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Fig. 1. Given a single natural bitmap sketch of a character (a), our learning-based approach allows to automatically, with no additional input, recover the 3D

pose consistent with the viewer expectation (b). This pose can be then automatically copied a custom rigged and skinned 3D character (c) using standard

retargeting tools (d). Input image © Olga Posukh.

Artists frequently capture character poses via raster sketches, then use these

drawings as a reference while posing a 3D character in a specialized 3D

software — a time-consuming process, requiring specialized 3D training

and mental e�ort. We tackle this challenge by proposing the �rst system

for automatically inferring a 3D character pose from a single bitmap sketch,

producing poses consistent with viewer expectations. Algorithmically inter-

preting bitmap sketches is challenging, as they contain signi�cantly distorted

proportions and foreshortening. We address this by predicting three key

elements of a drawing, necessary to disambiguate the drawn poses: 2D bone

tangents, self-contacts, and bone foreshortening. These elements are then

leveraged in an optimization inferring the 3D character pose consistent

with the artist’s intent. Our optimization balances cues derived from artistic

literature and perception research to compensate for distorted character

proportions. We demonstrate a gallery of results on sketches of numerous

styles. We validate our method via numerical evaluations, user studies, and

comparisons to manually posed characters and previous work.

Code and data for our paper are available at

http://www-labs.iro.umontreal.ca/ bmpix/sketch2pose/.

CCS Concepts: • Computing methodologies→Mesh geometry models.

Additional Key Words and Phrases: character posing, rigged and skinned

characters, sketch-based posing, character sketches

ACM Reference Format:

Kirill Brodt and Mikhail Bessmeltsev. 2022. Sketch2Pose: Estimating a 3D

Character Pose from a Bitmap Sketch. ACM Trans. Graph. 41, 4, Article 85

(July 2022), 15 pages. https://doi.org/10.1145/3528223.3530106

Authors’ address: Kirill Brodt, kirill.brodt@umontreal.ca; Mikhail Bessmeltsev, bmpix@
iro.umontreal.ca, Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC,
H3T 1J4, Canada.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.
0730-0301/2022/7-ART85 $15.00
https://doi.org/10.1145/3528223.3530106

1 INTRODUCTION

“Art is not what you see, but what you make others see.“

— Edgar Degas

Artists routinely capture human poses via diverse drawings, from

quick gestures to detailed character sketches. Sketching character

poses is one of the core elements in artist training. In modern digital

media production, artists often draw sketches of characters at the

early storyboarding stage. Often drawn within tens of seconds each,

those sketches serve as e�cient and direct means to capture ideas

and convey the poses to other team members. These natural, freely

drawn sketches are then often used as a reference while manually

posing a 3D character in an animation software.

The manual posing step, however, requires special training, and

is tedious, time-consuming, taking up several minutes per pose

even for a rough draft. For professionals, it is a frustrating task

that may distract from the creative process and slow down the

production pace; for classically trained artists with little knowledge

of 3D animation software, it requires specialized training and thus

may become an obstacle to implementing their ideas.

A system enabling artists to directly use a sketch as the only input

to automatically pose a rigged and skinned 3D character thus would

signi�cantly simplify and democratize posing 3D characters, bene-

�ting both novice and professional users. Creating such a system,

unfortunately, faces signi�cant challenges: First, contrary to the

assumptions of previous work that targeted clean vector drawings

of a single style [Bessmeltsev et al. 2016], sketches are often drawn

on traditional media, such as pen and paper, or in a raster drawing

software, are stylistically various, and are full of construction lines

and extra strokes. Converting those images into clean vectorized

drawings remains an open problem [Stanko et al. 2020]. More impor-

tantly, sketches are imprecise, incomplete, often contain occlusions,

and may substantially distort character’s proportions, whether due

to errors [Schmidt et al. 2009] or artistic license: As the Degas’s

quote can be interpreted, drawings are not created to be a perfect
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depiction of reality, but rather a means to convey an idea to a human

observer.

We propose the �rst framework addressing all those challenges.

We introduce a system that algorithmically computes a complete 3D

character pose given a single raster sketch of a character. Our system

supports a variety of sketch styles, including gesture drawings (see

e.g., Fig. 5, Fig. 7), contour drawings (e.g., Fig. 12, top), and complex

detailed sketches (e.g., Fig. 1). Our framework successfully handles

complex incomplete sketches with distorted body proportions and

occlusions (e.g., Fig. 1, Fig. 4). We thus enable artists to pose a 3D

character directly and automatically from the sketches they draw,

enhancing and possibly simplifying the current media production

pipeline. Our system allows artists without specialized 3D training

to pose 3D characters using only their drawings.

The key challenge in the problem of posing 3D digital characters

via a sketch is inferring the artist-intended 3D pose from the 2D

drawing. While human observers generally have no problem imag-

ining a consistent 3D pose from a drawing, mathematically the task

is highly ambiguous. Similar to the well-known computer vision

problem of inferring a human pose from a photograph, we also

face the fundamental ambiguity of reconstructing 3D content from

2D. For photographs, this ambiguity is typically resolved by assum-

ing that the image is a projection of a human pose onto the screen.

Unlike photographs, however, sketches cannot be interpreted as

projections of the 3D character onto the view plane (Fig. 5): drawn

with a goal to capture and convey the essence of the pose, they are

only approximate depictions of the character.

More speci�cally, drawings often signi�cantly distort body pro-

portions or depict characters with unrealistic body shapes (Fig. 4).

While proportions are often distorted even for sketches of static

poses, such distortion is a core and intentional component of ges-

tures of dynamic poses [Kwon and Lee 2012]. Furthermore, artists

use nonlinear [Singh 2002], grossly exaggerated or otherwise in-

accurate perspective [Schmidt et al. 2009; Sudarsanam et al. 2008;

Zhong et al. 2020], and incorrectly depict foreshortening (Fig. 6)

[Wnuczko et al. 2016]. Naively ignoring these issues and applying

standard optimizations relying on 2D joint positions only, may lead

to wrong or imprecise results (Fig. 4).

We center our analysis on three elements of a character drawing

that we believe are essential to resolving these issues: bone tangents,

self-contacts, and foreshortening (Fig. 2). We observe that while,

as outlined above, 2D joint positions themselves are unreliable, 2D

bone tangents can be strong indicators of intended 3D bone direction.

We further observe that depicted self-contacts (e.g., forearms and

thighs in Fig. 1) are critical for understanding of a drawn pose and

can be strong cues to disambiguate the unknown body part depth.

Finally, we explicitly model and undo the distortions of the bone

foreshortening using statistical analysis.

Overview. We introduce a novel system for inferring a 3D char-

acter from a single bitmap based a combination of optimization,

deep learning, statistical analysis, and observations from percep-

tual and artistic literature. Our optimization is guided by three

main subsystems predicting 2D bone tangents, self-contacts, and

bone foreshortening. Equipped with these three predictions, we

( )

parallel
tangents

self-contact

3D
original view

3D
side view

2D 

foreshortening
transformation

Fig. 2. Our analysis is centered around three elements: bone tangents, self-

contacts, and foreshortening. In particular, we aim to preserve 2D bone

tangents from the original view when computing the 3D pose and keep the

relative positions of joints participating in a self-contact. Finally, we model

and undo the distortions of the depicted bone foreshortening, adaptively

reducing angles between the bones and the screen, as compared to a naive

reconstruction. Input image © Olga Posukh.

use a state-of-the-art optimization framework with a novel loss de-

signed speci�cally to compensate for the inaccuracies in the natural

drawings. Our optimization balances the pose realism against the

image cues, while allowing body shape to change. This optimization

enables our system to infer complex 3D poses with signi�cantly

distorted body lengths and proportions (Sec. 7). We infer the pose of

a parameterized human model SMPL-X [Pavlakos et al. 2019], which

can be automatically transferred to a custom character via standard

animation software or modern retargeting systems [Aberman et al.

2020].

Contribution. Our contribution is two-fold:

• We present the �rst large-scale dataset of 2D pose annotations

on character sketches. Our dataset includes 14,462 skeletons,

each consisting of 18 manually annotated 2D labels with loca-

tions of joints. Around 1000 images also contain 2D locations

of self-contacts. In addition, we have collected and annotated

a smaller dataset containing 310 high-resolution raster char-

acter sketches, collected from a variety of artists highlighting

di�erent styles and characters, that we share with the most

permissive usage license (CC-BY).

• More importantly, we present the �rst framework that algo-

rithmically reconstructs a 3D character pose directly from a

single natural sketch. Our framework supports many sketch

styles, including gesture drawings.

We validate our system in a number of ways (Sec. 7). First, we

present a gallery of 3D character poses computed automatically

and without any additional input from natural sketches. Second,

we perform user studies demonstrating the e�cacy of our method.

Finally, we quantitatively and qualitatively compare our algorithmic

results to manually posed characters and previous work.
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Fig. 3. The previous posing approaches were constrained to working with

either ambiguous inputs, such as stick figures [Davis et al. 2003; Hecker and

Perlin 1992; Lin et al. 2010; Mao et al. 2005] (a), lines of actions [Guay et al.

2013, 2015] (b), or silhoue�es [Won and Lee 2016] (c); or unambiguous, but

clean vector curve drawings [Bessmeltsev et al. 2016] (d), which are hard

if possible to obtain automatically from the raster drawings artists create.

Our framework allows to pose 3D characters directly via natural bitmap

character sketches of di�erent styles, including rough gesture drawings (e)

and detailed character sketches (f), containing inaccuracies, ambiguities,

extra strokes, and rudimentary shading. We furthermore show that our

method works for rasterized clean vector drawings (d) explored in previous

works. Input image (f) © Olga Posukh.

(a) (b) (c)

original view alternate view original view alternate view original view alternate view

Fig. 4. Distinguishing body part foreshortening, i.e. intentional out-of-plane

rotation, from atypical or inaccurate body proportions when no out-of-plane

rotation is intended, is ambiguous. An underestimation of body part length,

when an exact solution satisfying the 2D keypoints does not exist, may

lead to an inexpressive least-squares solution (a, see e.g. the character’s le�

elbow); an overestimation leads to an unintended foreshortening (b, see e.g.

the character’s right knee). Our method addresses this ambiguity (c).

2 RELATED WORK

To our knowledge, no algorithm is capable of inferring a 3D char-

acter pose from a natural raster character sketch. The two closest

areas of relevant previous work are character posing interfaces and

human pose inference from an RGB photograph. We focus on the

most relevant works.

2.1 Character Posing Interfaces

A common technique to pose a 3D character is via time-consuming

direct manipulation of joint angles (Forward Kinematics, FK) or

joint positions (Inverse Kinematics, IK) [Zhao and Badler 1994]. The

problem of IK is inherently underdetermined. In their pioneer work,

Grochow et al. [2004] address this issue via a Gaussian process–

based model trained on a motion capture dataset, requiring exact

and feasible positions of terminal joints.

Previous research explored a various range of alternative inputs

to a posing system, including stick �gures [Davis et al. 2003; Hecker

and Perlin 1992; Lin et al. 2010; Mao et al. 2005], static or dynamic

lines of action [Guay et al. 2013, 2015], silhouettes [Won and Lee

2016], custom sketch strokes [Hahn et al. 2015], tangible devices

(c)(b)(a)

Fig. 5. Unlike photographs, character sketches cannot be interpreted as

projections of a 3D character onto the screen. Le�: input sketch, middle: a

character posed manually by an expert, right: our automatic result.

(a) (b) (c) (d)

187%

43%

100%

Fig. 6. One of the main sources of distortions in character sketches is

unreliably depicted body part lengths. In contrast to a perfect projection (c,

manually posed by an expert given image (b) as a reference), artist routinely

draw bones longer (d, red), o�en exceeding full their 3D length, or shorter

(d, blue) than their correct projection. In (d) we color the bones based on

the ratio of their depicted length and their correct 2D projection length in

(c), from blue to red.

[Glauser et al. 2016], and clean vector drawings [Bessmeltsev et al.

2016].

Stick �gures (Fig. 3a) and silhouettes (Fig. 3b) [Won and Lee 2016]

are inherently ambiguous even for human observers [Bessmeltsev

et al. 2016]. This ambiguity is often resolved via manual annotation

[Davis et al. 2003; Hecker and Perlin 1992; Mao et al. 2005], physical

constraints [Lin et al. 2010], or by putting user in the loop [Davis

et al. 2003]. Some works restrict output [Jain et al. 2012] or measure

proximity to human pose datasets [Choi et al. 2012; Wei and Chai

2011]. These methods are sensitive to inaccurate positioning of 2D

stick �gures [Davis et al. 2003]. Character sketches are imprecise

yet drawn to unambiguously convey a pose to a human observer

and thus contain the necessary cues for a reconstruction, which

we analyze and incorporate in our optimization, allowing us to

overcome the drawing distortions and inaccuracies.

In contrast to alternative posing interfaces, such as tangible de-

vices [Glauser et al. 2016], multi-view incremental approaches [Guay

et al. 2013], or sketch abstractions [Hahn et al. 2015], we infer a

3D pose directly from a single natural character sketch. Our sys-

tem thus allows artists to convert existing drawings, for instance,

the storyboards typically created during the ideation and planning

stage, into 3D poses without spending extra e�ort on posing.
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Choi et al. [2016] introduce a motion editing system via sketch

strokes, requiring an existingmotion of a character as an input. Their

system is complementary to ours, as we focus on reconstructing a

static pose from a single natural sketch.

Gesture3D [Bessmeltsev et al. 2016] reconstructs a character pose

from a clean vector drawing (Fig. 3d), assuming no extra strokes

and precise connectivity (e.g. T-junctions). Sketches found in the

wild are often rich with extra strokes, shading elements, and im-

precise connections (Fig. 3e, f) and often cannot be automatically

vectorized to that precision [Stanko et al. 2020]. Our system directly

accepts such sketches as input. Furthermore, they minimize fore-

shortening, assuming "�at" 3D poses where each body part is nearly

parallel to the screen; we explicitly predict foreshortening, lifting

that assumption. We compare to Gesture3D in Section 7.

2.2 Human Pose Estimation from a Single Photograph

The problem of inferring a 3D human pose from a single RGB pho-

tograph, or monocular pose estimation, is an extensively studied

topic in computer vision. Traditional approaches [Chen et al. 2011;

Gall et al. 2010; Ionescu et al. 2014; Ramanan 2011; Sapp et al. 2010;

Yang and Ramanan 2013] relied on custom image-based features

and often used traditional machine learning techniques. Those ap-

proaches have been largely superseded by the deep learning-based

approaches. Here we only outline the most relevant works. For a

survey, see, e.g. Chen et al. [2020].

3D Pose Estimation. Many learning-based approaches predict 3D

human poses relying on large 3D datasets with the corresponding

images [Pavlakos et al. 2017; Rogez et al. 2017; Tekin et al. 2016;

Tomè et al. 2017; Toshev and Szegedy 2014; Zhou et al. 2016] or

combining those with 2D in-the-wild pose datasets [Mehta et al.

2017a; Tekin et al. 2017; Yang et al. 2018; Zhou et al. 2017]. This

line of work has been extended by enforcing skeletal consistency

[Mehta et al. 2017b; Shi et al. 2020; Sun et al. 2017], joint constraints

[Akhter and Black 2015; Mehta et al. 2020], or bone lengths [Dabral

et al. 2017; Ramakrishna et al. 2012; Wang et al. 2019a]. All these

methods require a signi�cant amount of 3D labeled data. For our

task, we would need thousands sketches and their corresponding

3D poses; no such dataset exists.

Some works sidestep this dependency on full 2D image – 3D

skeleton annotations by using unpaired 2D-3D data [Tung et al.

2017] or by relying on well-established methods in 2D pose estima-

tion [Cao et al. 2019; Carreira et al. 2016; Chen et al. 2018; Newell

et al. 2016; Papandreou et al. 2017] and focusing on the 3D lifting

in a supervised [Martinez et al. 2017] or self-supervised manner

[Novotný et al. 2019]. trained in a fully supervised manner, Super-

vised learning is infeasible in our context; unsupervised learning

would require a model of how 3D joints get projected onto 2D labels.

As discussed in Sec. 1, character sketches cannot be interpreted

as perfect projections of 3D characters, but rather are artistic de-

pictions of those. It is thus unclear how to de�ne such projection

models that support incorrectly drawn perspective and distortions

of body proportions, typical for character sketches. Our system tar-

gets to infer the pose consistent with the artist intent, despite the

distortions and ambiguities (Fig. 4c).

3D Shape Estimation. We are inspired by an alternative line of

work that predicts pose and shape of a human simultaneously [Bogo

et al. 2016; Dwivedi et al. 2021; Kanazawa et al. 2018; Madadi et al.

2018; Pavlakos et al. 2019, 2018; Xiang et al. 2019; Xu et al. 2019].

They represent the shape and pose via a parametric model of human

body shapes, such as Skinned Multi-Person Linear Model (SMPL)

[Loper et al. 2015] or Adam [Joo et al. 2018]. Madadi et al. [2018]

predict SMPL parameters via �rst inferring 3D heatmaps, which are

then processed via a denoising autoencoder and fed into an MLP.

Kanazawa et al. [2018] regress SMPL parameters using weak super-

vision: they match the 2D keypoints locations and capitalize on the

known structure of SMPL space that allows for e�cient compact

natural pose discriminators. Kolotouros et al. [2019] directly regress

SMPL parameters on labels obtained with optimization-based ap-

proach of Bogo et al. [2016]. Joo et al. [2021] further improve results

via using a �ne-tuning framework based on a regression model.

Müller et al. [2021] focus on predicting 3D shape and poses with

self-contacts, using either SPIN [Kolotouros et al. 2019] or EFT [Joo

et al. 2021] as the underlying framework. A recent continuation of

this line of work by Dwivedi et al. [2021] focuses on clothed people.

Speci�cally, they introduce a di�erentiable semantic rendering loss

that distinguishes between clothed and mininally-clothed regions.

Our self-contact detection uses the loss from Müller et al. [2021]. In

contrast to their work that relies on 3D pose estimation to predict

self-contacts, we predict the depicted self-contacts directly from

the input image and map those onto the 3D model (Sec. 4.3). Its

contemporaneous work [Fieraru et al. 2021] similarly relies on a

dataset containing mesh regions in contact. Our dataset only con-

tains image-space locations of self-contacts — more ambiguous yet

easier to collect. We use the framework of Joo et al. [2021] with

[Kolotouros et al. 2019]. Our work, however, di�ers in two impor-

tant aspects. First, [Joo et al. 2021] target reconstructing the 3D pose

such that predicted 2D labels are projections of the 3D joints — a

natural requirement for photographs. Our goal, however, is di�erent:

we aim to predict the artist-intended 3D pose whose projection may

deviate signi�cantly from the drawn sketch – this is re�ected in our

novel loss formulation (Sec. 5) that includes explicitly predicting

bone foreshortening (Sec. 4.4). We compare with those reprojection-

based approaches in Figs. 4, 14, Sec. 7, and Supplementary Materials.

3 KEY PRINCIPLES AND OVERVIEW

Even a simple task of reconstructing a 3D skeleton given 2D pro-

jections of its joints is ill-posed, as formally there is an in�nite

number of solutions. For character sketches, however, the problem

of reconstructing 3D pose is more ambiguous due to the distorted

proportions, perspective, and foreshortening. In order to infer the

artist-intended pose, we distill the knowledge in drawing litera-

ture, as well as perception and modeling research, to formulate

the observations true across a wide variety of sketch styles. These

observations guide our algorithmic choices.

3.1 Key Principles

Foreshortening. Artistic depiction of foreshortening is often far

from accurate (Fig. 6). While drawing, artists do not use precise
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Fig. 7. Starting with an input drawing, we first predict 2D joint positions, or 2D skeleton, which is used in the initial rough alignment of a 3D human model.

We then predict screen-space contact regions, which we map onto the roughly aligned 3D model, resulting in a set of contact vertices (in red). We compensate

for inaccuracies in depicting bone lengths in Foreshortening Transformation stage. Finally, we leverage the bone tangents of the 2D skeleton, the roughly

aligned 3D pose, as well as the transformed foreshortening in an optimization framework yielding the final result. Input image © Olga Posukh.

mathematical measurements for orthographic or perspective pro-

jection, instead relying on their experience and rules of thumb

[Hogarth 1996; Walt Stanch�eld 2020]. Naively reconstructing a 3D

pose with the assumption that the drawn foreshortening is exact, i.e.

that 2D bones are a projection of 3D bones, often leads to a grossly

inaccurate prediction of the angles the bones make with the screen

(Fig. 10a). Previous sketch-based modeling literature relied on the

assumption of minimal foreshortening, i.e. that the characters are

drawn from a viewpoint where all body parts are nearly parallel

to the screen [Bessmeltsev et al. 2016]. Both of these assumptions,

however, are generally incorrect for a character drawing: Artists

do depict shorter limbs as an indicator of bone foreshortening, but

often exaggerate the e�ect [Walt Stanch�eld 2020].

Predicting true angles the body parts make with the screen is

further impeded by two main factors: First, since cartoon charac-

ters often have unrealistic or heavily distorted proportions, there

is a fundamental ambiguity whether the shorter depicted length

indicates di�erent character proportions or foreshortening. Second,

artists often use non-linear perspective [Singh 2002], so inferring

camera parameters from an input image is ill-posed. We propose

a statistics-based solution that predicts bone foreshortening under

orthographic projection, thus compensating for artist inaccuracies

(Fig. 9(c)).

Tangent Signi�cance. For orthographic or perspective cameras,

the length of a bone’s 2D projection would never exceed its full

length. For sketches, however, this is not so. Character bones often

extend beyond their normal length on the drawings due to drawing

inaccuracies or artistic license [Hogarth 1996; Thomas and Johnston

1981; Walt Stanch�eld 2020]. In those cases, even when character’s

body proportions are known, an exact 3D con�guration for the

given projection does not exist, and the least-squares solution fails

to match the expressiveness of the drawing (Fig. 4a).

While unreliable depiction of bone lengths invalidates the di-

rect use of absolute joint positions, artistic literature repeatedly

stresses the importance of correct depiction of joint angles. Angles

are considered one of the key elements of the drawing, creating

pose expressiveness and dynamism [Walt Stanch�eld 2020]. We

speculate therefore that in interpreting a drawn pose, human ob-

servers resolve the inaccuracies in absolute positions by relying

on correctly drawn angles: both joint angles and bone tangents,

i.e. angles they form with the coordinate axes. We therefore aim to

preserve bone tangents, i.e. their angles with the coordinate axes. In

other words, we expect the 3D bone projection to be parallel to the

depicted bones in 2D, subject to regularity cues. Clearly, this also

guides the reconstructed 3D joint angles to have similar projections

to the depicted 2D joint angles.

Perceived self-contacts. Self-contacts, or contacts between di�er-

ent body parts, are key elements of many poses [Hogarth 1996].

Depending on a drawing, self-contacts may be explicitly drawn

(Fig. 11, left) or somewhat ambiguously suggested (e.g. Fig. 7). We

speculate that human observers use perceived self-contacts as one

of the cues to resolve depth ambiguity, associating similar depths to

touching body parts. Clearly, for a 3D character pose to be similar

to the drawing in the original view, the depicted self-contacts must

be preserved, regardless of the di�erence in character’s proportions.

We therefore predict perceived contacts between di�erent body

parts using a neural network and enforce those during optimization.

For each predicted contact in the drawing, we consider the partici-

pating body parts, and both preserve their 2D relative positions at

the point of contact, as well as enforce true 3D contacts between

them.

Pose Naturalness and Regularity. Finally, we observe, consistently

with the previous work [Bessmeltsev et al. 2016; Xu et al. 2014],

that human observers rely on Gestalt simplicity cues [Ko�ka 1955]

ACM Trans. Graph., Vol. 41, No. 4, Article 85. Publication date: July 2022.
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in interpreting drawings. We speculate that given the approximate

nature of character sketches, viewers use regularity cues such as

symmetry and parallelism, as well as expect the pose to be close to

natural.We leverage regularity as one of the cues in our optimization

and use an existing framework biasing the result towards natural

poses [Joo et al. 2021].

3.2 Algorithm Overview

Given a single bitmap sketch of a character in a target pose (Fig. 7,

left), our algorithm automatically infers a parametric human model

SMPL [Loper et al. 2015] in the depicted pose (Fig. 7, right). The pose

can then be transferred automatically onto a custom 3D character

via standard animation software, such as Autodesk Maya or Blender,

or via more advanced modern retargeting methods [Aberman et al.

2020].

We �rst predict three key elements of a character drawing: 2D

bone tangents, body part contacts, and bone foreshortening. We use

convolutional networks to predict 2D locations of main joints and

image-space body part contacts; we then map the latter onto the 3D

mesh (Sec. 4). We then use a nonlinear optimization using standard

position-based Ĉ2 reprojection loss to get a rough estimate of the

pose, which we use to estimate foreshortening factor for each bone

(Sec. 4.4) and contact vertices (Sec. 4.3). Finally, we use the three

key elements in the nonlinear optimization with a novel loss that

balances the perceptual cues, pose naturalness, and similarity to the

input drawing, producing the �nal result (Sec. 5).

4 INFERRING KEY ELEMENTS OF A DRAWING

In the �rst stage of our algorithm, we infer the three elements of

a drawing that we believe are key to its interpretation: 2D bone

tangents, body part contacts, and bone foreshortening.

4.1 2D Joint Positions

We predict the 2D positions of the most important skeletal joints

and rely on our �nal optimization (Sec. 5) to reconstruct the full

3D pose. In total, we predict 2D positions of ć = 18 main joints (4

joints for each leg, 3 for each arm, 3 joints for the torso, 1 joint for

the head).

To this end, we train a top performing deep convolutional 2D pose

estimation network [Sun et al. 2019; Wang et al. 2019b; Xiao et al.

2018] on the dataset of sketches with their 2D skeletal annotations

we collected (Sec. 6). We resize the input drawing preserving the

aspect ratio and pad them to the resolution of 384x288 pixels. The

network outputs a 96x72 pixel heatmap for each of the ć joints,

showing the per-pixel con�dence score of the chosen joint loca-

tion. The joint position is then taken as the maximum point on the

heatmap. For the details on architecture please refer to the original

paper [Sun et al. 2019].

The output of this stage of our algorithm is the 2D positions Į̂2ĀĠ
of ć skeletal joints in the image coordinate frame (Fig. 7a). 2D bone

tangents are then de�ned as di�erences of those 2D positions.

4.2 Initial Alignment of the 3D Model

We leverage these 2D positions in an initial optimization that pro-

duces a SMPL model roughly aligned with the drawing (Fig. 7c) via

(a) (b) (c) (d)

original view alternate view

Fig. 8. To detect self-contacts, we first predict a self-contact heatmap (a),

which we first threshold and split into connected components, or contact

regions (b). We then overlap each contact region with the 2D skeleton and

mark the corresponding 3D SMPL skeleton segments (c). Finally, we use

SMPL skinning to find all the mesh vertices corresponding to these bone

segments (d).

a state-of-the-art framework Exemplar Fine-Tuning (EFT) [Joo et al.

2021]. Starting with a pre-trained network performing regression

from the input image into the space of the SMPL parameters [Kolo-

touros et al. 2019], EFT optimizes the weights of the network to

minimize the Ĉ2-reprojection distance between 2D joint positions

Į̂2ĀĠ and 2D orthographic projections Į2ĀĠ of the 3D SMPL joints:

ā2D =

∑

Ġ

ĭ Ġ ∥Į̂
2Ā
Ġ − Į2ĀĠ ∥2 . (1)

We train the regression network on the poses produced by Pavlakos

et al. [2019], which uses a pose naturalness prior. We thus inherit

naturalness of poses as an implicit prior. For all details, please refer

to the original paper [Joo et al. 2021]. We run their method for 150

iterations, with default parameters. The output of this stage is a

set of 85 parameters encoding a human in a pose roughly similar

to the drawing, including 24 × 3 parameters for body pose, 10 for

body shape, 2 for camera 2D translation and 1 for uniform scale.

The input RGB images are 224 × 224px.

4.3 Detecting Self-Contacts

We then detect depicted self-contacts in the image space and map

those onto the vertices of the roughly aligned mesh (Fig. 8). The

vertices will be then used in the �nal optimization that enforces

contacts between some of them (Sec. 5).

Our sketch dataset contains 2D positions of perceived self-contacts.

We use it to train a 2D contact prediction network, outputting 2D

contact heatmaps. The network has the same architecture as in

Sec. 4.1.

The self-contact heatmap predicts areas of potential contacts

in the image space. We �rst need to �lter out noise and separate

di�erent contact regions, which we map to separate groups of SMPL

mesh vertices that each should have at least one pair of vertices

touching. To this end, we �rst threshold the self-contact heatmap

with a conservative threshold of 0.5, and compute the connected

components over the thresholded heatmap, forming contact regions.

Our next step is mapping each contact region onto the vertices

of the roughly aligned SMPL mesh. Note that a straightforward

approach of simply projecting each connected component onto the
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(a)

(b)

(d)

(c) (e)

Fig. 9. In the foreshortening transformation stage, we design a function (c)

that transforms the bone-screen angles a�er the initial optimization closer

to the ground-truth angles. To this end, we find the transformation bringing

the distribution of such angles a�er the initial optimization B (b) closer

to the distribution of ground-truth angles A (a), yielding the transformed

angle distribution Ĝ (B) (d). The final angles are then used to compute the

target foreshortening of each body part used in the final optimization. Here

we display the histograms for the le� thigh bone.

original view alternate view original view alternate view

(a) (b)

Fig. 10. Without the foreshortening transformation (a), distortions in the

depicted body part lengths o�en lead to unexpected angles with the screen.

We correct these distortions (b).

mesh may lead to suboptimal results, since the mesh often deviates

signi�cantly from the drawing (Fig. 8c). Instead, we use the predicted

2D skeleton as a proxy to �nd this mapping.We �rst compute convex

hull of each contact region for robustness, then intersect each hull

with the 2D skeleton, forming a set of 2D bone segments (Fig. 8b).

We then use the linear parameterization of each bone to transfer the

segments in contact onto the 3D SMPL skeleton (Fig. 8c), and �nally

mark all mesh vertices skinned to these 3D segments as contact

vertices for this contact region (Fig. 8d).

4.4 Foreshortening Transformation

In this step, our goal is to compensate for the distortions in the

depicted foreshortening, introduced by artist inaccuracies, exagger-

ated perspective, and proportions mismatch (Fig. 10a). The output of

this step, bone foreshortening under orthographic projection, will

inform the angles between the 3D bones and the screen (Fig. 10b).

A straightforward solution would be to use a ground-truth dataset

with correspondences between depicted 2D poses and intended 3D

poses; such dataset, unfortunately, does not exist. Instead, our in-

sight is that while the correspondences are unknown, the recon-

structed and intended angles the bones make with the screen should

be equally distributed.

As a proxy for the unknown distribution of the intended angles,

we take the distribution Ağ of angles each bone ğ in a motion cap-

ture dataset [Mahmood et al. 2019] makes with an appropriate view

plane (Fig. 9a). Ideally, the choice of the view planes should capture

the drawing angles the artists choose for a given pose; as an approx-

imation, we use the dataset’s default camera plane. Note that while

this computation can easily be extended to multiple view planes, we

did not �nd it necessary, since the dataset already provides enough

pose variety even from the default viewpoint. We then compute the

distribution Bğ of angles each bone ğ makes with the screen after

performing rough optimization (Sec. 4.2) for all the images in our

drawing dataset (Fig. 9b).

Our goal is now to �nd a function that, for each bone ğ , trans-

forms the reconstructed angles ăğ ∼ Bğ such that their distribution

matchesAğ as closely as possible. As noted inWnuczko et al. [2016],

the accuracy in observer’s perception of 3D directions seems to vary

with the foreshortening angle; we conjecture the same is true for

artists depicting foreshortened 3D bones. We furthermore observe

that (1) artists seem to exaggerate perspective for foreshortened

lines; (2) even when intending no foreshortening, artists often draw

slightly shorter bones due to inaccuracies or weak but inaccurate

perspective (e.g. Fig. 6). Guided by these observations, we �rst rep-

resent the distributions of angles Ağ and Bğ via histograms with 10

equal bins, from 0° to 90° (Fig. 9a, b). We then model the transforma-

tion as a cubic polynomial:

Ĝ (ă) = ėă3 + Ęă2 + ęă + Ě, (2)

with initially unknown parameters ė, Ę, ę, Ě , and ă ∈ [0, ÿ/2]. To

make the distributions of Ĝ (Bğ ) and Ağ similar, we �nd the un-

known parameter values by minimizing a sum of Earth Mover’s

Distances [Rubner et al. 2000] between the two angle distributions

for each bone, discretized as histograms:

min
ė,Ę,ę,Ě∈R

∑

ğ

inf
ć ∈Π (Ağ ,Bğ )

E(Ă,ă )∼ć |Ă − Ĝ (ă) |, (3)

where Π(Ağ ,Bğ ) is the set of all joint distributions whose marginals

are Ağand Bğ . As we observed above, foreshortening is typically

exaggerated, so we add constraints 0 f Ĝ (ă) f ă . We would like to

preserve the bones parallel to the screen to be still parallel after the

transformation, i.e. ă = 0, so we set Ě = 0. Minimizing the energy

in Eq. 3, we get ė = 0.312, Ę = −0.448, ę = 0.503.

After this transformation, the angle distributions are better aligned

(Fig. 9). This optimization is done only once for the dataset. We have

additionally tested other classes of functions (cubic splines and

piecewise linear functions). They result in similar, somewhat more

complex functions that have little e�ect on the results, so we chose

the cubic function as the simplest option.

At test time, for a given image, after the roughly aligned 3D skele-

ton is computed (Sec. 4.2), we calculate the angles ăğ between each

bone and the screen. We note that since SMPL is limited to human

proportions, atypical proportions of the depicted character likely
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cause discrepancies in body shape estimation, and, as a result, in an-

gles ăğ . For many characters, we observe that those mismatches can

be explained by an atypical scale of upper body relative to the lower

body. To alleviate this issue and avoid incorrectly foreshortened

bones, we subtract the minimal angle with the screen, computed

separately over the upper body and lower body:

ă′ğ = ăğ −min
Ġ∈þ

ă Ġ ,

where þ is the set of upper or lower body bones.

Finally, the predicted foreshortening is represented byąğ = cos Ĝ (ă′ğ ),

the target foreshortening for bone ğ used in the �nal optimization.

5 3D POSE OPTIMIZATION

The second stage of our system is the optimization that starts with

the roughly aligned pose (Sec. 4.2) and �nds the artist-intended 3D

pose of the given character. To this end, the optimization leverages

the 2D bone tangents, body part contacts, and bone foreshortening

computed in the previous stage. As a framework, we use EFT [Joo

et al. 2021] which optimizes over the weights ĭ of the regression

neural network, initialized by the rough alignment stage (Sec. 4.2).

We follow their optimization process (Adam algorithm, default Py-

Torch parameters, learning rate of 10−6). We perform a �xed number

of 60 iterations.

Within that framework, instead of the traditional position-based

Ĉ2 reprojection loss (Eq. 1), we propose the following novel loss for

our task, based on our principles (Sec. 3.1):

min
ĭ

āparallel + Čfāf + ācontacts + āreg . (4)

We denote Į3ĀĠ ∈ R3, Ġ = 1, . . . , ć the 3D joint positions of the SMPL

model. Note that these positions are, for a �xed input image, func-

tions of the neural network weightsĭ . For each bone ğ connecting

joints Ġ1 and Ġ2, we denote its 3D vector as Ę3Āğ = Į3ĀĠ2
− Į3ĀĠ1

, and

its orthographic projection onto the screen as Ę2Āğ . Details about

the individual terms in Eq. 4 are below, in the order they appear:

• Parallelism. Guided by our principle of tangent signi�cance,

we favor parallelism between the projected 3D bones and

their 2D depictions:

āparallel =
∑

ğ

(

Ę2Āğ

∥Ę2Āğ ∥
· Ĥ

)2

,

where Ĥ is a normal to the depicted bone Į̂2ĀĠ2 − Į̂2ĀĠ1
.

• Foreshortening. We use the transformed bone foreshorten-

ing calculated in Sec. 4.4 to guide the target length of each

bone’s projection:

āf =
∑

ğ

(∥Ę2Āğ ∥ − Ĉğąğ )
2,

where Ĉğ is the length of the bone ğ , as estimated by the

rough alignment stage (Sec. 4.2). Note that here we use a �xed

bone length Ĉğ , as opposed to ∥Ę3Āğ ∥ that can vary during the

optimization. In our experiments, we found that otherwise

the optimization often exploits that dependency to minimize

the energy, adjusting the bone lengths instead of the angles

between screen and bones.

• Contacts. For each set of contact vertices computed in Sec. 4.3

(Fig. 8), we enforce physical contact between at least one pair

of vertices . We de�ne ācont3D as the sum of four energy terms

from [Müller et al. 2021], aimed at minimizing Euclidean dis-

tances between contact vertices, aligning their normals, and

avoiding self-collisions. Please see Appendix A for details.

Furthermore, as outlined in Sec. 3.1, we aim to preserve the rel-

ative positions of the bones and joints in each contact region.

To this end, for each contact region we �nd points on the 2D

skeleton that are the closest to the contact, compute their 2D

positions relative to each other, and aim to preserve those 2D

positions between the same points on the 3D SMPL skeleton.

Precisely, to determine those points, we select the local max-

ima of the heatmap over each 2D bone. We then connect each

such point with all others within the same contact region,

forming vectors ę̂2Āğ , which capture the relative position of

such point with respect to another one. We aim to preserve

these vectors exactly for the 3D pose, when projected onto

the original view. For each point on the 2D skeleton, we �nd

its corresponding point on the 3D skeleton by using the linear

(arclength) parameterization of each bone and simply taking

the 3D point with the same parameter value along the same

bone. Denoting the vectors connecting the corresponding 3D

skeleton points after projection as ę2Āğ , we set:

ācont2D =

∑

ğ

∥ę2Āğ − ę̂2Āğ ∥
2
.

The �nal term is ācontacts = Čcont3Dācont3D + Čcont2Dācont2D.

• Regularity. As suggested by perception studies and previ-

ous work [Bessmeltsev et al. 2016; Xu et al. 2014], we spec-

ulate that human observers leverage regularity cues when

interpreting sketches. In particular, the viewers expect nearly

parallel 2D bones to stay parallel in 3D; feet nearly parallel

to the �oor to be standing on the �oor. In enforcing this, we

utilize perception research–indicated angle threshold [Hess

and Field 1999] of 17°, below which we consider 2D bones to

be parallel to each other or the �oor. āreg thus is a simple sum

of squared di�erences between the corresponding normalized

bone directions Ęğ and their target directions.

The naturalness of the poses is enforced implicitly by the EFT

framework itself, as discussed in 4.2. For all the results presented in

the paper, we use Čf = 10, Čcont3D = 0.06, Čcont2D = 10−3.

6 DATASET

We propose two novel datasets: the �rst large-scale dataset of 2D

pose annotations for character sketches (D1), and a smaller dataset

of high-quality character sketches (D2). Dataset D1 contains more

than 3K images containing one or more sketched characters in

articulated poses with 2D position annotated for each key joint

(up to 18 per skeleton), in total containing 14,462 skeletons. Each

image was annotated by a single annotator only; human annotations

of sketches, however, are largely consistent, as shown by previous

work [Bessmeltsev et al. 2016]. Dataset D2 contains 310 high-quality

character sketches, with a very permissive usage license (CC BY

2.5). We use D1 to train and validate our 2D keypoint prediction
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network. We show a few examples from D1 in the Supplementary

Materials; all the input images of the results in the paper, unless

indicated otherwise, are from D2, and thus are not used in training.

Data Collection and Annotation. For D1, as the �rst step of data

collection, we manually query search images via engines such as

Google, Bing, and Baidu for character sketches and �lter out irrel-

evant images. We additionally collect images with similar queries

from Flickr and Pinterest and removed duplicates. We then hired

an annotation service that marked up to 18 joint locations for each

drawn character, with particular instructions to annotate occluded

or not explicitly drawn joints if their position is clear from context,

but skip the ones that are ambiguous. Naturally, this dataset con-

tains sketches of numerous styles and complexities, greyscale and

color, digitally drawn and scanned pen-and-paper drawings.

For D2, we collect high-resolution scans or photographs of char-

acter sketches from artists of di�erent backgrounds. The sketches

contain gestures, contour drawings, and detailed character sketches

of humans in various, often highly articulated poses. The sketches

are done in a variety of techniques on paper (pencil, pens, water-

color).

7 RESULTS AND VALIDATION

So far we have shown many examples of 3D characters, algorithmi-

cally posed via a single bitmap sketch (Fig. 1, 4, 5, 7). Our learning-

based solution allows to pose 3D characters via natural, noisy, incom-

plete, and inaccurate character sketches, inaccessible to previous

work. Our novel optimization allows us to successfully resolve ambi-

guities, inaccuracies, and distortions typical for character sketches,

see e.g. Fig. 11, 12 for additional results. Our method robustly han-

dles occlusions (e.g. the left arm in Fig. 12, second row) and alto-

gether missing body parts (Fig. 12, top), typical for incomplete quick

sketches or gestures. For all the examples, our method convincingly

recreates the drawn poses in 3D.

Note that we only target estimating body pose, not its shape.

Therefore, after our optimization we set the shape to the SMPL

default for all our results.

We validate the key aspects of our method in a number of ways.

The questionnaires used in the evaluations and detailed results are

included in our supplementary.

Ablation Study. We perform an ablation study of our method

(Fig. 13). We demonstrate results on a challenging example, each

time skipping one component of our algorithm by disabling the

corresponding loss term. For reference, we show a reprojection-

based method [Müller et al. 2021] (Fig. 13a), highly sensitive to the

depicted bone lengths, introducing strong unexpected foreshort-

ening. Disabling the foreshortening transformation Fig. 13b also

leads to a foreshortened pose, albeit slightly less (right shin) due

to focusing on parallelism instead of 2D joint positions. Optimiza-

tion without contacts results in an incorrect depth prediction of the

left hand (Fig. 13c). Disabling the regularity term results in a left

knee with a bent, invisible from the front (Fig. 13d). Please see the

supplementary materials for the ablation study on the other inputs.

Foreshortening Transformation Function. We evaluate the robust-

ness of Eq. 3 by �tting the function to smaller random subsets A

(10%, 1%, 0.1%, and 0.05% of full training dataset). We get the same

of similar coe�cients of ė, Ę and ę , within the tolerance of 0.2, as for

full training dataset. We further test robustness by �tting our fore-

shortening transformation function on a subset of standing poses

only, obtaining ė′ = 0.05, Ę′ = 0.12, ę′ = 0.23, as opposed to the

original values in Sec. 4.4 (ė = 0.312, Ę = −0.448, ę = 0.503). Despite

the di�erence in coe�cients, the two polynomials Ĝ (ă) (Eq. 2) with

those coe�cients are virtually identical over the interval we are

interested in, i.e. ă ∈ [0, ÿ/2].

Qualitative Evaluation. We asked 2 artists and 7 non-professionals

to comment on the results of our algorithm. We showed them each

pair of input and our algorithmic result and asked to comment on

the following statement, separately for each pair, "This 3D character

pose captures the artist intended drawn pose.", with 5 Likert-type

reply options: "Strongly disagree" (-2), "Disagree" (-1), "Neither dis-

agree nor agree" (0), "Agree" (1), "Strongly Agree" (2). On average,

the respondents agreed with the statement (ėĬĝ = 1.06, ĩĪĚ = 0.38).

The layout of the study and the results are presented in the Supple-

mentary.

Comparison to Prior Art. In Figure 15, we compare our method to

Gesture3D [Bessmeltsev et al. 2016]. Their method relies on having

a clean vector drawing, including inferring joint depth order from

clean vector T-junctions, and assuming all the terminal joints are

clearly visible and outlined (a). Our method handles a much wider

variety of inputs, including natural bitmap sketches found in the

wild. Automatically vectorizing such sketches to get a similar quality

vectorization is an open problem (Figure 15c). Even supplied with

correct 2D labels, Gesture3D does not capture the notion of pose

naturalness, often resulting in unnatural poses (bottom middle).

Furthermore, Gesture3D is designed for drawings with minimal

foreshortening, producing �at, static poses (Figure 15, top middle).

Our method successfully captures complex poses with signi�cant

foreshortening (Figure 15, top right).

We compare with reprojection-based methods in Fig. 4, 14, and

Supplementary Materials. We use the implementations provided

by the authors. Whenever a method accepts 2D labels as input,

we supply the 2D labels predicted by our 2D network for a fair

comparison. We �rst train SPIN [Kolotouros et al. 2019] on the

results of Pavlakos et al. [2019], then improve those with the system

of Joo et al. [2021], and �ne-tune the SPIN regression network on

those poses for better quality. For the methods directly predicting

a 3D pose from an image, we retrained them using our dataset,

following their training protocol. We run our method directly on

the input sketch.

These methods do not aim to capture the artist-intended pose,

rather focusing on the task of �nding a natural pose with projec-

tions of 3D joints close to the 2D joint positions. In the presence of

distortions, typical for character sketches, such as incorrect depic-

tion of perspective and bone lengths, such approach often leads to

exaggerated foreshortening (Fig. 4, 14), irregularities or unnatural

poses (Fig. 12). Our method successfully reconstructs poses close to

natural in the presence of such distortions and inaccuracies for both

standard proportions (Fig. 14, top) and non-humanoid or characters

with unrealistic or non-human proportions (Fig. 14, bottom).
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original view original viewalternate view alternate view

Fig. 11. A few examples of poses with self-contacts. Input images (except top-le�) © Olga Posukh.

Qualitative Comparison. We validate the quality of our results by

comparing them to the state of the art alternative [Müller et al. 2021]

via a comparative perceptual study. Study participants were shown

input sketches, together with our algorithmic posing result and an

alternative posing result. The layout of the study is presented in the

Appendix. The input sketch was shown on the top, marked as A, and

the two posing results were placed at the bottom in random order

and marked as "B" and "C". Participants were then asked "Which of

the poses below, B or C, more accurately captures the drawn pose

A on top? If both are equally acceptable, choose ’Both’. If neither,

select ’Neither’ ". We included 12 questions. We collected answers

for each query from 14 di�erent participants, including 5 males and

9 females, age ranging from 21 to 32 years; 3 were artists. The study

data is presented in the supplementary.

To avoid the in�uence of the body shape on the study results, we

reset body parameters to the average body shape for both methods.

Similarly, since neither hands nor turn of the head are guided by

the input sketch and are only controlled by their respective priors,

we reset these parameters to their default values.

Fig. 16 summarizes the results. Participants preferred our results

over the one of 64% of the time, ranked our methods on par 10%

of the time, and preferred the alternative only 8% of the time. This

study convincingly demonstrates that the 3D poses we produce are

more consistent with viewer expectation than the ones produced

by previous approaches.

Hand poses and head turn. Our system does not capture hand

poses and the turn of the head; inferring those features from in-

complete drawings proved to be a challenge. As a follow-up to our

study (Fig. 16), we have asked users who selected ’Neither’ for their

comments, and most of the comments addressed hand poses and the

turn of the head. Instead of relying on heuristics, we allow for a sim-

ple user interaction: the user is able to choose one of the prede�ned

hand poses (�st, �at palm, palmar �ection) for each hand and turn

the head around its axis (Fig. 17). For this �gure, a user adjusted the

hand poses and the head turn within a few seconds. All the other

results were processed in a fully automatic way; comparison with

the previous work was done with automatically computed results.

Comparison with manually posed characters. We provided six of

our input sketches and the SMPL model in a neutral pose to two 3D

modeling experts and asked them to manually pose the characters

into the poses drawn on the sketches. The artists took roughly from

5 to 15 minutes to pose the character for each drawing, while our

algorithm inferred each pose in 1.5 minutes on average (Sec. 7).

We have furthermore performed a qualitative comparison user

study with the same layout as for the comparison with the previous

work, each time presenting our results and manually posed results

in a random order. We asked 6 participants. Participants preferred

our results 27% of the time, ranked both our and manual results as

equally good 18% of the time, and preferred the manually posed

characters 44% of the time. The participants chose "Neither" 11% of

the time, disagreeing with both manually posed and our results.

Finally, we have quantitatively compared our algorithmic results

with the manually posed 3D characters, as shown in Table 1. With

respect to the standard MPJPE and PA-MPJPE metrics, we show that

our results have smaller or equal errors than the previous work,

similar to the natural variation between di�erent experts. Those

standard metrics, however, are not perception-based and thus are

not necessarily indicative of user preferences.
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Input sketch [Müller et al. 2021] Our result Our result retargeted

original view alternate view original view alternate view original view alternate view

Fig. 12. Our algorithmic results can be automatically transferred onto a given custom character using standard tools (we used Blender’s Animation Retargeting

feature). We show the results of Müller et al. [2021] for comparison. Input image (top) © Rafianimates, (third row) © Brad Regier, (bo�om) © Zoska Leutina.

Table 1. Error metrics on the manually posed characters.

MPJPE PA-MPJPE

[Pavlakos et al. 2019] vs Expert 1 266 232

[Pavlakos et al. 2019] vs Expert 2 282 237

[Kolotouros et al. 2019] vs Expert 1 189 152

[Kolotouros et al. 2019] vs Expert 2 223 153

[Joo et al. 2021] vs Expert 1 107 93

[Joo et al. 2021] vs Expert 2 136 100

[Müller et al. 2021] vs Expert 1 126 105

[Müller et al. 2021] vs Expert 2 150 116

Ours vs Expert 1 103 78

Ours vs Expert 2 126 88

Expert 1 vs Expert 2 116 79

(a) (b) (c) (d) (e)

original

view

alternate

view

original

view

alternate

view

original

view

alternate

view

original

view

alternate

view

original

view

alternate

view

Fig. 13. An ablation study of our algorithm. (a) Result of a reprojection-based

method of Müller et al. [2021]. (b) Our optimization without foreshortening

transformation (b), without contacts (c), without the regularity energy (d),

and our final result (e). For each pose, the original view is on the le�, the

alternate view is on the right.

Parameter Sensitivity. We show (Fig. 19) that ourmethod produces

plausible results for a range of parameters. Naturally, changing ČĜ
provides a way to balance trusting the depicted foreshortening.
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Input sketch [Kolotouros et al. 2019] [Joo et al. 2000] [Müller et al. 2021] Our result

original

view

alternate

view

original

view

alternate

view

original

view

alternate

view

original

view

alternate

view

Fig. 14. Additional comparisons with reprojection-based approaches [Joo

et al. 2021; Kolotouros et al. 2019; Müller et al. 2021], which fail to reconstruct

plausible poses due to the typical inaccuracies and distortions of a character

sketch. Our method correctly recovers the intended 3D poses (right).

Gesture3D(a)

(d)(c) Gesture3D Our result(b)

Our result

Fig. 15. Gesture3D [Bessmeltsev et al. 2016] only accepts clean vector draw-

ings (a), unable to find 2D joint locations otherwise. Given a noisy sketch

(b), modern vectorization methods o�en produce noisy vectorizations (c),

incompatible with Gesture3D. Even provided with 2D labels (d), Gesture3D

may produce implausible or static and flat poses (middle). Our method

directly successfully infers 3D poses from a variety of sketches, including

rasterized clean vector drawings like (a) and noisy raster drawings (b), pro-

ducing realistic, expressive, and dynamic poses (right).

0% 20% 40% 60% 80% 100%

Vote Percentage Ours OtherBoth Neither

Fig. 16. Summary of comparative preferences in our perceptual study. Par-

ticipants strongly preferred our results over the state-of-the-art alternative

[Müller et al. 2021].

Similarly, increasing Čcont2D, Čcont3D prioritizes self-contacts in the

�nal pose.

2D Keypoint Detection Validation. We evaluate the performance

of 2D keypoint detection on our validation dataset, consisting of

882 drawings each containing a single character (roughly 6% of

our dataset). We use a standard Percentage of Correct Keypoints

(PCK@0.5) metric on this dataset, as well as mean Average Precision

(mAP) metric on a range of Object Keypoint Similarity (OKS) thresh-

olds. Overall, the 2D keypoint detection network reaches 0.891 of

PCK@0.5 and 0.854 of mAP, which is substantial considering the

Automatic result Modified Alternate view

Fig. 17. We allow for a simple user interaction to edit the pose features our

system does not infer: selecting from a small set of predefined hand poses

and adjusting the turn of the head. This interaction typically takes a few

seconds. Input image (top) © Achonan, (middle) © Olga Posukh, (bo�om)

© Brad Regier.

Sketch Expert 1 Expert 2 Our result

original view alternate view original view alternate view original view alternate view

Fig. 18. Our algorithmic results (right) are o�en visually comparable with

the characters manually posed by experts (middle). Our computations are

roughly 3-10 times faster than manual posing.
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Fig. 19. Our method is robust to significant changes in the parameters. Our

result with the default parameter values is on the right.
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original view alternate view original view alternate view

Fig. 20. Our algorithm may incorrectly resolve depth order (le�, where the

le� arm should be behind) and cannot handle multiple characters (right).

Input image (right) © Olga Posukh.

complexity of the task of inferring 2D joints for often incomplete

sketches with occlusions and sparsely drawn curves. We observe

that we reach a higher mean average precision score compared to

the standard COCO keypoint detection benchmark in computer

vision (0.795 of mAP [Liu et al. 2021]). We speculate that this may

be to either the smaller size of our validation set or perhaps lower

variability of line styles and textures in sketches compared to the

in�uence of lighting e�ects in photographs.

Without training on our dataset, the pre-trained 2D keypoint

detector of Sun et al. [2019] performs worse on our data (0.54 mAP,

computed over the 13 joints we have in common). The pretrained

OpenPose detector [Cao et al. 2019] fails on our data (0.002 mAP).

Input Quality, Style Independence, and Robustness. We demon-

strate that due to the variety of our 2D keypoint annotated dataset,

our system is robust to di�erent drawing resolutions and quality,

including high-quality scans (e.g. Fig. 17) and low-resolution or

low-quality photographs of sketches (Fig. 12, bottom). Many of the

drawings contain extra strokes, elements of shading, or simple noise,

which would be an issue for previous methods assuming clean in-

put; our method successfully handles those. Similarly, our system

supports drawings of many styles, including gesture drawings (e.g.

Fig. 12 top), detailed character sketches (e.g. Fig. 17), and more

abstracted painterly drawings (Fig. 11, center and right).

Parameters and Performance. We have implemented the system

in Python using PyTorch library. All the results presented in the

paper were computed with the default parameters presented in

the text. On our desktop machine (single Intel® Core™ i7-9700K

CPU @ 3.60GHz with NVIDIA® GeForce® RTX 2080Ti), each of

our results takes roughly 90 seconds. Most of the time is spent in

the 3D optimization, where the bulk of time (90%) is taken by the

generalized winding numbers computation for the self-contacts loss.

The rest of the pipeline is almost immediate.

Limitations. Our system reconstructs the depth order of body

parts based solely on the 2D information and pose naturalness prior,

so it can occasionally misinterpret which body part is close to the

viewer. Furthermore, one system can only pose a single character

from a sketch, leaving the task of multiple character posing to future

work (Fig. 20).

8 CONCLUSIONS AND FUTURE WORK

We have presented and validated the �rst method to infer a 3D

humanoid character pose from a single bitmap sketch and intro-

duced the �rst large-scale dataset of 2D skeletal joint annotations

for bitmap sketches. Our system combines a modern deep learning

framework with an optimization, guided by observations on the

nature of sketches. Our method can process drawings of many di�er-

ent styles with occlusions, distorted proportions, and extra strokes

or elements of shading, allowing to directly use natural drawings

without any preprocessing or cleanup. We con�rm that the poses

our framework produces agree with the observers’ expectations, by

a signi�cant margin more than the previous work.

Our work raises many directions for future research. First of all,

we hope that the introduction of the 2D joint labels dataset will

inspire follow-up research in 2D character inbetweening, segmenta-

tion, or consolidation of character sketches, among other possibili-

ties. An interesting extension of our work would be to generalize

it to arbitrary non-humanoid skeletons, where pose datasets are

unavailable, via physics-based animation systems. Finally, an impor-

tant line of research would generalize our method to non-skeletal

rigs, supporting facial animation and nonlinear deformations.
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A DETAILS ON THE CONTACT TERM ācont3D

In this section, we precisely follow Müller et al. [2021]; this is given

only for completeness, all the missing details can be found in the

original paper.

De�nition A.1. Given a mesh ĉ , we de�ne two vertices Ĭğ and

Ĭ Ġ ∈ ĉ to be in self-contact, if | |Ĭğ−Ĭ Ġ | | < Īeucl andĝěĥ (Ĭğ , Ĭ Ġ ) > Īgeo,

where ĝěĥ (Ĭğ , Ĭ Ġ ) is the geodesic distance between Ĭğ and Ĭ Ġ . We use

Īgeo = 30ęģ and Īeucl = 2ęģ.

We denote all vertex pairs inĉ satisfying this de�nition asĉÿ .

We further de�ne an operator U(·) that returns a set of unique

vertices in ĉÿ , and an operator Ĝĝ (·) that takes Ĭğ as input and

returns the Euclidean distance to the nearest Ĭ Ġ that is far enough

in the geodesic sense.

We set

ācont3D = L
ÿ̃
+ LC + LP + LA,

where

L
ÿ̃
=

1

|U(ĉ̃ÿ ) |

∑

Ĭğ ∈U(ĉ̃ÿ )

tanh Ĝĝ (Ĭğ )

encourages every vertex in the predicted set of contact vertices ĉ̃ÿ

to be in contact. Vertices in contact are pulled together via a contact

term LC. To prevent self-intersections, vertices inside the mesh are

pushed to the surface via a pushing term LP. Finally, LA aligns the

surface normals of two vertices in contact.

To compute self-contact terms, we �rst �nd which vertices are

inside, ĉą ¢ ĉ via generalized winding numbers [Jacobson et al.

2013]. SMPL-X is not a closedmesh; this complicates the self-intersection

tests. We close it by adding a vertex at the back of the mouth. In

addition, SMPL and SMPL-X often self-intersect by default, e.g. torso

and upper arms. We identify such common self-intersections and

�lter them out fromĉą . To capture �ne-grained contact, we map the

union of inside and contact vertices onto the HD SMPL-X surface,

i.e.ĉĀ = ĄĀ (ĉą ∩ĉÿ ), which is further segmented into an inside

ĉĀą
and outsideĉ

Ā∁
ą

subsets via intersection tests. The objectives

are de�ned as

LC = Ă1

∑

Ħğ ∈ĉ
Ā
∁
ą

tanh2
Ĝĝ (Ħğ )

Ă2
,

LP = ă1

∑

Ħğ ∈ĉĀą

tanh2
Ĝĝ (Ħğ )

ă2
,

LA =

∑

(Ħğ ,Ħ Ġ ) ∈ĉĀÿ

1 + ïĊ (Ħğ ), Ċ (Ħ Ġ )ð.

Here ĉĀÿ
is the subset of vertices in contact in ĉĀ . We use the

same parameter values as in the original paper, Ă1 = Ă2 = 0.005,

ă1 = 1, and ă2 = 0.04.
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