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Fig. 1. Given a rough 3D sketch (left, note small gaps that are intended to be connected), our variational optimization reconstructs a 3D surface that aims to
capture designer intent (right). One of the core goals of this optimization is to smoothly interpolate principal curvatures guided by the input strokes (center).

3D sketches are an effective representation of a 3D shape, convenient to

create via modern Virtual or Augmented Reality (VR/AR) interfaces or from

2D sketches. For 3D sketches drawn by designers, human observers can

consistently imagine the surface they imply, yet reconstructing such a surface

with modern methods remains an open problem. Existing methods either

assume a clean, well-structured 3D curve network (while in reality most 3D

sketches are rough and unstructured), or make no effort to produce a surface

consistent with perceptual observations. We propose a novel method that

addresses this challenge by designing a system that reconstructs a surface

that better aligns with human perception from a clean or rough set of 3D

sketches. As the topology of the desired surface is unknown, we use an

implicit neural surface representation, parameterized via its gradient field.

As suggested by previous perception and modelling literature, human

observers tend to imagine the surface by interpreting some of the input

strokes as representative flow-lines, related to the lines of curvature, and

imagining the surface whose curvature agrees with those. Inspired by these

observations, we design a novel loss that finds the surface with the smoothest

principal curvature field aligned with the input strokes. Together with ap-

proximation and piecewise smoothness requirements, we formulate a varia-

tional optimization that performs robustly on a wide variety of 3D sketches.

We validate our algorithmic choices via a series of qualitative and quantia-

tive evaluations, and comparisons to ground truth surfaces and previous

methods.
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1 Introduction
Powered by modern virtual reality (VR) interfaces, 3D sketches are

fast to create, intuitive, and expressive. They can capture the essence

of a 3D shape, while allowing for more flexibility and requiring less

specialized training than standard surface modelling tools. By their

design, many 3D sketches are drawn to convey a unique surface to

human observers, yet reconstructing that surface is still an unsolved

challenge.

One kind of 3D sketch, a structured curve network, is a set of clean
3D curves neatly connected at junctions and intersections (e.g. ,
Fig. 2). This type has been the focus of much of the previous research.

A common approach to surfacing structured curve networks is to

rely on their precise connectivity and to decompose them into loops

[Abbasinejad et al. 2011; Zhuang et al. 2013]. Each loop can be

then fitted separately by a surface patch [Malraison 2012], possibly

enforcing smoothness with adjacent surface patches if necessary. For

such curve networks, previous work observed that the input curves

are dominated by representative flow lines, roughly related to lines

of curvature but allowing for artistic license [Bordegoni and Rizzi

2011; Gahan 2010]. Viewers then mentally complete the network

of given flow lines, smoothly interpolating the given strokes and

following the given principal curvatures [Bessmeltsev et al. 2012;

Iarussi et al. 2015; Pan et al. 2015]. Mimicking this perceptual process,

the previous work proposed surfacing each loop by minimizing a

specialized flow-alignment energy that aligns principal curvature

field of the surface with a smooth flow field — a pair of directions

and magnitudes per point — aligned with the input strokes [Pan

et al. 2015].
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Fig. 2. Compared to more traditional regularizations like surface smooth-
ness or surface area (producingminimal surfaces), our flow alignment energy
(right) follows the perceptual observations, making the surface agree better
with observer’s expectations.

The majority of 3D sketches, however, are not clean and not struc-

tured; they contain overdrawing, imprecise junctions, and cannot

be easily decomposed into loops (Fig. 1, Fig. 11), making them inac-

cessible to those methods. While there are systems surfacing those

curve networks, for instance by simply converting them into point

clouds, they make no attempt to find perceptually valid surfaces.

Instead, they focus on particular, purely geometric desiderata like

(piecewise) smoothness, minimizing surface area, or developability

(Fig. 2). Thus, the problem of surfacing general 3D curve networks,

rough or clean, in a manner consistent with designer intent remains

an open challenge.

We address this challenge by introducing a novel system that

targets both clean and rough 3D sketches in a variational optimiza-

tion framework. The variational optimization allows our system

to be robust to the inaccuracies and inconsistencies in the input

sketch, while avoiding converting it into a point cloud that would

lose the tangent information. We represent the surface implicitly via

a gradient-domain neural network coupled with a high-resolution

Poisson equation solver via a Fast Fourier Transform. Using this rep-

resentation, we reformulate and reparameterize the flow alignment

energy, which forms the core component of our system, regularizing

surfaces in a manner consistent with designer perception.

Our main technical contributions are:

• a reformulation and reparameterization of the flow-alignment

energy to the implicit surface representation and

• a novel system for flow-aligned surfacing of 3D sketches or

clean curve networks.

We validate our system on a series of 3D sketches and clean curve

networks. We demonstrate that compared to previous works, our

surfaces better match designer intent both qualitatively (via visual

inspection) and quantitatively (via common metrics).

2 Related Work

2.1 Surfacing 3D Sketches
Progress in surfacing 3D sketches parallels advances in sketching

interfaces. Early systems emphasized clean 3D curve networks with

explicit connectivity, created via sketch-based interfaces [Bae et al.

2008; Schmidt et al. 2009] or lifted from 2D strokes [Cordier et al.

2013; Xu et al. 2014]. VR/AR tools such as TiltBrush, GravitySketch,

and Quill [Google 2016; GravitySketch 2017; Smoothstep 2021] popu-

larized intuitive 3D sketching but typically yield rough, unstructured

curve clouds [Arisoy et al. 2012], due to the lack of hand support and

fine motor control [Arora et al. 2017; Machuca et al. 2018]. Systems

like CASSIE [Yu et al. 2021] address this by consolidating sketches

in real time, at the cost of altering the natural sketching process.

Consequently, the methods of surfacing 3D sketches can be di-

vided into two groups: clean curve networks and rough sketches.

For the former, early works surface cycles independently [Abbasine-

jad et al. 2011; Orbay and Kara 2012; Sadri and Singh 2014; Zhuang

et al. 2013], extended by Rasoulzadeh et al. [2023] to imprecise

architectural sketches. More recent efforts reconstruct perceptu-

ally valid, flow-aligned surfaces [Bessmeltsev et al. 2012; Pan et al.

2015], which we explore in our work (Sec. 3). Most relevant, Pan

et al. [2015] initialize with minimal surfaces per cycle and deforms

them to align curvature with the induced flow field. Inspired by

this, we adapt their energy to neural implicit surfaces, enabling

reconstruction from rough sketches without stroke connectivity.

Our focus is surfacing both clean and rough 3D sketches. A pi-

oneering work [Arisoy et al. 2012] reconstructs a surface via a

deformation of an initial sphere mesh to match a gradient vector

field estimated from the input sketch. Guided by similar intuition,

Sureshkumar et al. [2025] deform a surface via solving a series of

biharmonic surface interpolations. Exploring similar ideas, a recent

work [Yu et al. 2022] proposes a complementary approach to ours

that deforms a given mesh template, either created manually or via

point cloud reconstruction methods, to fit the 3D sketch, focusing

on creating sharp ridges. Our method can be used to produce this

initial template of a better quality than previous methods. We show

an example of applying their deformation method to our results in

Fig. 8.

The work of Stanko et al. [2016] reconstructs surfaces when

the normals are also known. Normals are usually non-trivial to

obtain. A related input modality, VR ribbons, uses the VR controller’s

orientation to obtain normals. In general, drawing ribbons can be

physically challenging for the wrists, but this can be somewhat

alleviated given a convenient, albeit non-standard, VR interface

[Rosales et al. 2021]. We focus on a simpler and more popular input

modality, 3D sketches, which are composed of 3D strokes with no

known normals. Our system supports both structured ‘clean’ 3D

curve networks and unstructured rough 3D sketches equally well

(Sec. 6).

2.2 Surfacing Point Clouds
One way to surface 3D sketches is to ignore the stroke information

and simply convert them into a point cloud by sampling the strokes.

Our method is inspired by the progress in this area despite lever-

aging the stroke information. A full survey of numerous works in

point cloud reconstruction is outside our scope, please see surveys

[Berger et al. 2017; Huang et al. 2024].

Learning–free Methods. Compared to typical point clouds, 3D

sketches are extremely sparse (Fig. 10). As discussed in Yu et al.
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[2022], many point cloud reconstruction methods assume dense

sampling, so most of these methods fail on our input data [Carr et al.

2001; Fleishman et al. 2005; Hoppe et al. 1992; Kazhdan et al. 2020,

2006; Kazhdan andHoppe 2013].Many of thosemethods additionally

require normals, which are hard to estimate for 3D sketches. Among

earlier surfacing methods, some only support filling in small holes

[Sorkine-Hornung and Kobbelt 2006] or use primitive fitting to

complete missing parts of the point clouds [Schnabel et al. 2009;

Tagliasacchi et al. 2009].

Our method is partially inspired by VIPSS [Huang et al. 2019],

an important exception to this rule. Their method finds an implicit

surface that minimizes surface smoothness expressed as Duchon’s

energy, while simultaneously enforcing unit gradient on the input

points. Because of this crucial constraint related to the Eikonal
equation, their method works even on such sparse inputs as 3D

sketches. Their choice of basis and energy, however, often leads to

overly smooth results (Sec. 6).

A few other works can support sparse point clouds, including

sampled 3D sketches. Hou et al. [2022] iteratively performs Poisson

surface reconstruction and updates the point cloud normals. In a

related work, Lin et al. [2022] express an indicator function via the

Gauss formula, and solve for linearized surface elements associated

with the input points. Xu et al. [2023] orients the normals of a point

cloud such that the generalized winding number field becomes as

close as possible to binary-valued 0-1. In contrast to those methods,

our surface reconstruction uses the flow alignment energy to mimic

the perceptual process of surfacing 3D sketches. We compare with

those methods in Sec. 6.

Learning-Based Methods. A large volume of previous literature

learns geometric priors for point cloud reconstruction in a super-

vised fashion [Chabra et al. 2020; Erler et al. 2020; Huang et al. 2022;

Jiang et al. 2020; Lin et al. 2023; Ma et al. 2022; Mescheder et al.

2018; Park et al. 2019; Tang et al. 2021; Wang et al. 2022]. Unfor-

tunately, 3D sketches do not have a sizable ground truth dataset

with corresponding surfaces, so supervised learning is not possible.

Generating such a dataset from existing shape datasets is challeng-

ing, as the modern techniques to extract a curve network from a

3D surface do not capture the stylistic range of real designer 3D

sketches [Gori et al. 2017].

Self-supervised learning for point cloud reconstruction [Atzmon

and Lipman 2019, 2020; Li et al. 2023] is more relevant to our work.

Atzmon and Lipman [2019; 2020] use neural network to learn a

signed distance function to the surface from an unsigned distance to

the point cloud via a sign-agnostic loss. Li et al. [2023] incorporates

neural gradients along with the neural function itself into the loss.

Their method promotes local planarity, which is not the right prior

for generic 3D sketches, so we use flow field alignment instead.

Gropp et al. [2020] learns an implicit geometric prior by minimizing

an Eikonal term on the input point cloud. We use a similar regu-

larizer. A known issue with Eikonal equation is that its solutions

are not unique, leading to problematic convergence. An interesting

approach to address this issue is a 𝑝-Poisson equation-based regu-

larization and splitting the implicit function and its gradient into

separate variables [Park et al. 2023]. Alternatively, one can further

regularize the learned signed distance field via a ‘pull’ reprojection

loss [Ma et al. 2020]. Another approach is to observe that gradients

of signed distance fields tend to have low divergence almost every-

where, which motivates using a divergence-minimizing term as a

regularizer [Ben-Shabat et al. 2021]. Some other works use more

targeted priors for developable surfaces by minimizing either the

absolute value of Gaussian curvature [Dong et al. 2024b] or the

rank of the Hessian of the implicit surface [Wang et al. 2023]. Even

though piecewise developable surfaces are a mainstay in specific

domains, such as machine-made shapes, not all sketched surfaces

are intended to be developable (Fig. 2, Fig. 11). Instead, we use a prior

of flow-aligned surfaces, specifically designed for curve networks

(Sec. 3).

Some works extend these approaches to shapes with boundaries

by learning an unsigned distance field [Tian et al. 2024; Zhou et al.

2022], after which the surface extraction process becomes more

challenging. Unlike point clouds with unknown surface boundaries

a priori, in 3D sketches, boundaries are delineated by one or a few

strokes that are trivial to annotate [Yu et al. 2022]. Therefore, fol-

lowing previous work [Huang et al. 2019], we prefer working with

a signed implicit function, and extracting the surface via marching

cubes followed by cutting along those strokes (Suppl. Sec.0.1.2).

3 Background and Observations
Mathematically, the problem of surfacing a given 3D sketch, i.e.,

set of 3D strokes, is ill-posed, as there are infinitely many surfaces

interpolating or approximating the input. In contrast, a 3D sketch

drawn by a designer often conveys a unique surface to a human

observer. To explain this phenomenon, previous work has provided

insight into how designers create 3D sketches, which strokes com-

prise a sketch, and how human observers interpret sketches; these

insights inform our algorithmic decisions.

In the context of clean structured 3D curve networks, design

literature, as well as previous perceptual and geometric modeling

research [Bessmeltsev et al. 2012; Bordegoni and Rizzi 2011] sug-

gests that many designer-drawn strokes can be classified into two

types: flow-lines (inset, blue), which represent lines of curvature of

the intended surface, and trim lines, which outline surface bound-

aries or sharp features (inset, green). The viewers then leverage

this descriptive representation of the surface [Xu et al. 2014] and

mentally interpolate the given strokes according to the stroke types,

imagining the final surface [Pan et al. 2015].

Pan et al. [2015] formalise this surfacing insight in the following

way. They classify input strokes into flow lines and trim curves; the

former control the surface curvature, the latter are only expected to

lie on the surface. Starting from an initial mesh that bounds the input

curves, they iterate between computing a cross field (on that mesh)

that aligns with flow lines and deforming the mesh to minimize the
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(a) (b)

Fig. 3. (a) The smoothest flow field aligned with the input boundary strokes.
(b) A surface with its principal curvature directions (note they are different
from the flow field in (a)). Previous studies have suggested that the surface
(b) with princial curvature directions as close as possible to the smoothest
flow field (a) is consistent with artist intent on clean curve networks. We
follow this observation, applying and adapting it to the context of rough 3D
sketches with no adjacency information, for a neural implicit representation.
Note the necessary singularity for a smooth flow field (red vertex in (a)).

difference between its principal curvatures and the cross field. The

final result is a surface whose principal curvature directions align

with the identified flow lines.

Concretely, for an arbitrary surface containing these strokes, the

flow lines Γ◦ give rise to a flow field — a smooth cross field with

associated (signed) magnitudes. More specifically, the flow field is

U = (u1, u2) : R3 → R3 × R3,

𝝀 = (𝜆1, 𝜆2) : R3 → R × R,
(1)

where u1 (x) and u2 (x) are orthogonal unit vectors and 𝜆1 (x), 𝜆2 (x)
are curvature descriptors. On and near the curves Γ◦, one of the pair
(u1, 𝜆1), (u2, 𝜆2) is provided by the curve tangent T(x) and curvature
𝜅 (x), thus aligning the flow field to the input flow lines Γ◦. Away
from the input strokes, they expect the flow field to be as smooth as

possible (Fig. 3).

The second fundamental form of a surface 𝑆 is the bilinear form

𝐼 𝐼𝑆 associated with the differential of the normal:

II𝑆 (v,w) = ⟨𝑑vn,w⟩. (2)

The eigenvalues of the second fundamental form are the principal

curvatures 𝜅1, 𝜅2, and the corresponding eigenvectors p1, p2 are

the principal curvature directions; this decomposition encodes an

orthonormal basis of the tangent plane along which the normal

curvature is maximized / minimized. Pan et al. [2015] align the flow

field with the principal curvatures by minimizing

min

𝑆,U,𝜆

∫
𝑆

| |𝐼 𝐼 (𝝀,U) − II𝑆 | |2𝑑𝑥 + Lsmooth (U,𝝀) + Lalign (U,𝝀), (3)

where the two last terms are flow field smoothness and alignment

to the input strokes, and

𝐼 𝐼 (𝝀,U) =
[
u1 u2

] [
𝜆1 0

0 𝜆2

] [
u𝑇
1

u𝑇
2

]
.

Pan et al. [2015] iteratively solve for the smoothest flow field for

a given surface (Fig. 3a) and then update the surface to match the

flow field (Fig. 3b). Their strategy can be seen as coordinate descent,

alternating between minimizing two last terms in Eq. 3 for a fixed 𝑆

and minimizing the first term holding the U, 𝜆 fixed.

Observations. In contrast to the clean curve networks addressed

by Pan et al. [2015], rough 3D sketches, the focus of this work

are more complex in that they contain gaps, broken or overdrawn

curves, and imprecisely drawn junctions and intersections (Fig. 11).

We observe, however, that design 3D sketches are also dominated by

flow lines. Thus, we expect the viewers to complete the surface in a

similar manner with clean curve networks. In general, 3D sketches

may also contain construction lines that do not control the surface

shape and are needed for alignment [Gryaditskaya et al. 2019]; we

assume those are explicitly labelled and ignored by our pipeline.

Our input is a set of 3D sketch strokes Γ = {𝛾0, · · · , 𝛾𝑁 }, where
each 𝛾𝑖 is a curve in R3

with or without end points; some strokes

Γ𝜕 might be annotated as the desired boundary of the surface. We

assume all geometry is scaled to fit the unit cube Ω = [0, 1]3.
We formulate the following requirements for the target surface:

• Stroke approximation. We expect the final surface to be

as close as possible to the input strokes where there is no

ambiguity, approximating rough and overdrawn strokes on

average, not necessarily interpolating them. This applies to

both flow lines and trim curves equally.

• Flow-alignment. We expect the surface’s principal curva-

tures to be aligned with the smooth flow-field induced by the

flow line strokes. We expect the magnitudes of principal cur-

vatures to also change smoothly over the surface, including

across the input strokes.

• Piecewise smoothness. Natural shapes are usually smooth,

while machine-made shapes, are usually piecewise smooth.

We target both of these common shape types in our system.

We furthermore follow the observation that designer-created

sketches are usually descriptive [Xu et al. 2014], meaning

that they contain all the necessary features for a human ob-

server to imagine the shape. As a result, we do not expect any

discontinuities to appear away from the drawn strokes. We

therefore require, subject to the first two requirements, the

final surface so be at least piecewise smooth, with sharper

creases possible only at some input strokes.

These requirements guide our algorithmic choices, including the

representation, losses, and the optimization strategy, as described

in the following section.

4 Method
We first describe our surface representation in Sec. 4.1, then formu-

late a flow alignment energy for our representation in Sec. 4.2. We

first describe our variational optimization for the scalar function

Sec. 4.3, then reformulate it in the gradient domain Sec. 4.4. The dis-

cretized optimization and details of the gradient based optimization

are described in Sec. 5.

4.1 Implicit Surface Representation
Since the topology of our target surface is unknown a priori, we opt
for an implicit representation of our surface 𝑆 = {𝑥 ∈ Ω : 𝑓 (𝑥) = 0}.
Here 𝑓 : Ω → R is a scalar field, and Ω = [0, 1]3 denotes our

chosen computational domain, a unit cube. While an isosurface
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Fig. 4. Given a 3D sketch Γ, our neural network outputs a gradient vector field 𝑔 of an implicit function 𝑓 representing the surface, which we reconstruct by
integrating the gradient field via Fast Fourier Transform (FFT). We train this network in unsupervised manner via variational optimization, which performs
Monte-Carlo integration sampling points on the input strokes (large green disks), the reconstructed surface (medium purple disks), and in the volume of the
computational domain Ω (small orange disks). The samples involved in each loss and FFT reconstruction are denoted with those disks.

of a smooth function 𝑓 is always closed, if some input strokes are

annotated as a boundary, we cut the surface along that boundary as

a post-processing step (Supplementary Sec.0.1.2).

We parameterize 𝑓 via a neural network, which is later trained via

Adam [Kingma and Ba 2014]. For simplicity of exposition, we first

describe the variational optimization for the scalar field 𝑓 directly

(Sec. 4.2, 4.3). Later we parameterize 𝑓 via a gradient field and

formulate the final optimization in the gradient domain (Sec. 4.4).

The most important requirement stemming from the neural network

parameterization is the differentiability of our losses, which we now

introduce, starting with the core component — the flow field losses.

4.2 Flow Field
Our goal is to find a surface minimizing the flow-field energy (Eq. 3)

for an implicitly represented surface 𝑆 . Naïvely following themethod

for meshes [Pan et al. 2015] in our setup would mean extracting

a mesh at each iteration and solving for a smoothest flow field

in a differentiable manner. It is unclear how to differentiate that

optimization, as it involves numerous discrete decisions.

Instead, our main insight is to reparameterize Eq. 3, defining

𝐼 𝐼 (𝝀,U) ≡ II𝑆 . This way, the first term always evaluates to zero,

the flow field directions U and magnitudes 𝜆 are no longer free

variables; they are, respectively, eigenvectors and eigenvalues of II𝑆 .

Note that theoretically this makes our optimization different from

the optimization in Pan et al. [2015]: The flow fields they find are

not necessarily realizable as a surface, so they find a surface with

the closest prinicipal curvature field, effectively ‘projecting’ the flow

field onto some constraint set. In contrast, our optimization variable

is the surface itself, albeit represented implicitly, therefore we are

always constrained to this set, making our minima theoretically

different.

The flow field smoothness and alignment terms can be then for-

mulated directly in terms of the second fundamental form 𝐼 𝐼𝑆 , which

in turn can be expressed via the implicit function 𝑓 . To formalize

this insight, denote the normalized gradient of 𝑓 as n =
∇𝑓

|∇𝑓 | , equal

to the surface normal for points on the surface. The second funda-

mental form can be now expressed by differentiating the normal

via Eq. 2.

Flow Field Alignment. The alignment of a 2D vector with the

flow field can be measured as an alignment with some principal

direction. More specifically, given a stroke 𝛾𝑖 : [0, 1] → R3
, we or-

thogonally project its tangent vector onto the tangent plane 𝑇𝛾𝑖 (𝑡 )𝑆 ,
forming the angle 𝛼 with the largest principal direction p1, which
is an eigenvector of II𝑆 (Sec. 3). We can now define the alignment

energy as

Lalign =
1

|Γ |

∫
Γ
(cos(4𝛼) − 1)2𝑑𝑙, (4)

where |Γ | is the total length of sketch strokes. The 4-symmetry

integrand allows to measure alignment with any of the 2 orthogonal

principal directions.

Among all input strokes, [Pan et al. 2015] only consider flow lines

for principal curvature direction alignment. However, unlike clean

curve drawings where classification of input strokes into flow lines

vs. trim curves is relatively straightforward, such discrete decisions

are challenging for rough sketches. Instead of relying on heuristics,

our method treats all strokes the same. Since the majority of the 3D

strokes are flow lines (Sec. 3), this decision does not seem to lead to

any significant artifacts (e.g. rectangles in Fig.1 are not flow lines).

Flow Field Smoothness. Measuring smoothness of 2D cross

fields has been traditionally done via an angle 𝜃 and integer period

jumps (e.g., 𝜃𝑖 = 𝜃 𝑗 + 𝜋
2
𝑘, 𝑘 ∈ Z), leading to an NP-hard mixed-

integer optimization [Bommes et al. 2009]. One of the more recent

approaches to expressing 2D cross field smoothness, with its 4-RoSy

symmetry, is via identifying each frame with a complex exponential

𝑒𝑖4𝜃 and measuring its smoothness [Ray and Sokolov 2015].

Such representation, however, does not naturally support cross

field singularities even when they are necessary for a smooth field

(Fig. 3a) [Huang et al. 2011; Ray and Sokolov 2015]. Instead, we

propose to allow for singularities and avoid the issue with the um-

bilical points by considering both the direction and magnitude of the

cross frame, following Zhang et al. [2020] and Palmer et al. [2020].

More precisely, we minimize the smoothness of II𝑆 (x) directly, thus
optimizing smoothness of both principal curvatures and principal

directions simultaneously. This formulation allows singularities to

be naturally represented via a singular II𝑆 . For the loss term, instead

of the more standard Dirichlet energy, we found Total Variation
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easier to optimize in our setup:

Lsmooth =
1

|𝑆 |

∫
𝑆

| |∇𝑆 II(x) | |𝐹𝑑x, (5)

where |𝑆 | is the surface area, | | · | |𝐹 is the Frobenius norm and ∇𝑆 is

the covariant derivative. Note that we use the covariant derivative

(see Eq. 18) instead of the ambient space derivative to constrain our

differentiation to the surface tangent space and thus avoid unneces-

sarily smoothing the surface.

4.3 Variational formulation for scalar field 𝑓

We formulate a minimization problem for the implicit function

𝑓 : Ω → R3
such that its zero isolevelset 𝑆 = 𝑓 −1 (0) gives us the

desirable geometry:

min

𝑓 :Ω→R
Lalign + 𝜆smoothLsmooth + 𝜆dataLdata + 𝜆EikLEik (6)

The first two terms are defined in Sec. 4.2. Details about the other

individual terms in Eq. 6 are below:

• Data term. As our surface should follow the sketch (Sec. 3),

we encourage the zero isolevelset 𝑆 to pass through or near

all strokes Γ via the following loss:

Ldata (𝑓 ) =
1

|Γ |

∫
Γ
|𝑓 (x) |𝑑𝑙 . (7)

Although 𝑓 is not a true distance function, the magnitude

of 𝑓 (x) at x ∈ 𝑆 still serves as a proxy for distance to the

surface.

• Eikonal term. The flow field losses and the data term are not

sufficient to produce a well-behaved implicit surface, trivially

minimizable by 𝑓 ≡ 0. A function with a dense set of critical

points (where its gradient vanishes) near its zero isolevelset

would also introduce numerical instability when extracting

the surface. Many prior works enforce an Eikonal constraint

|∇𝑓 | ≡ 1 to obtain a signed distance function (SDF). Rather,

following Huang et al. [2019], close to the zero isolevel 𝑆 ,

we would like our implicit function to locally behave like

an SDF, i.e., to have constant non-zero gradient norm, e.g.,

|∇𝑓 | ≈ 1. Instead of making the gradient norm exactly one,

in our experiments we found that using a smaller positive

constant improves the approximation of small details:

LEik =
1

2|𝑆 |

∫
𝑆

( | |∇𝑓 (x) | | − 𝜎)2 𝑑x.

Note that while the constant 𝜎 affects the local scaling of the

gradients, our other terms scale differently with the gradient

magnitude, so changing it will not cause simple scaling of

the whole gradient field. For instance, the alignment term

is magnitude-invariant, while the data term scales linearly.

Empirically we set 𝜎 = 0.5.

Instead of explicitly enforcing piecewise smoothness (Sec. 3) by

adding regularization terms, we reparameterize our problem (Sec 4.4).

4.4 Neural Gradient Field
Typical neural surface reconstruction methods use a neural network

to predict a scalar implicit function 𝑓 , for example, SDF [Park et al.

2019; Sitzmann et al. 2020]. However, the flow field loss involves

computing a third-order derivative of 𝑓 (Sec. 4.2). This objective

is expensive and challenging to optimize, as neural networks tend

to struggle with learning smooth high-order derivatives in a stable

manner [Krishnapriyan et al. 2021; Wang et al. 2021]. An alterna-

tive is to optimize for a cross field separately [Dong et al. 2024a];

then aligning the implicit function with the field becomes more

challenging.

To address this problem, instead of predicting the function 𝑓 itself,

we predict a vector field approximating the function’s gradient

𝑔(x : Θ) ≈ ∇𝑓 , which we refer to as ‘gradient field’ despite its

potential non-integrability. We parameterize 𝑔 as a neural network

with the same architecture as SIREN [Sitzmann et al. 2020];Θ are the

network parameters. Then the flow-aligned energy only involves

second-order derivatives of 𝑔, making our optimization more stable.

Most of the losses, including flow field losses, can be formulated

directly in terms of the vector field ∇𝑓 and therefore 𝑔. However, the
data term requires the implicit function itself, so we need to integrate

the vector field to evaluate this term (Sec. 4.4.1). Furthermore, this

new gradient field representation needs an extra regularization term

to make it approximately integrable (Sec. 4.4.2).

4.4.1 Vector Field Integration. To evaluate the data term and later

extract the zero level set, our goal is to find 𝑓 that minimizes∫
Ω
| |∇𝑓 (𝑥) − 𝑔(𝑥) | |2𝑑𝑥 . Under the Euler-Lagrange formulation, the

minimum is the solution to the Poisson equation:

Δ𝑓 = ∇ · 𝑔. (8)

The traditional finite element method suffers from scalability

issues, as the grid cell count grows cubically with resolution. To

address this, we solve the Poisson equation using the Fast Fourier

Transform (FFT) [Iserles 2008], enabling high-resolution solutions

with lower memory cost. FFT excels when working with periodic

functions, so we define the computational domain Ω ⊂ R3
as the

bounding box of the 3D sketch padded by 20% in all directions, with

opposite faces identified, effectively forming a 3D torus T3
. Let 𝑔

be the gradient field sampled at grid cell centers. For frequencies u
(we use PyTorch fftfreq), we apply multimensional FFT to both

sides of the Poisson equation (Eq. 8). Denoting 𝑔(u) = FFT(𝑔(x))
and

ˆ𝑓 (u) = FFT(𝑓 (x)), we get:

FFT(Δ𝑓 ) = −4𝜋2 | |u| |2 ˆ𝑓 FFT(∇ · 𝑔) = 2𝜋𝑖 (u · 𝑔). (9)

The unnormalized solution 𝑓 on grid is then computed as:

𝑓 = IFFT( ˆ𝑓 ) = IFFT

(
𝑖u ⊙ 𝑔

−2𝜋 | |u| |2

)
, (10)

where ⊙ denotes the element-wise product, and trilinearly interpo-

lated to the whole volume. To align the zero iso-level with the input

stroke points x ∈ Γ, we apply a scale-and-shift normalization [Peng

et al. 2021]:

𝑓 =
1

|𝑓 (0) |

(
𝑓 − 1

|Γ |
∑︁
x∈Γ

𝑓 (x)
)
, (11)

where 𝑓 (0) is the value at the corner of the bounding box; we use the
same symbol 𝑓 on both sides for brevity. This normalization ensures

that the stroke points take values sufficiently distinct from those

at the domain boundaries, helping to better enforce the intended
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constraints and avoid trivial harmonic solutions. See Suppl. Sect. 0.2

for more explanation.

4.4.2 Integrability and Curl-free Constraint. While the Poisson equa-

tion (Eq. 8) solves the gradient approximation problem in a least-

squares sense, this does not guarantee that the reconstructed sur-

face will follow the gradient field, as the gradient field can be non-

integrable, i.e., either have a harmonic component or have non-zero

curl. We explicitly avoid the harmonic solution through normal-

ization of the integral function 𝑓 (Eq. 11), so integrability can be

enforced by minimizing curl of the computational domain Ω:

Lc =
1

|Ω |

∫
Ω
| |∇ × 𝑔(x) | |2𝑑x. (12)

4.4.3 Gradient-Based Variational Formulation. With these details,

we are now ready to formulate our optimization in the gradient

domain:

min

𝑓 :Ω→R
𝑔:Ω→R3

Lalign + 𝜆smoothLsmooth + 𝜆dataLdata + 𝜆EikLEik + 𝜆cLc

s.t. Δ𝑓 = ∇ · 𝑔
(13)

We use 𝜆smooth = 0.01, 𝜆data = 30, 𝜆Eik = 7, 𝜆curl = 7 to produce all

the results in the paper.

5 Discretization and Optimization
With the variational formulation above, we now discretize the neces-

sary operators and integrals, and describe our optimization strategy.

5.1 Discretization
First, we need to express the shape operator II𝑆 (𝑥) on the surface

via the predicted gradient field. As it is a differential of the normal

(Eq. 2), which is the normalized gradient of the implicit function, the

second fundamental form is related to the Hessian of the function.

Since it is an operator working with tangent vectors, we explicitly

project the Hessian onto the tangent space:

II𝑆 (x) =
1

| |∇𝑓 | | 𝑃 (x)𝐻 (x)𝑃 (x) = 1

| |𝑔(x) | | 𝑃 (x)∇𝑔(x)𝑃 (x), (14)

where

𝑃 (x) = 𝐼 − n(x)n(x)𝑇 = 𝐼 − 𝑔(x)𝑔(x)𝑇
| |𝑔(x) | |2 (15)

is the projection operator, a symmetric 3 × 3 matrix. We convert

the second fundamental form to the local surface coordinates, for

arbitrary coordinate frame of the tangent space 𝑢, 𝑣 ∈ 𝑇𝑆 :

IIuv (x) = 𝐽𝑇 II𝑆 (x) 𝐽 , (16)

as in our setup, its integral is invariant to the choice of (orthonormal)

basis. Without loss of generality, we choose 𝐽 =
[
u v

]
where u, v

are eigenvectors of II𝑆 (x).
To implement the alignment term (Eq. 4), we project the curve

tangent vector 𝛾 ′ (𝑡) onto the tangent plane 𝑇𝑆

𝛾 ′uv (𝑡) = 𝐽𝑇𝛾 ′ (𝑡), (17)

convert it into polar coordinates (𝑅, 𝛼) and substitute 𝛼 into Eq. 4.

To implement the smoothness term (Eq. 5), we leverage the fact that

the covariant derivative in Eq. 5 is the projection of the Euclidean

directional derivative:

∇𝑆 IIuv (x) = 𝑃 (x)∇IIuv (x) . (18)

Discretizing Integrals. To compute the integrals in Eq. 13, we use

naïve Monte Carlo integration. We uniformly sample 𝑛1 = 10𝑘

points on the input strokes Γ, 𝑛2 = 15𝑘 on the isosurface 𝑆 and

𝑛3 = 15𝑘 in Ω. We discretize the integrands on the corresponding

samples, and approximate the integrals as the averages of those

values. The derivative operator ∇ in all the equations is computed

via PyTorch’s automatic differentiation.

As the data term Ldata (𝑓 ) involves solving the Poisson equation

(Eq. 8), the quality of the reconstruction depends on the sampling

strategy for the right hand side in Eq. 10. Directly evaluating the

gradient function 𝑔 at every grid point is impractical at high resolu-

tions. Instead, since we only need the isosurface, we evaluate 𝑔 at

the set of samples Γ∪𝑆 , i.e., stroke points and zero isosurface points,
and then rasterize those values onto the grid points via trilinear

interpolation. Notice that Γ ∪ 𝑆 produces a non-uniform sampling,

which causes the rasterized 𝑔 to have larger magnitude near the

strokes. This additional magnitude makes the isolevel sets of 𝑓 clus-

ter more densely around the strokes, which empirically facilitates

convergence but may introduce artifacts in the shape near those

regions. To mitigate this, we normalize the rasterized 𝑔 at each grid

point before solving the Poisson equation once the optimization has

stabilized (see Suppl. Sec. 0.1.1 for more details).

5.2 Optimization Strategy
We use the default SIREN initialization with uniformly distributed

weights [Sitzmann et al. 2020]. At each iteration (Fig. 4), we sample

point sets Γ, 𝑆 , and Ω, predict gradients𝑔, solve the Poisson equation
via FFT to obtain 𝑓 , and extract its zero isosurface using marching

cubes. We then evaluate the loss terms and update parameters with

Adam [Kingma and Ba 2014]. Although sampling is technically

non-differentiable, this is not an issue in practice since the surface

evolves smoothly between steps. To bootstrap the optimization, we

perform an initialization stage where we avoid sampling the surface

that is not reliable in the beginning. To that end, we disable the

Lsmooth term and only use the sample set Γ for the Eikonal term

LEik and sampling of the gradient field for the FFT Poisson solve.

Our initialization stage performs 200 steps of Adam, followed by

800 steps of the full optimization. For all our results, we set the grid

resolution to 256
3
. Please see Suppl. Sec. 0.1.1 for more details.

6 Results and Validation
Qualitative Evaluation. We have automatically generated a num-

ber of surfaces from 3D sketches of different styles and levels of

abstraction. These include clean curve networks, where each junc-

tion is precise (Fig. 10) and rough 3D sketches with gaps drawn via

VR interfaces (Fig. 11). Most of our results are closed shapes; we

show an example with a boundary in the Supplementary Material

(Suppl. Sec. 0.1.2).

Quantitative Evaluation. We have performed quantitative eval-

uations of our method in two different ways. First, we used the
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results of FlowRep [Gori et al. 2017] that takes a quadmesh and

produces a 3D curve network representing the shape; while those

curve networks are not designer-drawn 3D sketches, their method

is designed to replicate artistic practices for creating clean curve

networks. We then use their 3D curve networks as inputs and com-

pare our surfaces, as well as the results of other methods, with the

ground truth quadmeshes of [Gori et al. 2017]. For this experiment,

we set Eikonal 𝜎 to 1.0, and cancel the normalization for vector inte-

gration. We use point set F-score [Wang et al. 2023] that measures

recall and precision by testing whether a point in one sample set

is within a certain range (0.01 in our experiments) from the points

in the other sample set. The results are presented in Tab. 1 and in

Fig. 5. Our results are closer to the ground truth in standard metrics

(Chamfer distance and F-score) for all but two of the inputs we tried.

Our method’s performance is statistically insignificant from the best

result (VIPSS) on one of the examples (doghead), and while Li et al.

[2023] is closer to the ground truth for the phone input, our method

generates better shapes overall (Fig. 5).

Comparison to previous work. For structured curve networks,

where the connectivity is precise and all the junctions are exact, the

method of Pan et al. [2015] produces nearly perfect results (Fig. 6).

Those networks are hard to create in modern interfaces [Yu et al.

2022]: their method does not work for much more commonly used

rough 3D sketches (Fig. 11). Our method works for both clean and

rough 3D sketches and produces surfaces that are similar in shape

due to a similar energy, albeit somewhat smoother due to the inher-

ent smoothness of our gradient integration.

We run our method on a set of clean curve networks (Fig. 10) and

rough sketches (Fig. 11) collected from [Huang et al. 2019; Pan et al.

2015; Yu et al. 2022], and compare our results with the previous

surface reconstruction methods: VIPSS [Huang et al. 2019], PGR

[Lin et al. 2022], IPSR [Hou et al. 2022], NeuralGF [Li et al. 2023], and

two normal orientation methods that use [Kazhdan et al. 2006] for

surfacing: GCNO [Xu et al. 2023] andWNNC [Lin et al. 2024]. These

methods input point clouds, so we resample each sketch stroke with

segment length of 0.02 — we found this sampling works best for

their methods. Unlike our method that relies on stroke tangents as

well as positions, their methods ignore stroke connectivity, only

using sampled points. On clean curve networks (Fig. 10), our results

are either on par (box) or significantly better (dress, iron, sewing

machine, coffee machine). Those sparse clean curve networks are

particularly challenging for the methods that reconstruct the surface

from normals defined on strokes (GCNO, WNNC, IPSR), since with-

out any normals between the strokes, [Kazhdan et al. 2006] often

does not perform well. The VIPSS result for the coffee machine is of

similar quality to ours, but the bulging top surface is inconsistent

with perception, as discussed in [Pan et al. 2015].

On rough 3D sketches (Fig. 1, 11), our pipeline is often better at

reconstructing smaller details and thin features (e.g. gamepad and

guitar). For other, denser sketches, our results are on par with the

best previous methods, as the ambiguity we address with the flow

energies is less for denser sketches.

Ablations and Parameters. We study the effect of each of our loss

terms in an ablation study Fig. 9. Without the alignment term, the

surface merely passes through the curves but does not align its cur-

vature lines with them. Conversely, when the flow field smoothness

is disabled, the principal curvature directions align with the input

curves, but the curvature field lacks smooth interpolation across the

surface. Without the Eikonal or curl-free terms, the optimization

does not produce useful surfaces or does not converge.

Performance. On our NVIDIA GeForce RTX 4080 (16 GiB VRAM)

with AMD Ryzen 7 7700X, our Python implementation takes around

10 minutes per input. VIPSS takes between 40 seconds and hours,

depending on sampling; WNNC, PGR, and IPSR take a few seconds

per input; NeuralGF takes ≈ 70 seconds per input; GCNO ranges

from 4–150 seconds. Most of our time is spent in the Poisson solver.

We can improve the performance by running the solver once every

few iterations or adopting a multi-resolution strategy.

Limitation: sharp features. Due to Poisson surface reconstruction

intrinsic smoothness and finite grid resolution, sharp features are

a challenge for our method. However, our method can be seen as

complementary to the method by Yu et al. [2022] that deforms an

input template to fit a 3D sketch, forming sharp features at the

curves. They use either manually created templates or outputs of

VIPSS [Huang et al. 2019]. Ourmethod doesn’t require any templates

as input, but can be viewed as a method to generate those templates

for their method. In Fig. 8 we show that this way we can further

improve the quality of the results.

Other limitations and Future Work. For sparse 3D sketches, our

method can occasionally misinterpret thin features (Fig. 7), such as

the wall of the bathtub. We hypothesize that one of the reasons why

it is not ambiguous for human observers is because we recognize

the object; our method, in contrast, has no data priors. Perhaps

combining our method with a data prior can further disambiguate

such sketches.

7 Conclusions
We have presented a novel method for surfacing rough 3D sketches

and clean 3D networks that supports arbitrary topology and intro-

duces a flow field alignment and smoothness loss amenable with

neural implicit representation. Our method makes a step forward to-

wards fully functional 3D sketch-based modeling software, enabling

intuitive modeling in 3D.
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Fig. 10. A comparison of our method with previous works on clean curve networks, top to bottom: ‘box’, ‘dress’, ‘iron’, ‘sewing machine’, ‘coffee
machine’. For all methods, we compute the surface for the coffee machine body and handle separately.
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Fig. 11. A comparison of our method with previous works on rough 3D sketches. Top to bottom: ‘bulbasaur’, ‘buggy’, ‘gamepad’, ‘guitar’, ‘ok
hand’, ‘spaceship’
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