challenging situations. For all
the examples, our method convincingly creates smooth animations
(see the supplementary video), consistent with the drawn keyframes
and the 3D skeletal animation.
We generate the skeletons directly

from the bitmap keyframes using
Sketch2Pose [Brodt and Bessmeltsev
2022] with their default parameters. Of-
ten the skeletons their method outputs
need minor adjustments (see inset), like
changing the position of a few joints
or switching left to right. These adjustments normally take 10-20

seconds on average per keyframe. Skeletal motion between those
keyframes can be either generated automatically or animated using
standard animation software, such as Autodesk Maya.
We run our algorithm with the same set of parameters on all

inputs. The least robust part of our algorithm is the occlusion masks
prediction network, which may be inaccurate for some drawings.
We use the automatic prediction as-is for almost all the results; we
manually adjusted the predicted masks for the girl from [Dvorožňák
et al. 2018] (Fig. 16), the frog (Fig. 10) and Santa (Fig. 11). Each
adjustment took 15-30s on average (see Supplementary). In total,
after a simple training, a non-professional can do all the annotations
for a pair of input images, i.e., adjust the Sketch2Pose skeleton, add
T-junctions, and possibly adjust the masks in less than 90 seconds
on average.

We validate the key aspects of our method in a number of ways.
The questionnaires used in the evaluations, detailed results, and
complete comparisons are included in our supplementary.

Ground Truth comparisons. We have compared our algorithmic
results with ground truth, manual inbetweening results made by pro-
fessional animators. As ground truth, we took a classical animation
feature film, Aladdin and His Wonderful Lamp [Studios 1939], one
of rare examples of manually inbetweened 2D animations in public
domain. Since there is no way of knowing which frames were keys
in the original animation, we chose seven sets of three consecutive
frames and created skeletal motions for each triplet. We then use the
first and the third frames and generate the second one (𝑡 = 0.5) with
our system.We show comparison results on a single triplet of frames
in Fig. 17. We note that even though the ground truth has somewhat
sharper lines, our result is an equally plausible inbetweening. We
also observe that professional inbetweeners added some motion
blur into the animation (Fig. 17, bottom example, 𝑡 = 0.5, fists).
While by default our system prefers a sharp inbetweening, one can
use the velocities of the template mesh vertices to generate such
motion blur if desired. Those can be considered examples of tight
inbetweening with our system. The frame interpolation methods
(Fig. 17, bottom) are unable to faithfully inbetween these frames,
resulting in either blurred or anatomically incorrect in-betweens.
Note that this is precisely the scenario for which those systems are
designed; the only difference is that videos they are trained on often
have higher frame rate. Our deformable template helps preserve
anatomical correctness, and our novel blending optimization helps
minimize the blur due to frame interpolation.

We manually removed the background on each input image in the
ground truth animation. Being only trained on paper drawings with
white or grey background, our foreground segmentation network
(Sec. 4.1) is not designed to remove finished cartoon backgrounds.
This is intentional, since in traditional animation character ani-
mations are typically drawn separately from the background and
overlaid over backgrounds at the end.

We have additionally performed a quantitative evaluation of our
algorithmic results, comparing it with the frame interpolation meth-
ods on the standard metrics, such as PSNR (Peak signal-to-noise
ratio), SSIM (Structural similarity), LPIPS (Learned Perceptual Im-
age Patch Similarity) [Zhang et al. 2018] based on deep learning
image classification features, and CD (Chamfer Distance) [Chen

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

Skeleton-Driven Inbetweening of Bitmap Character Drawings • 246:11

t=0 t=1t=0.2 t=0.4 t=0.6 t=0.8

(a) (b) (c)

t=0 t=0.2 t=0.4 t=0.6t=0.2 t=0.4 t=0.6t=0.2 t=0.4 t=0.6t=0.2 t=0.4 t=0.6t=0.2 t=0.4 t=0.6 t=0.8t=0.2 t=0.4 t=0.6 t=0.8t=0.8t=0.2 t=0.4 t=0.6

Fig. 9. Starting with the deformation sequences of both keyframes (corresponding to leftmost and rightmost columns in (a)), we use a pre-trained model to
create interpolation frames at every time step, yielding an image matrix. We then define image quality and interpolation quality metrics and find an optimal
path connecting the first keyframes (top-left image) with the second keyframe (bottom-right) ((b), green path and (c), top). Note that a naïve strategy of
picking the diagonal (b, red) often leads to ghosting artifacts (c, bottom).

t=0 t=1t=1

t=1

t=1

t=2t=2t=2

t=1

t=1t=1t=1t=1t=1t=1
t=0

t=0

Fig. 10. Results gallery. The images marked as � = 0, 1, 2 are input. Lizard lady © Jared Dillon.

and Zwicker 2022]. The results, averaged over the seven triplets of
frames, are presented in Table 1; our method performs the best on all
these metrics. We note, however, that none of these metrics, except
for, perhaps LPIPS, are based on human perception, and therefore
are not reliable indicators of inbetweening quality.

Comparison to Vector Inbetweening. We additionally compare our
inbetweening with a state-of-the-art vector inbetweening methods
of Siyao et al. [2023] (Fig. 14) in a few scenarios. For comparison
with [Siyao et al. 2023], we vectorized the input images (marked as
� = 0, � = 1) with a line drawing vectorization method [Bessmelt-
sev and Solomon 2019] using their default parameters (Fig. 14, left
and right in the second row) and ran the inbetweening system of
[Siyao et al. 2023]. We can see that the vector-based method [Siyao
et al. 2023] struggles to in-between the two drawings (second row),
perhaps due to their drastically different topology and number of
strokes. To exclude the influence of the artifacts in the automatic

vectorization, we then vectorized the input images manually by
tracing over the image with pixel accuracy and correct topology
and repeated this experiment (third row). This results shows that
even on manual vectorizations, their system is not robust enough,
perhaps because it targets very tight inbetweening only, or perhaps
because it was trained on synthetic data and does not generalize
well to natural drawings. We ran our system on the raster drawings
directly (top row). The input drawings contain no occlusions, so we
did not specify any T-junctions. Our method does not depend on the
drawing topology and successfully inbetweens these two drawings.

Comparison to Raster Inbetweening. In Figure 13 we compare our
results to some of the modern video frame interpolation systems,
including AnimeInterp [Siyao et al. 2021], FILM [Reda et al. 2022],
RIFE [Huang et al. 2022], SAFA [Huang et al. 2024], and EISAI [Chen
and Zwicker 2022]. We run all the methods with default parameters.
We could not run SAFA in the original resolution, since it requires

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

246:12 • Brodt and Bessmeltsev

t=1t=0

t=0

t=0

t=0

t=1

t=1

t=1

t=0

Fig. 11. Additional results gallery. The images marked as � = 0, 1 are input.

more GPU RAM that we had, so for that method we downscaled the
input images to 512 × 512px. As the figure demonstrates, together
with Fig. 3, frame interpolation methods, trained on high FPS videos,
are not designed to perform inbetweening for distant keyframes.
Often the interpolations they produce contain blur, ghost images,

and other artifacts. In contrast, our method (top) produces sharp in-
betweens even for such complex cases with occlusions. We include
more comparison results in the supplementary materials.
We compare our method with the inbetweening method of [Mo

et al. 2024] (Fig. 15). Their method targets inbetweening of clean
bitmap line drawings, requiring a high-quality input vectorization

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

Skeleton-Driven Inbetweening of Bitmap Character Drawings • 246:13

t=0

t>0

Fig. 12. The optimized template can bemanipulated by the user and textures
are interpolated automatically. On the first row the user modifies the frame
at � = 0. On the second row the user modifies the intermediate frame at
time � > 0 (see the supplementary video).

as additional input. They do not provide code, so we can only run
their inputs in our system. As the figure demonstrates, our method,
despite not requiring any vector input, is capable of producing an
inbetweening of comparable quality. Note that a simple example
on the bottom shows that our method is also easily generalizable
to non-humanoid characters; only the mask prediction networks
need to be retrained for such case, the rest of the pipeline remains
unchanged.

We additionally compare our method with [Dvorožňák et al. 2018;
Fan et al. 2018; Hinz et al. 2022] (Fig. 16). Our results have quality
comparable with ToonSynth [Dvorožňák et al. 2018]. As discussed in
Sec. 2, Dvorožňák et al. [2018] requires a whole sequence of images
and a full and precise manual puppet construction [Hinz et al. 2022].
In contrast, we only require two keyframes with a few junction
points — the only annotation, apart from the skeleton. Furthermore,
their results are limited to an animation of a puppet with the fixed
topology. In contrast, our method is capable of interpolating images
with vastly different topologies and geometries (e.g. Fig. 9). We
cannot run their method on our inputs (no code available).

In Fig. 16, we also compare with the method of Hinz et al. [2022]
which we run with their pretrained models for the ’red-haired boy’
and the ’lady in the pink top’ (250x250px) and train our model for Ja-
far (720x720px) on 11 frames with default parameters. Their method
does not interpolate the given keyframes, they can only generate
images that are similar to the keyframes, which is incompatible
with a typical animation pipeline (notice the distorted details on
keyframes). Their results on the images we tried replicate the over-
all style of the drawings, but are often anatomically incorrect and
blurry.
Finally, we compare our method to the one of [Fan et al. 2018].

They register a manually annotated layered puppet to new frames,
and hence use a fixed texture; do not target inbetweening. We run
our method on one of their results, demonstrating comparable qual-
ity (Fig. 16, bottom right).

Qualitative Comparison. We validate the quality of our results
by comparing them to the alternative via a comparative perceptual
study. As the alternative methods we chose Dvorožňák et al. [2018],
Mo et al. [2024], and Huang et al. [2022]. We chose the latter be-
cause, despite not being formally the state of the art in the frame

t=0 t=1

t=0.2 t=0.4 t=0.6 t=0.8

FILM

our results

AnimeInterp

SAFA

RIFE

EISAI

our results

t=0

our results

t=1

Fig. 13. Comparisons of our inbetweening results (top) with video frame
interpolation methods: AnimeInterp [Siyao et al. 2021], FILM [Reda et al.
2022], RIFE [Huang et al. 2022], SAFA [Huang et al. 2024], and EISAI [Chen
and Zwicker 2022].

interpolation, it visually performed the best on our inputs among its
competitors. Study participants were shown input sketches, together
with our algorithmic in-betwening result image and an alternative
frame interpolation method result for the same time � = 0.5. Since
neither [Mo et al. 2024] nor the frame interpolation methods do not
offer artistic control via a skeleton, we did not show the desired

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

246:14 • Brodt and Bessmeltsev

t=0.2 t=0.4 t=0.6 t=0.8t=0 t=1

ours

AnimeInbet
manual

vectorization

ours

t=0

AnimeInbet
manual

vectorization

t=0.2

vectorization

t=0.4 t=0.6 t=0.8 t=1

AnimeInbet
automatic

vectorization

Fig. 14. Vector-based inbetweening systems, such as AnimeInbet [Siyao
et al. 2023] (middle and bottom) often struggle to perform inbetweening for
two vectorized drawings, due to significant topological changes. Whether
the drawing is carefully vectorized by an artist (bottom) or automatically
via a standard algorithm (middle) has little effect on the final result. Our
system (top) works directly with raster drawings and has no constraints on
topology of input drawings (top).

JoSTC

t=0 t=1

ours

JoSTC

ours JoSTC
t=1

t=0

JoSTCJoSTC

ours JoSTC
t=1

t=0

Fig. 15. Compared to [Mo et al. 2024], our method can produce similar
results. Their method, however, requires a clean vectorization as an input,
which is hard or impossible to get for more complex images with texture;
we directly work with raster images.

skeletal pose to the participants, to avoid bias. The two input images
were shown on the top, marked as A and B, and the two inbetween-
ing results were placed at the bottom in random order and marked
as "C" and "D". Participants were then asked "Which of the images
below, C or D, more accurately captures a frame of an animation

PSNR (↑) SSIM (↑) LPIPS (↓) CD (↓)

AnimeInterp 17.076 0.808 18.735 32.710
FILM 16.781 0.796 17.423 32.689
EISAI 16.843 0.797 16.900 32.866
RIFE 17.087 0.803 16.793 32.492
SAFA 16.108 0.786 20.252 32.706

ours 18.594 0.823 13.809 23.611

Table 1. Quantitative evaluation of our method and a few video frame
interpolation methods, compared with ground truth in-betweens, on a
range of standard quality metrics. All the scores are averaged over 7 chosen
frames in Alladin and his wonderful lamp. PSNR is Peak Signal-To-Noise
Ratio, SSIM is structural similarity, LPIPS [Zhang et al. 2018] measures
perceived image quality, CD is Chamfer distance between dark pixels [Chen
and Zwicker 2022]. LPIPS is scaled by 102, CD by 105.

between A and B? If both are equally acceptable, choose ’Both’. If
neither, select ’Neither’". We included 20 questions. We collected
answers for each query from 17 different participants, including
10 males and 7 females, age ranging from 23 to 50 years; 3 were
artists. The full layout, as well as the study data, is presented in the
supplementary.

Fig. 18 summarizes the results. Participants preferred our results
over the one of competitor methods 71.5% of the time, ranked our
methods on par 25.7% of the time, and preferred the alternative only
0.6% of the time. This study convincingly demonstrates that the
inbetweening results we produce are more consistent with viewer
expectation than the ones produced by previous approaches.

Qualitative Evaluation. Weasked 3 artists and 14 non-professionals
to comment on the results of our algorithm. We showed them each
pair of input and our algorithmic result and asked to comment on
the following statement, separately for each pair, "This in-between
frame captures the artist intended animation frame for the given
pose.", with 5 Likert-type reply options: "Strongly disagree" (-2), "Dis-
agree" (-1), "Neither disagree nor agree" (0), "Agree" (1), "Strongly
Agree" (2). On average, the respondents agreed with the statement
(� = 1.55, ��� = 0.2). The layout of the study and the results are
presented in the Supplementary.

Interactive Manipulation. Once the template is computed, a user
can interactively manipulate the template by changing the given
skeletal animation and seeing the results in real time (Fig. 12 and
the accompanying video). For efficient visualization purposes, we
use the diagonal texture interpolation strategy (Sec. 5.2).

Performance. We have implemented our system in a combination
of C++, Python with PyTorch and OpenGL/GLSL, and measured
the performance on our desktop machine (single Intel® Core™ i7-
9700K CPU @ 3.60GHz with NVIDIA® GeForce® RTX 2080Ti).
On average, full inbetweening of a pair of bitmap images takes
roughly half a minute. The performance depends on the number
of occlusion regions, the number of specified T-junctions, and the
number of edges in each region. The complete performance statistics
are presented in Table 2. The optimization is done on a single CPU
core, only mask prediction and frame interpolation require a GPU.

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

Skeleton-Driven Inbetweening of Bitmap Character Drawings • 246:15

ours

CharacterGAN

t=0 t=1

CharacterGANCharacterGANCharacterGANCharacterGAN

ours

CharacterGAN

t=0.2 t=0.4 t=0.6 t=0.8t=0 t=1

t=0 t=1

oursours

t=0 t=1

ToonSynth

t=1 t=0 t=1t=1

t=0 t=0.4 t=0.6t=0.4 t=0.6t=0.2 t=0.4 t=0.6t=0.4 t=0.6t=0.2

ours

ToonSynth

t=0 t=1

t=0.4 t=0.6t=0.4 t=0.6t=0.4 t=0.6t=0.4 t=0.6t=0.4 t=0.6

t=1t=1

t=0.4 t=0.6t=0.4 t=0.6t=0.4 t=0.6

t=1t=1

t=1t=0.8t=0.8

ours

ToonCap

t=0 t=1

Fig. 16. Compared to ToonSynth [Dvorožňák et al. 2018], our results have comparable quality; in contrast to their system that requires often dozens of images
and fully manual puppet construction, we only need two and minimal annotation; the template is optimized. CharacterGAN [Hinz et al. 2022] does not
perform inbetweening in the sense of interpolating the input images, they synthesize similar images, which may not be acceptable. Overall, their results often
have inferior quality. ToonCap [Fan et al. 2018] does not perform inbetweening; our method can produce similar results on their input data.

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

246:16 • Brodt and Bessmeltsev

AnimeInterp FILM EISAI RIFE SAFA ours

t=0.5 (ground truth)t=0 t=1

SAFA ours

t=1

AnimeInterp FILM EISAI RIFE SAFA ours

t=0.5 (ground truth)t=0 t=1

SAFA ours

t=1

Fig. 17. A comparison of our method and video frame interpolation methods with the ground truth inbetweening, made by professional animators. While
professional animators produce sharper frames, our results are visually plausible and consistently better than the state of the art.

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

Skeleton-Driven Inbetweening of Bitmap Character Drawings • 246:17

71.5 25.7

Fig. 18. Comparative preferences in our perceptual study. Participants con-
sistently preferred our results over the one of competitor methods.

occ odd cut |� | |� | time (s)

Running girl 1 1 20 382 543
3 2 57 580 863 31

Lizard lady 1 1 14 296 417
1 1 24 328 470 18

Onion person 3 1 35 778 1129
1 0 0 374 504 62

Running boy 1 0 0 463 631
1 0 0 481 646 41

Santa 1 0 0 426 598
0 0 0 281 368 35

Frog 1 0 0 427 568
0 0 0 291 364 33

Ballerina in a tutu 0 0 0 227 300
0 0 0 232 308 10

Snowman 1 1 36 412 591
1 0 0 470 666 29

Table 2. Performance statistics for the input images. Columns: the number
of occlusion masks (‘occ’), number of segments with different end types
(‘odd’), number of edges for such contours (‘cut’), mesh vertices (|� |), mesh
faces (|� |), total time. For each character, we include only the first pair
of input images in the statistics. The time includes our optimization and
deforming the meshes. Frame interpolation and rendering is real time for
image resolution 500 × 500 px. (Sec. 5.2).

Limitations. Even though many of the motions we demonstrate
are inherently non-planar and include some 3D rotation (e.g., the
pirate in Fig. 15, Jafar in Fig. 17), in general we rely on frame inter-
polation backbone to deal with out-of-plane motion, which might
lead to some unnatural inbetweening (the face in Fig. 19).

For optimal quality we assume that each body part that is visible
during the animation, is drawn on at least one keyframe; otherwise,
it will be inpainted, sometimes leading to suboptimal results. This
can be resolved by converting one of the inbetween frames into a
keyframe and editing that part of the drawing.

The quality of our inbetweens is also limited by the frame inter-
polation network and the inpainting method we use; progress in
these areas will improve our final results.

7 CONCLUSIONS AND FUTURE WORK
We have presented and validated a novel method for bitmap char-
acter inbetweening, offering artistic control via a 3D skeleton ani-
mation. Our system combines modern deep learning components

t=0 t=1

Fig. 19. For a strong out-of-plane rotation, our system relies on frame inter-
polation backbone only, which might lead to unnatural inbetweening.

with an optimization inferring the topology of the deformable tem-
plate. Our method successfully performs inbetweening for distant
keyframes, with or without occlusions, with vastly different geome-
try and topology — a task of the complexity mostly inaccessible to
previous methods.

Our work raises many questions for future research. An interest-
ing exploration would be supporting strongly out-of-plane motions
with significant perspective foreshortening, which might require a
fully 3D deformable template. Another direction would be to gener-
alize our method to supporting characters with props or multiple
characters in the same frame.

ACKNOWLEDGMENTS
We would like to thank Karl-Étienne Bolduc for his help with the
figures. We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC) under Grant
No.: RGPIN-2019-05097 (“Creating Virtual Shapes via Intuitive In-
put”), RGPIN-2024-04968 ("Modelling and animation via intuitive
input"), and the NSERC - Fonds de recherche du Québec - Nature et
technologies (FRQNT) NOVA Grant No. 314090.

REFERENCES
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.

2019. Optuna: A Next-generation Hyperparameter Optimization Framework. In Pro-
ceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining.

Yunfei Bai, Danny M. Kaufman, C. Karen Liu, and Jovan Popović. 2016. Artist-directed
dynamics for 2D animation. ACM Trans. Graph. 35, 4, Article 145 (jul 2016), 10 pages.
https://doi.org/10.1145/2897824.2925884

Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan
Yang. 2019. Depth-Aware Video Frame Interpolation. In IEEE Conference on Computer
Vision and Pattern Recognition.

N. Ben-Zvi, J. Bento, M. Mahler, J. Hodgins, and A. Shamir. 2016. Line-Drawing Video
Stylization. Computer Graphics Forum 35, 6 (2016), 18–32. https://doi.org/10.1111/
cgf.12729 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12729

Mikhail Bessmeltsev, Will Chang, Nicholas Vining, Alla Sheffer, and Karan Singh. 2015.
Modeling Character Canvases from Cartoon Drawings. Transactions on Graphics
(2015) 34, 5 (2015). https://doi.org/10.1145/2801134

Mikhail Bessmeltsev and Justin Solomon. 2019. Vectorization of Line Drawings via
Polyvector Fields. ACM Trans. Graph. 38, 1, Article 9 (Jan. 2019), 12 pages.

Kirill Brodt and Mikhail Bessmeltsev. 2022. Sketch2Pose: Estimating a 3D Character
Pose from a Bitmap Sketch. ACM Transactions on Graphics 41, 4 (7 2022). https:
//doi.org/10.1145/3528223.3530106

N. Burtnyk and M. Wein. 1976. Interactive Skeleton Techniques for Enhancing Motion
Dynamics in Key Frame Animation. Commun. ACM 19, 10 (oct 1976), 564–569.
https://doi.org/10.1145/360349.360357

Leonardo Carvalho, Ricardo Marroquim, and Emilio Vital Brazil. 2017. DiLight: Digital
light table – Inbetweening for 2D animations using guidelines. Computers & Graphics
65 (2017), 31–44. https://doi.org/10.1016/j.cag.2017.04.001

Edwin Catmull. 1978. The Problems of Computer-Assisted Animation. SIGGRAPH
Comput. Graph. 12, 3 (aug 1978), 348–353. https://doi.org/10.1145/965139.807414

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

https://doi.org/10.1145/2897824.2925884
https://doi.org/10.1111/cgf.12729
https://doi.org/10.1111/cgf.12729
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12729
https://doi.org/10.1145/2801134
https://doi.org/10.1145/3528223.3530106
https://doi.org/10.1145/3528223.3530106
https://doi.org/10.1145/360349.360357
https://doi.org/10.1016/j.cag.2017.04.001
https://doi.org/10.1145/965139.807414

246:18 • Brodt and Bessmeltsev

Jiawen Chen, Sylvain Paris, Jue Wang, Wojciech Matusik, Michael Cohen, and Frédo
Durand. 2011. The video mesh: A data structure for image-based three-dimensional
video editing. In 2011 IEEE International Conference on Computational Photography
(ICCP). 1–8. https://doi.org/10.1109/ICCPHOT.2011.5753118

J. Chen, X. Zhu, M. Even, J. Basset, P. Bénard, and P. Barla. 2023. Efficient Interpolation of
Rough Line Drawings. Computer Graphics Forum 42, 7 (2023), e14946. https://doi.org/
10.1111/cgf.14946 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14946

Shuhong Chen and Matthias Zwicker. 2022. Improving the Perceptual Quality of 2D
Animation Interpolation. In Proceedings of the European Conference on Computer
Vision.

Boris Dalstein, Rémi Ronfard, and Michiel van de Panne. 2015. Vector Graphics Anima-
tion with Time-Varying Topology. ACM Trans. Graph. 34, 4 (July 2015).

Marek Dvorožňák, Wilmot Li, Vladimir G. Kim, and Daniel Sýkora. 2018. ToonSynth:
Example-Based Synthesis of Hand-Colored Cartoon Animations. ACM Transactions
on Graphics 37, 4, Article 167 (2018).

Marek Dvorožňák, Daniel Sýkora, Cassidy Curtis, Brian Curless, Olga Sorkine-Hornung,
and David Salesin. 2020. Monster Mash: A Single-View Approach to Casual 3D
Modeling and Animation. ACM Transactions on Graphics (Proceedings of SIGGRAPH
Asia 2020) 39, 6 (2020), 214.

Melvin Even, Pierre Bénard, and Pascal Barla. 2023. Non-linear Rough
2D Animation using Transient Embeddings. Computer Graph-
ics Forum 42, 2 (2023), 411–425. https://doi.org/10.1111/cgf.14771
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14771

Xinyi Fan, Amit H Bermano, Vladimir G Kim, Jovan Popović, and Szymon Rusinkiewicz.
2018. Tooncap: A layered deformable model for capturing poses from cartoon
characters. In Proceedings of the Joint Symposium on Computational Aesthetics and
Sketch-Based Interfaces andModeling andNon-Photorealistic Animation and Rendering.
1–12.

Tsukasa Fukusato and Akinobu Maejima. 2022. View-Dependent Deformation for
2.5-D Cartoon Models. IEEE Computer Graphics and Applications 42, 5 (2022), 66–75.
https://doi.org/10.1109/MCG.2022.3174202 Publisher Copyright: © 1981-2012 IEEE..

Olga Guţan, Shreya Hegde, Erick Jimenez Berumen, Mikhail Bessmeltsev, and Ed-
ward Chien. 2023. Singularity-Free Frame Fields for Line Drawing Vectorization.
Computer Graphics Forum 42, 5 (2023), e14901. https://doi.org/10.1111/cgf.14901
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14901

Tobias Hinz, Matthew Fisher, Oliver Wang, Eli Shechtman, and Stefan Wermter. 2022.
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
1988–1997.

Berthold K.P. Horn and Brian G. Schunck. 1981. Determining Optical Flow. Artificial
Intelligence 17, 1 (1981), 185–203. https://doi.org/10.1016/0004-3702(81)90024-2

Zhewei Huang, Ailin Huang, Xiaotao Hu, Chen Hu, Jun Xu, and Shuchang Zhou.
2024. Scale-Adaptive Feature Aggregation for Efficient Space-Time Video Super-
Resolution. InWinter Conference on Applications of Computer Vision (WACV).

Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and Shuchang Zhou. 2022. Real-
Time Intermediate Flow Estimation for Video Frame Interpolation. In Proceedings of
the European Conference on Computer Vision (ECCV).

Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded Biharmonic
Weights for Real-Time Deformation. ACM Trans. Graph. 30, 4, Article 78 (jul 2011),
8 pages. https://doi.org/10.1145/2010324.1964973

Eakta Jain, Yaser Sheikh, Moshe Mahler, and Jessica Hodgins. 2012. Three-dimensional
proxies for hand-drawn characters. ACM Trans. Graph. 31, 1, Article 8 (Feb. 2012),
16 pages.

Jie Jiang, Hock Soon Seah, and Hong Ze Liew. 2022. Stroke-Based Draw-
ing and Inbetweening with Boundary Strokes. Computer Graph-
ics Forum 41, 1 (2022), 257–269. https://doi.org/10.1111/cgf.14433
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14433

Tarun Kalluri, Deepak Pathak, Manmohan Chandraker, and Du Tran. 2023. FLAVR:
Flow-Agnostic Video Representations for Fast Frame Interpolation. In 2023 IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV). 2070–2081. https:
//doi.org/10.1109/WACV56688.2023.00211

Olga A. Karpenko and John F. Hughes. 2006. SmoothSketch: 3D free-form shapes from
complex sketches. ACM Trans. Graph. 25, 3 (jul 2006), 589–598. https://doi.org/10.
1145/1141911.1141928

Alan Kitching. 1977. Antics—Graphic animation by computer. Computers & Graphics 2,
4 (1977), 219–223. https://doi.org/10.1016/0097-8493(77)90018-8

Jan J. Koenderink and Andrea J. van Doorn. 1982. The Shape of Smooth Objects and the
Way Contours End. Perception 11, 2 (1982), 129–137. https://doi.org/10.1068/p110129
arXiv:https://doi.org/10.1068/p110129 PMID: 7155766.

Alexander Kort. 2002. Computer Aided Inbetweening. In Proceedings of the 2nd Interna-
tional Symposium on Non-Photorealistic Animation and Rendering (Annecy, France)
(NPAR ’02). Association for Computing Machinery, New York, NY, USA, 125–132.
https://doi.org/10.1145/508530.508552

Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated Quadratic
Proxy for Geometric Optimization. ACM Trans. Graph. 35, 4, Article 134 (jul 2016),
11 pages. https://doi.org/10.1145/2897824.2925920

Minchen Li, Danny M. Kaufman, Vladimir G. Kim, Justin Solomon, and Alla Sheffer.
2018. OptCuts: Joint Optimization of Surface Cuts and Parameterization. ACM
Transactions on Graphics 37, 6 (2018). https://doi.org/10.1145/3272127.3275042

Xiaoyu Li, Bo Zhang, Jing Liao, and Pedro V. Sander. 2022. Deep Sketch-Guided Cartoon
Video Inbetweening. IEEE Transactions on Visualization and Computer Graphics 28,
8 (aug 2022), 2938–2952. https://doi.org/10.1109/TVCG.2021.3049419

Dongquan Liu, Quan Chen, Jun Yu, Huiqin Gu, Dacheng Tao, and Hock Soon Seah. 2011.
Stroke Correspondence Construction Using Manifold Learning. Computer Graphics
Forum 30, 8 (2011), 2194–2207. https://doi.org/10.1111/j.1467-8659.2011.01969.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.01969.x

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graphics
(Proc. SIGGRAPH Asia) 34, 6 (Oct. 2015), 248:1–248:16. https://doi.org/10.1145/
2816795.2818013

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization. In
International Conference on Learning Representations. https://openreview.net/forum?
id=Bkg6RiCqY7

James McCann and Nancy Pollard. 2009. Local Layering. In ACM SIGGRAPH 2009 Papers
(New Orleans, Louisiana) (SIGGRAPH ’09). Association for Computing Machinery,
New York, NY, USA, Article 84, 7 pages. https://doi.org/10.1145/1576246.1531390

R. Miyauchi, T. Fukusato, H. Xie, and K. Miyata. 2021a. Stroke Correspondence by
Labeling Closed Areas. In 2021 Nicograph International (NicoInt). IEEE Computer
Society, Los Alamitos, CA, USA, 34–41. https://doi.org/10.1109/NICOINT52941.
2021.00014

Ryoma Miyauchi, Yichen Peng, Tsukasa Fukusato, and Haoran Xie. 2021b. Skele-
ton2Stroke: Interactive Stroke Correspondence Editing with Pose Features. In
SIGGRAPH Asia 2021 Technical Communications (Tokyo, Japan) (SA ’21). Associ-
ation for Computing Machinery, New York, NY, USA, Article 6, 4 pages. https:
//doi.org/10.1145/3478512.3488612

Haoran Mo, Chengying Gao, and Ruomei Wang. 2024. Joint Stroke Tracing and Corre-
spondence for 2D Animation. ACM Transactions on Graphics (2024).

MariiaMyronova,WilliamNeveu, andMikhail Bessmeltsev. 2023. Differential Operators
on Sketches via Alpha Contours. ACM Trans. Graph. 42, 4, Article 69 (jul 2023),
15 pages. https://doi.org/10.1145/3592420

Simon Niklaus and Feng Liu. 2020. Softmax Splatting for Video Frame Interpolation. In
IEEE Conference on Computer Vision and Pattern Recognition.

Jorge Nocedal and Stephen J. Wright (Eds.). 1999. Numerical Optimization. Springer-
Verlag, New York. https://doi.org/10.1007/b98874

G. Noris, D. Sýkora, S. Coros, B. Whited, M. Simmons, A. Hornung, M. Gross, and
R. W. Sumner. 2011. Temporal Noise Control for Sketchy Animation. In Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation
and Rendering (Vancouver, British Columbia, Canada) (NPAR ’11). Association for
Computing Machinery, New York, NY, USA, 93–98. https://doi.org/10.1145/2024676.
2024691

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil
Khalidov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby,
Mido Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-
Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve
Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. 2024.
DINOv2: Learning Robust Visual Features without Supervision. Transactions on
Machine Learning Research (2024). https://openreview.net/forum?id=a68SUt6zFt

Ulrich Pinkall and Konrad Polthier. 1993. Computing Discrete Minimal Surfaces and
Their Conjugates. Experimental Mathematics 2, 1 (1993), 15–36. https://doi.org/10.
1080/10586458.1993.10504266 arXiv:https://doi.org/10.1080/10586458.1993.10504266

Omid Poursaeed, Vladimir Kim, Eli Shechtman, Jun Saito, and Serge Belongie. 2020.
Neural puppet: Generative layered cartoon characters. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 3346–3356.

Fitsum Reda, Janne Kontkanen, Eric Tabellion, Deqing Sun, Caroline Pantofaru, and
Brian Curless. 2022. FILM: Frame Interpolation for Large Motion. In European
Conference on Computer Vision (ECCV).

William T. Reeves. 1981. Inbetweening for Computer Animation Utilizing Moving
Point Constraints. SIGGRAPH Comput. Graph. 15, 3 (aug 1981), 263–269. https:
//doi.org/10.1145/965161.806814

Alec Rivers, Takeo Igarashi, and Frédo Durand. 2010. 2.5D Cartoon Models. ACM Trans.
Graph. 29, 4, Article 59 (jul 2010), 7 pages. https://doi.org/10.1145/1778765.1778796

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. CoRR abs/1505.04597 (2015). http:
//dblp.uni-trier.de/db/journals/corr/corr1505.html#RonnebergerFB15

Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D Quality Mesh Gener-
ator and Delaunay Triangulator. In Selected Papers from the Workshop on Applied
Computational Geormetry, Towards Geometric Engineering (FCRC ’96/WACG ’96).
Springer-Verlag, Berlin, Heidelberg, 203–222.

Li Siyao, Tianpei Gu, Weiye Xiao, Henghui Ding, Ziwei Liu, and Chen Change Loy.
2023. Deep Geometrized Cartoon Line Inbetweening. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 7291–7300.

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

https://doi.org/10.1109/ICCPHOT.2011.5753118
https://doi.org/10.1111/cgf.14946
https://doi.org/10.1111/cgf.14946
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14946
https://doi.org/10.1111/cgf.14771
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14771
https://doi.org/10.1109/MCG.2022.3174202
https://doi.org/10.1111/cgf.14901
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14901
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1145/2010324.1964973
https://doi.org/10.1111/cgf.14433
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14433
https://doi.org/10.1109/WACV56688.2023.00211
https://doi.org/10.1109/WACV56688.2023.00211
https://doi.org/10.1145/1141911.1141928
https://doi.org/10.1145/1141911.1141928
https://doi.org/10.1016/0097-8493(77)90018-8
https://doi.org/10.1068/p110129
https://arxiv.org/abs/https://doi.org/10.1068/p110129
https://doi.org/10.1145/508530.508552
https://doi.org/10.1145/2897824.2925920
https://doi.org/10.1145/3272127.3275042
https://doi.org/10.1109/TVCG.2021.3049419
https://doi.org/10.1111/j.1467-8659.2011.01969.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.01969.x
https://doi.org/10.1145/2816795.2818013
https://doi.org/10.1145/2816795.2818013
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1145/1576246.1531390
https://doi.org/10.1109/NICOINT52941.2021.00014
https://doi.org/10.1109/NICOINT52941.2021.00014
https://doi.org/10.1145/3478512.3488612
https://doi.org/10.1145/3478512.3488612
https://doi.org/10.1145/3592420
https://doi.org/10.1007/b98874
https://doi.org/10.1145/2024676.2024691
https://doi.org/10.1145/2024676.2024691
https://openreview.net/forum?id=a68SUt6zFt
https://doi.org/10.1080/10586458.1993.10504266
https://doi.org/10.1080/10586458.1993.10504266
https://arxiv.org/abs/https://doi.org/10.1080/10586458.1993.10504266
https://doi.org/10.1145/965161.806814
https://doi.org/10.1145/965161.806814
https://doi.org/10.1145/1778765.1778796
http://dblp.uni-trier.de/db/journals/corr/corr1505.html#RonnebergerFB15
http://dblp.uni-trier.de/db/journals/corr/corr1505.html#RonnebergerFB15

Skeleton-Driven Inbetweening of Bitmap Character Drawings • 246:19

Li Siyao, Shiyu Zhao, Weijiang Yu, Wenxiu Sun, Dimitris Metaxas, Chen Change Loy,
and Ziwei Liu. 2021. Deep Animation Video Interpolation in the Wild. In CVPR.

J Smith and S Schaefer. 2015. Bijective Parameterization with Free Boundaries. Acm
Transactions on Graphics 34, 4 (2015), 9. https://doi.org/10.1145/2766947

Olga Sorkine andMarc Alexa. 2007. As-Rigid-As-Possible SurfaceModeling. Proceedings
of the fifth Eurographics symposium on Geometry processing (2007), 109–116. https:
//doi.org/10.1007/s11390-011-1154-3 ISBN: 9783905673463.

Paul Starke, Sebastian Starke, Taku Komura, and Frank Steinicke. 2023. Motion In-
Betweening with Phase Manifolds. Proc. ACM Comput. Graph. Interact. Tech. 6, 3,
Article 37 (aug 2023), 17 pages. https://doi.org/10.1145/3606921

Fleischer Studios. 1939. Aladdin and His Wonderful Lamp. https://archive.org/details/
popeye-meets-aladdin.

Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii
Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. 2021. Resolution-robust Large Mask Inpainting with Fourier Convolu-
tions. arXiv preprint arXiv:2109.07161 (2021).

Daniel Sýkora, John Dingliana, and Steven Collins. 2009. As-Rigid-as-Possible Image
Registration for Hand-Drawn Cartoon Animations. In Proceedings of the 7th Inter-
national Symposium on Non-Photorealistic Animation and Rendering (New Orleans,
Louisiana) (NPAR ’09). Association for Computing Machinery, New York, NY, USA,
25–33. https://doi.org/10.1145/1572614.1572619

Daniel Sýkora, Ladislav Kavan, Martin Čadík, Ondřej Jamriška, Alec Jacobson, Brian
Whited, Maryann Simmons, and Olga Sorkine-Hornung. 2014. Ink-and-Ray: Bas-
Relief Meshes for Adding Global Illumination Effects to Hand-Drawn Characters.
ACM Transaction on Graphics 33, 2 (2014), 16.

D. Sýkora, D. Sedlacek, S. Jinchao, J. Dingliana, and S. Collins. 2010. Adding
Depth to Cartoons Using Sparse Depth (In)equalities. Computer Graphics Fo-
rum 29, 2 (2010), 615–623. https://doi.org/10.1111/j.1467-8659.2009.01631.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01631.x

Shuhei Watanabe. 2023. Tree-Structured Parzen Estimator: Understanding Its
Algorithm Components and Their Roles for Better Empirical Performance.
arXiv:2304.11127 [cs.LG]

Brian Whited, Gioacchino Noris, Maryann Simmons, Robert W. Sumner, Markus Gross,
and Jarek Rossignac. 2010. BetweenIT: An Interactive Tool for Tight Inbetweening.
Computer Graphics Forum 29, 2 (2010), 605–614. https://doi.org/10.1111/j.1467-
8659.2009.01630.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
8659.2009.01630.x

RichardWilliams. 2001. Animators Survival Kit: AWorking Manual Of Methods Principles
And Formulas For Computer (7th printing edition ed.). Faber & Faber, London.

Wenwu Yang, Hock-Soon Seah, Quan Chen, Hong-Ze Liew, and Daniel Sýkora. 2018.
FTP-SC: Fuzzy Topology Preserving Stroke Correspondence. Computer Graphics
Forum 37, 8 (2018), 125–135.

Jun Yu, Wei Bian, Mingli Song, Jun Cheng, and Dacheng Tao. 2012. Graph based
transductive learning for cartoon correspondence construction. Neurocomputing 79
(2012), 105–114. https://doi.org/10.1016/j.neucom.2011.10.003

Zhiyang Yu, Yu Zhang, Xujie Xiang, Dongqing Zou, Xijun Chen, and Jimmy S Ren. 2022.
Deep Bayesian Video Frame Interpolation. In European Conference on Computer
Vision. Springer, 144–160.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.

Haichao Zhu, Xueting Liu, Tien-Tsin Wong, and Pheng-Ann Heng. 2016. Globally
Optimal Toon Tracking. ACM Transactions on Graphics (SIGGRAPH 2016 issue) 35, 4
(July 2016), 75:1–75:10.

Yufeng Zhu, Jovan Popović, Robert Bridson, and Danny M. Kaufman. 2017. Planar
Interpolation with Extreme Deformation, Topology Change and Dynamics. ACM
Trans. Graph. 36, 6, Article 213 (nov 2017), 15 pages. https://doi.org/10.1145/3130800.
3130820

ACM Trans. Graph., Vol. 43, No. 6, Article 246. Publication date: December 2024.

https://doi.org/10.1145/2766947
https://doi.org/10.1007/s11390-011-1154-3
https://doi.org/10.1007/s11390-011-1154-3
https://doi.org/10.1145/3606921
https://archive.org/details/popeye-meets-aladdin
https://archive.org/details/popeye-meets-aladdin
https://doi.org/10.1145/1572614.1572619
https://doi.org/10.1111/j.1467-8659.2009.01631.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01631.x
https://arxiv.org/abs/2304.11127
https://doi.org/10.1111/j.1467-8659.2009.01630.x
https://doi.org/10.1111/j.1467-8659.2009.01630.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01630.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01630.x
https://doi.org/10.1016/j.neucom.2011.10.003
https://doi.org/10.1145/3130800.3130820
https://doi.org/10.1145/3130800.3130820

	2 Related Work
	3 Overview and Observations
	4 Algorithm
	4.1 Foreground and Occlusions Masks
	4.2 Template initialization
	4.3 Optimizing the template topology

	6 Results and Validation

