
EUROGRAPHICS ’0x
N.N. and N.N.
(Editors)

COMPUTER GRAPHICS forum
Volume 0 (200x), Number 0

STAR – State of The Art Report

State-of-the-art Report in Sketch Processing

Chenxi Liu1,∗ , Mikhail Bessmeltsev2,∗

1University of Toronto, Toronto, Canada 2Université de Montréal, Montréal, Canada
∗Joint first authors

(a) Sketch fundamentals (b) Core challenges (c) State-of-the-art methods (d) Sketch datasets

Topology Segmentation

Occlusions
Tangents

Centerlines Correspondences

Vectorization Beautification

Cleanup

Flatting Lifting

Figure 1: In this survey of sketch processing methods, we first summarize key properties and fundamentals in sketch structure and perception
(a, Sec. 2). We then identify core geometrical and topological challenges shared by many processing methods, as well as downstream
applications (b, Sec. 3). Building upon that analysis, we then survey sketch processing methods for most popular sketch processing tasks
(c, Sec. 4) and outline the commonly used sketch datasets (d, Sec. 5). Images in (b) are adapted from [LRS18, MNB23, DSC∗20, NHS∗13,
WNS∗10]. See later figures for other credits.

Abstract

Sketches are a powerful and natural form of communication and are used in numerous systems for modelling, animation, shape
retrieval, and editing. Despite their popularity, rough sketches — whether raster or vector, 2D or 3D — are often too complex
and imprecise to be used directly and thus need special processing. For instance, many downstream applications, such as
shape reconstruction, have strict requirements for cleanliness and accuracy of the input sketch. Alternatively, if a drawing is
the final result, users might want to further process the sketch through tasks such as vectorization, beautification, cleanup, flat
colorization, and more. In this state-of-the-art report, we identify core geometrical and topological challenges shared by many
processing methods, such as identifying endpoints, strokes, and junctions. Building upon that analysis, we then survey sketch
processing methods in each task category. Furthermore, we outline the commonly used sketch datasets and promising avenues
for future research in sketch processing.

CCS Concepts
• Computing methodologies → Parametric curve and surface models; Shape analysis; Perception;

1. Introduction

Sketches are a powerful form of communication, effectively used
for millennia. They are intuitive and expressive, often capturing

© 0x The Author(s). Computer Graphics Forum published by Eurographics - The European Associ-
ation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial
License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

https://orcid.org/0000-0003-3613-1662
https://orcid.org/0000-0002-8864-2934

2 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

complex ideas and emotions with simple strokes and shapes. De-
spite their apparent simplicity, sketches can serve as a surprisingly
effective means to convey a shape. Whether used for brainstorm-
ing, storytelling, or art, sketches provide a unique and effective
way to communicate ideas that transcend language and cultural
barriers. Sketches are used as an input in many downstream tasks,
such as 3D modelling [DSC∗20], character posing and animation
[BB22, GCR13], 3D shape retrieval [ERB∗12], editing [GRYF21],
as well as an art form on their own.

Many of those systems have restrictions on the input sketches:
some systems only accept clean vector input [DSC∗20], many re-
quire the input to be bounded by a closed curve [JBPS11], some
rely on junctions being precise [PMKB23]. Similarly, systems that
treat the sketch as an art form by itself and perform beautification
[FASS16], colorization [YCY∗22], or inbetweening [WNS∗10],
often rely on sketch processing, such as finding closed regions or
determining junctions. While in general deep learning–based meth-
ods have weaker restrictions on the input sketches, many still pro-
cess sketches to prepare their datasets [PNCB21, YLA∗24].

Therefore, like other geometry representations, such as meshes,
signed distance functions, or point clouds, sketches often need pro-
cessing for these downstream tasks. Similarly to those other rep-
resentations, sketches often have noise and distortions of a partic-
ular structure, which may require denoising (cleanup, smoothing)
or distortion correction (beautification). As a sparse representation
with little connectivity, sketches are reminiscent of point clouds
and thus can require reconstruction that fits curves (vectorization
for raster sketches, consolidation for vector sketches) or determin-
ing topology (junction detection, closed region detection).

Compared to standard geometry representations, such as images
and meshes, however, processing sketches is rather difficult and
less explored; the challenges in sketch processing are often unique.
For instance, computer vision methods often rely on the precise and
consistent nature of photographs, which follow standard assump-
tions about perspective, lighting, and texture. In contrast, sketches
are often sparse, imprecise, distort perspective, and exhibit signif-
icant variations in style and level of abstraction. These inherent
imprecisions and stylistic diversities mean that the techniques de-
signed for photographs may fail when applied to sketches. All in
all, sketch processing needs a distinct set of approaches that can
accommodate unique characteristics of sketches, such as their im-
precision, the variability in line thickness, incompleteness, and the
absence of reliable colour information.

1.1. Scope

In this survey, by sketch processing we mean tasks involving
sketches as input and as output, possibly including extra infor-
mation in either input or output, such as timestamps for input or
junctions and regions detected in the input sketches, or depth or-
der. We do not include methods that process or create a completely
different object, like a text, a 3D surface or an animation. This cri-
terion excludes methods that, for instance, generate sketches from
text prompts, model 3D shapes from sketches, or perform inbe-
tweening. While some sketches contain handwriting, processing
handwriting is out of our scope. Sketches that include shading or

hatching are within our scope. We cover both 2D and 3D sketches,
with an emphasis on 2D sketches. For more extensive discussions
on 3D sketching, we refer readers to a recent book [AMW∗23] and
a doctoral thesis [Yu23].

Among the related surveys, the work by [OPP∗21] focuses on
the methods of 2D curve reconstruction from point clouds, includ-
ing closed, open, and non-manifold 2D curve structures. Since their
input is a point cloud, their survey is complementary to ours. The
survey on sketch-based content creation [BC20] focuses on mod-
elling shapes via sketches. Similarly, those methods are outside our
scope, as their output is a 3D model and not a sketch. The most
recent related survey is about deep learning methods on sketch data
by Xu et al. [XHY∗22]. Our scopes have very little overlap: they
focus on deep learning–based methods with sketches as input or
output; we focus on sketch processing methods specifically, regard-
less of the technique they use. Consequently, most of the methods
they discuss are outside our scope, such as sketch-based retrieval,
recognition, generation, and others.

1.2. Overview

We focus on three main topics: fundamentals, core challenges, and
state-of-the-art methods for sketch processing. We begin by outlin-
ing the key characteristics of sketches that distinguish them from
more common geometry representations; we then summarize the
research into the structure of sketches, introducing their main com-
ponents and their perceptual significance (Sec. 2). Next, we dis-
cuss core challenges in sketch processing that are typical for down-
stream tasks; progress in any of those core challenges can simplify
or make downstream methods more robust (Sec. 3). We then exam-
ine various methods for sketch processing, including vectorization,
beautification, cleanup, and other methods (Sec. 4). Additionally,
we provide a brief overview of datasets useful for sketch process-
ing (Sec. 5). Through this comprehensive review, we aim to provide
a thorough understanding of the state-of-the-art in sketch process-
ing and identify promising directions for future research (Sec. 6).

2. Fundamentals

In this section, we first describe key characteristics that distinguish
sketches from more common geometry representations, such as
meshes, point clouds, or photographs. We then discuss the role of
human perception of sketches in both creation and interpretation
of these sketches. These observations form a common ground for
many sketch processing algorithms, as well as many downstream
applications of sketches.

2.1. Sketch Structure

Digital sketches are created in different media and with a plethora
of techniques (Fig. 2). Some are created digitally using a tablet
(Fig. 2bc), which generally results in cleaner 2D or 3D images,
often easier to process. Others are hand-drawn with pencil or pens
(Fig. 2a), incorporating both lines and fills, and then scanned or
photographed, leading to noise, glares, uneven lighting, resulting
in additional processing challenges. The sketching techniques used
can also vary significantly; some artists prefer clean curves, while

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 3 of 32

(b)

(c) (d)(a)

Figure 2: Traditional pen-on-paper sketches can be digitized via scanning (a). Digital sketches can be created directly on a tablet, either on
a 2D canvas (b) or within a 3D environment displayed on a 2D screen (c). Recently, 3D sketches have been created with handheld 6-DoF
tracked controllers in VR/AR environments, where they are also displayed immersively (d). Photo (a) © Spencer Nugent; (b) © David Revoy
under CC BY 4.0; (c) © Evi Meyer under CC BY-NC-ND 4.0; (d) © Elinor Palomares.

others use overdrawn strokes to better capture shapes or indicate
thickness. Sketches can either be filled or composed solely of
strokes — those are known as line drawings. In 3D, sketches, often
created in VR/AR (Virtual and Augmented Reality) environments
with handheld 6-DoF tracked controllers (Fig. 2d), are typically im-
precise 3D line drawings. The distinction between clean and rough
sketches is approximate but crucial for certain methods, as some al-
gorithms may assume clean continuous strokes drawn on an empty
background and fail when this assumption is not met.

The two most popular representations for 2D sketches are raster
images, composed of pixels, and vector images, composed of ge-
ometric entities like strokes and fills. Artists often prefer drawing
in raster applications or on paper due to the freedom it provides,
along with the richness and ease of use of editing tools. Vector
graphics, frequently utilized in animation and various design forms,
offer the advantages of infinite resolution and relative ease of de-
formation and animation. Some topological information, such as
face-edge adjacency, is absent in standard vector graphics, but can
be added by using alternative data structures [DRvdP14,DRvdP15].
Unlike raster images, vector graphics contain direct geometric in-
formation, making them highly suitable for geometric processing.
The conversion from vector to raster, known as rasterization, is a
well-defined process that can be made differentiable [LLMRK20].
As different sketches can be rasterized into the same image, the
inverse problem, vectorization, is not well-defined and presents a
significant challenge (Sec. 4.1).

Sketches, whether in raster or vector format, in 2D or 3D within
VR/AR, typically have strokes as their main primitives; each stroke
is a single trajectory of a pen. Depending on the medium and the
tool used, strokes can have thickness and some texture, both of
which can vary along the stroke. A stroke’s key properties are its
centerline, endpoints, and junctions. In raster format, strokes and
their endpoints are depicted but not explicitly stored; determining
them is one of the goals of line drawing vectorization. In most rep-
resentations, raster or vector, junctions are not explicitly stored,
but are perceived by humans and are critical for interpretation. In
VR/AR, a stroke is often rendered as a tube or a ribbon. To support
tube rendering, in addition to sampled 3D positions, a stroke is as-
signed a volume, typically created through extrusion. [AMW∗23,

Chapter 7]. Sketches may contain extra elements, such as fills, time
stamps, pen pressure information, or orientation in 3D, among oth-
ers.

Sketch strokes can be closed or open; strokes may intersect
each other and have self-intersections. Open strokes have endpoints
that can form different junctions, including T-junctions, where one
stroke terminates at another; Y-junctions, where two curves merge
smoothly, visually forming a single curve. The points where two
strokes intersect and do not merge, or when a stroke has a self-
intersection, are called interchangeably intersection points, or X-
junctions. The vast majority of junctions typically have valences
3 or 4 and are one of those types. High-valence junctions are also
possible, but are especially prevalent in technical illustrations. For
both vector and raster images, junction information is typically
not stored explicitly and thus needs to be extracted if required
(Sec. 3.1). T-junctions in particular are used in 3D reconstruction,
as they are often created due to an occlusion: top T’s stroke is typi-
cally occluding the stem stroke, and thus a junction indicates a local
depth order [NM90]. Note that T-junctions can also form when pro-
jecting 3D shape’s sharp corners [VMS05] or may even be textu-
ral, meaning they do not necessarily indicate occlusions. Junctions
have numerous other uses, including for detecting closed regions
(Sec. 3.4).

2.2. Key characteristics of sketches

Sketches hold a unique position among geometric representations
due to their distinct characteristics that set them apart from more
traditional representations such as photographs, meshes, points
clouds, or implicits.

One of the key sketch characteristics is the presence of bro-
ken and overdrawn strokes (Fig. 3, top). Unlike the continuous
and consistent lines found in photographs, sketches often have
strokes that are interrupted or repeatedly drawn. Those overdrawn
strokes might be simple imprecisions, might be stylistic choices,
or might be a means to express stroke width (Fig. 3, middle)
[LRS18,LABS23]. This property poses challenges both for vector-
ization of sketches (Sec. 4.1), as well as for downstream processing
task that could benefit from cleaner curves [PMKB23]. These chal-

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

Figure 3: Sketches have a few unique characteristics, affecting
downstream processing. Sometimes a stroke, perceived as one, is
broken into a few ’interrupted’ parts (zoom, top). Often artists use
overdrawing, repeating similar strokes a few times, whether to bet-
ter capture the imagined stroke shape, to express the stroke width,
or as a stylistic choice (zoom, middle). Some strokes have unclear
interpretation, or semantics (zoom, bottom). Typically, many pro-
portions are distorted (compare hip and forearm widths, for exam-
ple). Sketch © Olga Posukh.

lenges motivate sketch cleanup methods specifically designed to
tackle overdrawn strokes either in raster or vector (Sec. 4.3).

This trait can complicate the interpretation and analysis of
sketches, as the viewer or algorithm must decipher the intended
form from these fragmented or overdrawn strokes. Moreover,
strokes in sketches may have unclear interpretation (Fig. 3, bot-
tom), where even human annotators would disagree on the pre-
cise function of the stroke, further challenging their processing
[YVG20]. Unlike the detailed textures and shading of photographs,
sketches rely on minimalistic and sometimes ambiguous lines to
convey complex forms and ideas, demanding a higher level of ab-
straction and interpretation.

Another notable characteristic of sketches is their distorted
shapes and proportions (Fig. 3, compare hip and forearm widths).
Unlike the accurate proportions captured in photographs, sketches
routinely exaggerate or simplify certain elements. In general,
sketches often distort even simple shapes such as straight lines
or ellipses [SKKS09]. Most corners and junctions in sketches are
drawn with a level of imprecision, frequently leaving small gaps or
producing curves that fail to intersect at the intended points. These
gaps and imprecise intersections may pose significant challenges

for sketch processing or reconstruction methods [CSSaJ05]. Tech-
niques that depend on accurate depictions of shapes and precise
junctions become brittle when applied to sketches, as they struggle
to interpret and reconstruct the intended forms from these impre-
cise and variable line drawings [BVS16]. This inherent variability
necessitates the development of robust algorithms capable of han-
dling the nuances of sketches, ensuring accurate analysis and re-
construction despite the lack of precision.

Even with no intentional distortion of shapes, the overall projec-
tion of a 2D sketch often does not adhere to the precise projection
models, such as perspective or orthographic projections. Instead,
sketches might present a nonlinear or even mathematically implau-
sible projection [Sin02], where spatial relationships are altered to
emphasize certain features or to fit the artist’s stylistic choices. Hu-
mans, including professional artists, often struggle to accurately
depict projections, particularly perspective projection [SKKS09].
This inconsistency is further compounded by the fact that many
artists deliberately avoid perfect single-viewpoint projections, opt-
ing instead for multiperspective or nonlinear perspective to con-
vey more information or achieve a specific artistic effect. Conse-
quently, methods that rely on the assumption that a sketch is a
precise projection of a 3D object can result in incorrect 3D re-
constructions [BB22]. The variability and intentional deviations
in artistic sketches mean that these methods must be adapted to
handle the complexities and nuances of human-drawn projections,
ensuring they can still produce accurate and meaningful 3D inter-
pretations despite these challenges. These deviations from photo-
graphic norms pose significant challenges for standard computer
vision techniques, which rely on projection models and overall pre-
cision of the depiction.

2.3. Sketches and Perception

Despite their inherent inaccuracies, sketches in general, and even
line drawings with just strokes and no shading, remain easily and
consistently understandable for humans [Her21]. Some fMRI stud-
ies suggest that the same areas in our brain activate when viewing
both natural photographs and line drawings [WCC∗11]. This may
explain why we perceive and interpret sketches as readily as we
do more detailed images, perhaps assuming that a sketch is a real-
istic scene under specific lighting with specific materials [Her20].
Furthermore, Hertzmann’s hypothesis [Her24] posits that humans
may not form a consistent 3D model while exploring the world. If
this is the case, the inconsistencies in sketches do not significantly
hinder our ability to understand the depicted shapes. Our brains
are adept at filling in gaps and interpreting abstract representations,
making sketches a powerful and efficient means of communication
and visualization despite their lack of rich geometric information
and precision.

The strokes that people draw often relate to real 3D objects that
people see or imagine. Experiments have shown that when indi-
viduals are asked to draw a 3D model rendered from a specific
viewpoint, the strokes can be mapped back, or registered, to the
model [CGL∗08]. The larger challenge, however, is deciphering
how exactly sketch strokes relate to the 3D geometry.

These studies indicate that people primarily draw occluding con-

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 5 of 32

(a) (b) (c)

Figure 4: Despite decades of progress in non-photorealistic ren-
dering (NPR) and analysis of sketches, state-of-the-art NPR ren-
derings (b) exhibit significant domain gap from real sketches (c).
This limits uses of synthetic sketches as training data. (a) Target
3D model. Figure from [WQF∗21].

tours, which delineate depth discontinuities when parts of the ob-
ject occlude itself or other objects (Fig. 11). For smooth 3D shapes,
occluding contours are often defined as points where the normal is
perpendicular to the gaze direction. Occluding contours, however,
can only convey limited geometric information, so an extension of
this concept is suggestive contours, which can be loosely defined
as points that are occluding contours for nearby views [DFRS03].
Another set of curves that can explain what artists depict is ridges
and valleys [OBS04] and apparent ridges [JDA07]. Ridges and val-
leys include sharp edges and in general local maxima and minima
of curvature. Apparent ridges and valleys are an extension of the
formulation that first projects the curvature onto the view plane
first and then finds the maxima. In certain drawings, particularly
in industrial design, artists often depict cross-sections, which cor-
respond to the principal curvature lines of an object [XCS∗14].
These lines are orthogonal in 3D space, but may not be orthogo-
nal on the 2D projection, providing us with a strong cue of the 3D
shape. This cue aids humans in comprehending the 3D shape, and it
can be utilized in reconstructing the 3D form [GHL∗20]. In design
sketches, another kind of strokes are construction lines that play a
dual role: They help the designers more accurately depict propor-
tions, symmetry, and perspective, and help viewers to interpret the
shapes. In particular, designers often depict perspective axes with a
horizon line and vanishing points, and sometimes draw scaffolds
like bounding boxes or other primitive shapes [GSH∗19, ES08].
Note that some of these studies show reference images to partic-
ipants [CGL∗08, BSM∗13], which may bias the choice of strokes
to draw, as even designers tend to copy the strokes instead of draw-
ing from their imagination [GSH∗19].

Unfortunately, many strokes cannot be modelled using these
geometric frameworks. Recent studies indicate that only approx-
imately 60% of drawn strokes can be explained by these mod-
els [WQF∗21]. The remaining strokes, which include ‘textural’ and
‘shading’ strokes, lack robust geometric models for accurate repre-
sentation. Shading elements, in particular, give an illusion of a 3D
shape, but using them to infer a shape, in the style of shape from
shading works in computer vision [ZTCS99], seems to be challeng-
ing [KHW∗22].

As a result, there is a significant domain gap between synthetic
sketches, non-photorealistic renderings (NPR) using these stroke
models, and real sketches (Fig. 4). This domain gap is one of

(c)(a) (b)

Figure 5: Given a stroke union (a), the problem of segmenting it
into separate strokes is formally ill-posed and inherently percep-
tual. Often algorithms would unnecessarily split strokes or incor-
rectly connect them across junctions, making the final vectorization
hard to edit (b). Ground truth (c).

the central challenges preventing efficient generalization of mod-
els trained on such synthetic data to real sketches [ZGZS20].

2.4. Sketch Structure and Perception

Depending on the application, there are two ways of treating a
sketch: as is, where each stroke is significant and needs to be pre-
served, or as an approximate depiction of a perceived shape. For
instance, a shading stroke or a group of strokes might be inter-
preted as strokes on their own or a depiction of a solid fill (Fig. 4c,
shadow). This subtle viewpoint difference is critical to the choices
of a processing method. For instance, the goals of sketch beautifi-
cation (Sec. 4.2) and cleanup (Sec. 4.3) can be stated as inferring
the perceived shape. In contrast, such tasks as sketch deformation,
animation, and parameterization often treat the sketch as is, where
each stroke is preserved. In vectorization, this difference of view-
point leads to two general families of methods, for clean vector-
ization that attempts to vectorize each stroke separately, true to the
image (Sec. 4.1.1), and rough vectorization that simplifies the final
drawing (Sec. 4.1.2).

In both those interpretations, from a geometrical standpoint, the
union of all the strokes in a line drawing is a nonmanifold 1D
structure: While each stroke is often a 1-manifold, junctions and
intersections make the overall shape non-manifold. Note that even
a single self-intersecting stroke is already a non-manifold. If there
are open strokes, the full object becomes a non-manifold structure
with boundary. This implies that in general, processing must as-
sume a non-manifold structure. This is one of the differences be-
tween line drawing vectorization and surface reconstruction — de-
spite superficial similarities, the latter typically focuses on recon-
structing manifold surfaces.

If the overall non-manifold structure, i.e., the union of all the
strokes, is known, decomposing it back into individual strokes is an
ill-posed and, again, perceptual problem, as it requires preserving
continuous strokes away from junctions and identifying continua-
tions around every junction. This is one of the key steps in some
vectorization pipelines [NHS∗13], as its success defines whether
the final vectorization will be intuitive to edit or not. In an extreme
case, the final result may look correct, but contain strokes that are
not useful for editing (Fig. 5).

Focusing on the perceived shape, multiple strokes can repre-
sent a single curve overdrawn several times, forming a stroke clus-
ter [ES08,LRS18]. Clusters can indicate that the artist attempted to

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

capture the shape through multiple attempts or to depict the width/-
texture of a stroke. Even in vector drawings, clusters require ad-
ditional processing to determine the exact locations of endpoints,
junctions, and the centerline. When interpreted as depictions of
stroke width, such clusters taken together form a foreground of a
2D or 3D sketch [MNB23], akin to fills.

Such decision of which strokes are perceived as filled regions is
a key to distinguishing the perceived shape, or foreground, from the
empty space, or the background — a non-trivial perception-based
task. For instance, in certain areas, it is unclear whether an object
has a hole (indicating background) or if it is simply incomplete
and assumed to be part of the shape. This distinction is crucial for
applications that rely on understanding the genus of the shape or
its boundary. In 3D sketches, such shading strokes may indicate a
surface and are often used to improve 3D sketch readability, as the
shaded surfaces occlude the objects in the background.

Similarly to how gaps may be perceived as part of the fore-
ground, some gaps between separate strokes can be perceived as
parts of a single continuous stroke (Fig. 6, right). For example, what
formally appear as two separate strokes may be intended to repre-
sent a single stroke, with the artist having chosen to split it into two
segments [KH06]. For purposes such as editing, reconstruction, and
correspondence, these should be treated as a single stroke as view-
ers tend to interpret those as connected [HF99]. These perception
effects are studied in psychological research, including Gestalt the-
ory, which addresses such phenomena [Kof55, Wer38]. In Gestalt
theory, these two strokes are said to exhibit ‘good continuation’.
Similarly, junctions that are not precisely drawn but are perceived
by the viewer also fall under this perceptual framework (Fig. 6,
left).

Considering the 3D shape that a 2D drawing represents, T-
junctions play a significant role. For example, a T-junction indi-
cates that one curve is “in front” and another is “behind”, provid-
ing crucial depth information and establishing depth order at that
point [Wil94]. Specifically, a T-junction can suggest that one part
of the drawing occludes another. However, not all T-junctions con-
vey this meaning. For instance, in areas with hatching, T-junctions
often do not indicate depth relationships but are instead part of the
texture or shading.

In 2D, one of the key elements of a sketch are perceived re-
gions [YLL∗22]: delineated by a few strokes, with perhaps sparsely
placed strokes inside, those are routinely coloured in flatting
(Sec. 4.4), a part of comic strips production, automatic coloriza-
tion, as well as search for correspondences [ZCZ∗09]. A direct
equivalent of this in 3D are loops that can denote boundaries of
a depicted surface patch; for clean 3D sketches containing no open
curves these can be directly identified, for rough 3D sketches the
problem is significantly more challenging [YAB∗22].

In both 2D and 3D sketches, the empty space in line drawings
or other sketches with little shading is also a key element in de-
termining the perceived shape. Generally, this empty area may be
outside the intended shape, i.e., depicting a hole or background, or
inside. Within the empty spaces inside the shape, the shape is either
smooth or contains details that the artist chose to omit [Gup22].
In many cases, the absence of strokes indicates a smooth, uninter-
rupted surface — yet relying on this assumption, especially impor-

tant in the context of reconstruction, often leads to overly smooth
shapes (Fig. 7). Alternatively, the empty space could imply that
certain intricate details were intentionally left out for simplicity or
clarity, leaving the viewer to infer these aspects.

Interpreting sketches involves not only spatial information but
also temporal data, such as time stamps and drawing order. Tem-
poral data contains a wealth of information, ranging from in-
sights into the artistic drawing process [WQF∗21] to the percep-
tion of sketches [LABS23]. A group of methods focuses on re-
constructing drawing order from a complete vector sketch. The
recovered drawing order can be used to generate drawing anima-
tions [FZLM11, LFT14] or even easy-to-follow tutorials for in-
dustrial design sketches [HLW∗16]. Qiu et al. [QWM∗23] ex-
plore the question, "Is drawing order important?" Their findings
include: stroke order significantly impacts the perceived natural-
ness of a drawing process; multiple orderings of the same set of
strokes can be perceived as human-drawn; relative local ordering
matters more than global ordering; and descending length ordering
alone is insufficient for naturalness. They also evaluate an existing
method [FZLM11] and find that it performs well for object draw-
ings but similarly to random ordering for scene drawings.

3. Core Challenges of Sketch Processing

In this section, we focus on the core challenges in sketch process-
ing that are common across various sketch-based systems. These
challenges include determining sketch topology, detecting and dis-
ambiguating intersections, junctions, and occlusions, segmenting
background from the foreground, robustly defining tangents, find-
ing centerlines and correspondences. Depending on a system, these
challenges might form a part of preprocessing, or be at the core of
the system. For instance, typical sketch-based modelling systems
often need to robustly find junctions as a preprocessing [PMKB23],
while vectorization systems have centerline computation at their
very core [NHS∗13]. These challenges are typical for both bitmap
and vector sketches, and, except for the occlusions that are a 2D-
specific phenomenon, are applicable to both 2D and 3D sketches.
These seemingly harmless preprocessing steps can be a major
source of system robustness issues, as well as inherent causes of
artifacts in the final results. Progress in these core challenges has
direct implications on the quality and robustness of downstream
systems and applications.

We will start with the most basic challenges, sketch topology,
junctions, and endpoints (Sec. 3.1), tangents (Sec. 3.2), and cen-
terlines (Sec. 3.3), then move on to more complex issues like seg-
mentation (Sec. 3.4), occlusions (Sec. 3.5), and finally finding cor-
respondences between sketches (Sec. 3.6).

3.1. Sketch Topology, Junctions, and Endpoints

One of the most basic challenges in sketch analysis is determin-
ing the topology of the sketch. One of the first steps to defining
sketch topology is identifying the locations of stroke key points:
endpoints, junctions, and sharp corners. Once junctions are found,
topology analysis requires determining junction types, discerning
whether intersections or junctions are intentional or coincidental,
and whether certain lines form closed regions (Fig. 6).

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 7 of 32

Perceived Y-junction?

Perceived T-junction?

Perceived continuation?

Figure 6: Depending on the local scale and context, these strokes
might be perceived as disconnected strokes or junctions (left). Sim-
ilarly, two separate strokes might be interpreted as one continuous
stroke (right).

(a)

(b) (c)

Figure 7: While white space often suggests a smooth surface, of-
ten artists decide to omit details or simplify the shape. Relying on
smoothness in the white space (b) might result in missing some ge-
ometric details, compared to the ground truth (c). Image adapted
from [ZPW∗23].

Modern vectorization systems often begin by detecting these key
points and then connecting them with strokes [PNCB21,YLA∗24];
it is similarly a critical decision in vector sketch consolidation and
cleanup [LABS23], 3D reconstruction [GHL∗20], and other tasks.

In computer vision, corner detection has been a part of a stan-
dard pipeline long before the deep learning era [Sze10], including
the industry standard Harris detector [HS88]. Early sketch-specific
approaches assume a clean drawing and either assume all junctions
are precise [LB90] or rely on simple thresholds on distances and/or
angles between strokes [CKX∗08] or simple priors like smoothness
and low valence, as noted by [NHS∗13]. For noisy sketches, those
methods have been largely superseded by deep-learning-based ap-
proaches. While it is possible to train a modern keypoint detector
for this task, even with relatively high accuracy, these detectors can
still frequently fail [YLA∗24]. Relying entirely on their predictions
is risky and can lead to significant errors in the downstream tasks.

One of the most significant challenges in algorithmically un-
derstanding sketches is determining whether an element is a bug
or a feature. For instance, the decision of whether a gap is in-
tentional or it is a T-junction drawn sloppily can greatly impact
the interpretation of the sketch, including local depth order. What
complicates matters further is that, while the artist can easily dis-

cern whether an intersection or a corner is intentional, other ob-
servers may be inconsistent in their interpretations. This incon-
sistency makes collecting reliable datasets for training particularly
challenging, making inferring perceived junctions or intersections
(see discussion in Sec. 2.4) particularly challenging. One of the
earlier approaches completes perceptually closed curves using ob-
servations from Gestalt psychology and formulating it as a graph
search [Sau03]. A recent approach by Yin et al. is leveraging clas-
sical machine learning approaches like random forests, which may
be preferred in scenarios with limited data, as deep learning models
typically require large datasets [YLL∗22].

For sketches, either raster or vector, that are composed of clus-
ters, a related challenge is determining which strokes are perceived
as grouped and thus form clusters. From a topological standpoint,
the strokes within a cluster form a neighbourhood, so many oper-
ations, such as editing, animation, or search for correspondences
is often done for the cluster as a whole [LABS23]. The main per-
ceptual observations, starting from early works [Ros94] are that
strokes within a cluster are roughly parallel, close to each other rel-
ative to their length, and form a Gestalt good continuation. Most
vector-based approaches implicitly or explicitly use these observa-
tions [BTS05, LABS23, OK11, LRS18]. We discuss those methods
in detail in Sec. 4.3.

3.2. Tangents

Beyond determining the topology, the next basic question is geo-
metrical — determining stroke tangents. Determining the tangent
at a point in a sketch can be quite challenging, and yet is needed
for many applications including vectorization (Sec. 4.1), 3D recon-
struction, and editing. Traditional computer vision methods com-
pute the image gradient for a raster image, yielding 2D normals
that can be rotated by 90 degrees to obtain the tangent. Even for
clean sketches, however, gradient is meaningful only at the edges
of strokes: inside a stroke and away from the strokes gradient
only highlights noise, so it is often filtered using simple magnitude
thresholds.

In general, this traditional approach fails around endpoints and
junctions and performs poorly in noisy images [NHS∗13]. In vec-
tor drawings with texture strokes or clusters, the difficulty persists
despite the ability to compute the tangent of a single stroke due to
overdrawn strokes [BCF∗07]. The distinction between shape and
stroke texture is particularly tricky, as humans can easily interpret
color variations as texture rather than shape, even when color in-
tensity is noisy.

To suppress noise in the gradient estimation, the typical ap-
proach is smoothing. Smoothing gradients, however, requires some
care, as naïve approaches like Gaussian blur normally fail: gra-
dient estimation produces a vector field that points towards the
stroke. Therefore, the orientations of vectors on different sides of
the same stroke will be opposite and thus cannot be smoothed
out directly. Instead, smoothing is typically done in an orientation-
independent representation, such as structure tensor or similar ma-
trices [CGBG13,CLMP15] (Fig. 8a). An alternative is to use a natu-
ral association between vectors and complex numbers, and perform
smoothing of squares of those complex numbers [DVPSH14].

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

8 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

(a) Noisy raw image gradients (b) Smooth frame field

Figure 8: Compared to the noisy raw image gradients computed by
Chen et al. [CGBG13] (a), the smooth frame field constructed using
Bessmeltsev and Solomon’s approach [BS19] enables the forma-
tion of more accurate junctions (b). Figure adapted from [BS19].

For line drawings, tangents can be captured more robustly us-
ing frame fields [BS19], which represent a non-orthogonal cross
per pixel instead of a single vector like gradients (Fig. 8b). The
only remaining challenge is determining which direction represents
the tangent, which, away from field singularities, can be done via
combing. While it is possible to eliminate these singularities, doing
so makes finding such a frame field significantly more computa-
tionally expensive [GHB∗23].

Some sketches, especially in industrial design, typically contain
junctions of higher valence that cannot be fully captured by frame
fields with only two directions. Even though the frame field ap-
proach can be generalized to this case, to our knowledge, it is so far
not explored in the literature.

3.3. Stroke Centerlines

A related and equally fundamental question as finding stroke tan-
gents is determining stroke centerlines. Finding stroke centerlines
is a common operation in line drawing vectorization (Sec. 4.1),
editing vector sketches, reconstruction, and animation. Overall, it
is an ill-posed inverse problem, where the task is to reconstruct a
path of an unknown, possible varying brush (possibly in both tex-
ture and width) that forms the target image. For a vector sketch that
has been pre-segmented into clusters, the main problem is typically
finding a centerline of a stroke cluster. Many methods directly ap-
ply off-the-shelf 2D point fitting [PS83, WPL06]. Early methods
first order point samples on a stroke by projecting to the domi-
nant axis [KS07], or by computing Laplacian spectral embedding
[OK11], then fit a curve to fully ordered points. This strategy, how-
ever, often has issues with self-intersecting centerlines. StrokeAg-
gregator [LRS18] utilizes a moving least squares–based fitting that
integrates a tangent fitting term in addition to the position fitting
term used by the earlier methods. StrokeStrip [PvMLV∗21] orients
strokes, explicitly compute a 1D parameterization using isolines as
the basic element, and fit the final curve using a positional, a tan-
gential and a curvature smoothing term.

In general, for bitmap images it is related to a classical computer
vision problem of finding a medial axis, or skeletonization, often
done via morphological thinning or distance transform [Sze10]. For
some brushes, where stroke width is constant and the stroke has a
solid color, stroke centerline can be close to a subset of a medial
axis. Unlike medial axis, however, due to uneven brush texture and

(a) (b) (c)

(d) (e)

Figure 9: Stroke centerline (b, blue) is a single curve that can be
close to the medial axis (a, red), but does not have Y- or T-junctions
except, perhaps at endpoints (c, blue). Centerlines, however, can
contain self-intersections (c). Note that in (b) the brush is varying
in shape and width, from a disk to a square; caps for two endpoints
are also different. Note also that while a medial axis is contained
within the stroke (d), the centerline does not have to be (e). Brush
taken from Graphicsfuel https://www.graphicsfuel.
com/30-hand-drawn-brushes-for-illustrator/

width along the stroke, centerline is not necessarily contained fully
within a stroke (Fig. 9de). Furthermore, since stroke is drawn in a
single continuous motion of a pen, stroke centerline does not have
Y- or T-junctions except, possibly, at its ends, but might have self-
intersections (X-junctions) (Fig. 9).

Earlier approaches, such as [HT06], followed these observations
and adapted the computer vision skeletonization algorithms [dB94]
to extract simple centerlines, like straight lines and circles. Later
and more general approaches sometimes still use classical skele-
tonization [FLB16], but typically rely on some estimation of nor-
mals [NHS∗13, BS19] or use deep learning [MSSG∗21, YLA∗24].
Noris et al.’s gradient descent-like approach [NHS∗13] only tar-
gets clean, mostly digital sketches, as the gradient information
is typically noisy for paper sketches. Favreau et al. [FLB16] use
a classical morphological thinning approach for open curves and
find centerlines of detected regions boundaries using image dila-
tion. Using an estimation of normal, [BF12,BF23,BS19,PNCB21]
compute centroids of normal cross-sections of a stroke. Stanko et
al. [SBBB20] compute a parameterization of a sketch so that a
subset of the parameterization isolines form the centerlines. A few
works [MSSG∗21, DYH∗21] introduce a recurrent neural network
(RNN) that produces centerlines, either trained in an unsupervised
fashion with a differentiable rasterization loss or similar techniques
[MSSG∗21,LLLW22] or in a supervised manner [DYH∗21]. Yan et
al. [YLA∗24] represent centerlines as zeros of an unsigned distance
field that they learn.

3.4. Sketch Segmentation

Another core challenge for both raster and vector sketches is seg-
menting them. There are a few variants of segmentation prob-
lems for sketches: object segmentation that separates different ob-
jects, such as characters, and a more general semantic segmen-
tation, positive/negative space segmentation segmenting regions
perceived as foreground (e.g., filled) from the background, and re-
gion segmentation that finds closed regions.

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://www.graphicsfuel.com/30-hand-drawn-brushes-for-illustrator/
https://www.graphicsfuel.com/30-hand-drawn-brushes-for-illustrator/

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 9 of 32

For some downstream tasks, such as animation, one of the first
steps of processing a complex sketch is segmenting it into single
objects, i.e., object segmentation. For sketches of humans, cur-
rent state of the art is applying an R-CNN, fine-tuned on char-
acter sketches, which outputs a bounding box of each character
[SZL∗23]. Semantic segmentation pursues a more general goal
of segmenting a sketch into meaningful parts, necessary for fine-
grained sketch analysis. Often focusing on 2D vector sketches,
some works leverage domain knowledge to develop hand-crafted
features, often leading to limited generalization [DL15, GKSS05].
Other early approaches rely on heavy user annotation [PBG∗15,
NSS∗12]. Some of the more recent approaches combine domain
knowledge with a data-driven methodology [HFL14, ST16]. In
[HFL14], domain-specific observations, including continuity and
parallelism of strokes, as well as connectedness of the overall
sketch structure, are used to formulate a mixed-integer optimiza-
tion problem yielding the segmentation. [ST16] use distance-based
heuristics to create a graph capturing the sketch topology (see
Sec. 3.1), which they use in a Conditional Random Field (CRF)
model for segmentation. For a unary classifier, necessary for CRF,
they use Fisher vectors. The more recent deep learning meth-
ods use a variety of architectures to tackle the task. For instance,
[LFT18,LPS∗19,QT19,SDBM17,WQLY18,ZXZ20,ZXS∗23] use
CNNs, typical approach in raster image segmentation, that ig-
nore all the stroke connectivity and are thus unable to take ad-
vantage of strong within-stroke connectivity information. Other ap-
proaches [YZF∗21, QGXS22, ZPD∗24, WL24, ZXS∗22] use more
advanced architectures, including a GNN (Graph Neural Network)
[YZF∗21]. Qi et al. [QGXS22], similarly, use a GNN, segment-
ing a sketch by deforming a given template sketch. Zheng et al.
[ZXS∗22] additionally incorporates drawing order into a GNN.
Wang et al. [WL24] use a combination of a CNN predicting a
stroke-based distance field, and a segmentation Transformer. Most
of these methods, however, are trained on simplistic doodle-type
sketches (see discussion in Sec. 5) and do not generalize well to
complex sketches typical for design and animation.

For positive/negative space segmentation, similarly to the com-
puter vision problem of segmenting background from the ob-
jects in the foreground in a photograph or a video, 2D sketches
need non-trivial processing to separate sketched objects from
the background. In its trivial form, this requires distinguishing
stroke pixels (usually dark) from background (often white), also
called binarization, which is often done by edge detection filter-
ing [NHS∗13,CLMP15,DCP17,DCP19] or image intensity thresh-
olding [BF12, BS19, PNCB21]; both strategies are prone to errors.
In a more general setup, the key challenge here is that while filled
objects are often perceived as foreground, line drawings with no
fill also contain foreground objects. For raster sketches, this seg-
mentation task does not seem to be compatible with the standard
computer vision approaches, as their segmentation pipelines rely
heavily on texture and color, which for sketches are unreliable
cues: Line drawings contain little to no texture, and even shaded
sketches often contain gaps [SZL∗23]. Instead, [SZL∗23] resort
to traditional yet robust computer vision techniques, performing
segmentation via a combination of dilation and flood fill. A re-
cent work [BB24] instead trains a U-Net predicting heatmaps of

(a) (c)(b)

Figure 10: For a sketch with overdrawn strokes, gaps, and un-
even fills (left), outlining foreground (‘positive space’) from back-
ground (‘negative space’) requires non-trivial decisions on which
strokes are grouped and which ones are separate (right). Adapted
from [MNB23].

the foreground, reporting an IoU (Intersection over Union) of 0.65,
highlighting that this problem is still largely open.

For vector sketches, even though, unlike raster, they do not con-
tain background textures like paper, and formally all the strokes
form the foreground, determining the closed region tightly con-
taining the strokes is non-trivial. This is a requirement for many
applications, including deformation and 3D modelling [JBPS11,
SKC∗14], which then often triangulate the interior of the domain.
In some settings, a naive approach of simply closing each curve
is enough [IMT99, DSC∗20], although this assumes that a single
object (e.g., a body part) is drawn via a single stroke — an assump-
tion often broken for freehand drawings. In earlier works, this is
done via simple thresholding, but this strategy can cause various
artifacts when multiple stroke endpoints are close together. This
problem has been explored from computational topology perspec-
tive by Kurlin [Kur14]. A recent work by Myronova et al. [MNB23]
continues this computational topology tradition, inspired by Alpha
Shapes, and introduces an algorithm driven by a parameter control-
ling the largest distance between endpoints that can be considered
connected (Fig. 10). These approaches, however, does not attempt
to reconstruct perceived foreground, so this remains an open prob-
lem.

For region segmentation, or separating an input sketch into
closed regions despite potentially small gaps, is a typical step in
beautification (Sec. 4.2), colorization (Sec. 4.4), and some vector-
ization algorithms (Sec. 4.1). One of the classical approaches is
a trapped ball algorithm [ZCZ∗09]. Intuitively, the algorithm de-
fines a closed region as a space that can be covered by contin-
uously moving a fixed-radius ball that cannot pass through gaps
smaller than its size. Trapped Ball algorithm often leaves unla-
belled narrow regions that are inaccessible to the moving ball. To
address this, [ZCZ∗09] grow the trapped ball regions, roughly fol-
lowing the classical region growing segmentation and Lloyd’s al-
gorithm [CSAD04, Llo82]. Liu et al. [LWH15] jointly determine
stroke clustering and region segmentation by alternating between
merging small regions and raw strokes, with dynamically adjusted
thresholds. Parakkat et al. [PPM18] use a variant of the region
growing segmentation algorithm on a Delaunay triangulation of the
sketch samples, which is followed by a semi-automatic approach
merging initial regions based on user input [PCS21]. A recent ap-
proach by Scrivener et al. [SCC24] uses generalized winding num-
bers, quantifying how closed a region is, combined with a classical
k-means algorithm to segment a vector sketch. It is unclear whether

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

Occluding contours

Hidden/occluded contours

Cross
sections

Cusp

Figure 11: Left: For a given smooth 3D shape and a camera,
points on the surface that have normal perpendicular to the view
direction, are categorized into visible (occluding contours) and in-
visible (occluded, or hidden, contours). Adapted from [CGL∗08].
Right: in addition to occluding contours, one of the most impor-
tant types of strokes routinely drawn in sketches of machine-made
shapes are cross-sections, related to the lines of curvature. Adapted
from [XCS∗14].

the regions identified by these methods are perceptually valid. Yin
et al. [YLL∗22] partially address that concern by detecting per-
ceived junctions in a vector sketch.

A related problem is detecting closed loops in a 3D sketch,
a necessary step in a few surface reconstruction pipelines from
3D sketches [PLS∗15] (Sec. 4.4.2.1). For clean 3D sketches with
precise junctions, this can be solved via a graph routing system
[ZZCJ13a]. For rough 3D sketches, such closed loops might be
detected as a by-product of deforming and segmenting a template
surface [YAB∗22], but in general it remains an open problem.

3.5. Occlusions

Another significant challenge is determining the location and ge-
ometry of hidden, or occluded, contours in 2D sketches [VMS05,
CLT08, KS09]. This is a key challenge in both 3D reconstruction
from sketches [DSC∗20] as well as templates-based animation and
deformation of sketches [BB24, DLKS18], as the geometry of the
template is defined using occluded contours.

While it is possible to ask the user to draw these contours
[BCHS20a, DSC∗20], it can be difficult for humans to accu-
rately imagine and depict them for many objects (Fig. 11) [KH06,
KVDKT97]. Formally known to always have a topologically plau-
sible solution [BBP09], finding the geometry of the hidden con-
tours is still a challenging problem. Ullman [Ull76] outlines the
properties of hidden contours, such as isotropy, smoothness, and
curvature minimization, and suggests a network reconstruction
them, very reminiscent of modern CNNs. Starting with the pio-
neering book by Kanizsa [Kan79], many works in the area lever-
age various ideas from Gestalt psychology, including Gestalt good
continuation, as well as modern perception research to recon-
struct the hidden contours. Earlier works [WJ97, Mum94] con-
nect T-junctions, which usually span the hidden contours, via C1-
continuous elastica curves by considering random walks tangen-
tial to the stem of T from each side, and choose the maximum
likelihood walk as the hidden contour. Karpenko et al. [KH06]
extends their approach to contours containing cusps via discrete
matching of T-junctions and endpoints, creating a hidden curve

(a) Input sketch (b) 3D reconstruction (c) Overlay of sketch and
reconstruction

Figure 12: 3D reconstruction (b) based an input sketch (a) often
struggle to stay close to the input (c). Adapted from [DCLB19].

with a cusp between them (Fig. 11). Entem et al. [EPB∗19] ex-
tend this approach to more complex scenarios by identifying and
layering object parts and completing hidden contours by minimiz-
ing the total variation of curvature. For some applications, such
as sketches of characters, one can reconstruct hidden contours us-
ing symmetry cues, including the symmetry of a surface around a
skeleton [CS07] and the symmetries between different body parts
[RTB∗18, EBC∗15].

An alternative to reconstructing occluded contours is performing
a full 3D reconstruction directly, using some shape priors such as
symmetry, smoothness, or data-driven priors [YSR∗20]. Many re-
construction approaches, particularly learning-based, however, of-
ten have no control over which parts of the contour are visible and
thus struggle to stay close to the input sketch (Fig. 12).

3.6. Correspondences

When dealing with multiple images, such as for automatic col-
orization, inbetweening, or sometimes 3D reconstruction from
multiple views, one key problem is finding pointwise correspon-
dences between similar sketches. This can be viewed as an in-
stance of a shape correspondence problem in geometry process-
ing [VKZHCO11,Sah20], with a satellite problem of non-rigid reg-
istration [DYDZ22], with a few caveats. First, a typical correspon-
dence problem for sketches looks for partial correspondence due
to the occlusions potentially changing between sketches. Second,
measuring pointwise similarity is challenging, since the way the
same area is depicted can vary significantly between sketches.

Borrowing techniques from video processing, a few methods
attempt posing the problem of correspondences using the idea
of optical flow [HS81], often focusing on densely sampled, very
similar animation frames rather than separate sketches [SGX∗23,
HZH∗22]. Being trained on high-FPS (frames per second) videos,
these methods are only applicable to very similar drawings.

Generally, the problem is hard to solve directly, so many meth-
ods rely on some form of annotations, the vector structure, or iden-
tified regions. For instance, annotations may include sparse point
correspondences [Ree81, ADN∗17], guidelines [CMV17], or user
corrections [MFXM21, YSC∗18]. For instance, [ADN∗17] use an
iterative match-warp algorithm, along with additional user guid-
ance, to form dense correspondences and interpolate between con-
cept sketches. The vector structure of sketches can be also use-
ful: if matching between strokes is known, obtaining pointwise
correspondence becomes much easier [LCY∗11, YBS∗12]. For in-
stance, if one assumes similar vector sketch topologies, the prob-

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 11 of 32

Table 1: Specific sketch processing tasks have various input and
output formats.

Task Input Output Section
Vectorization Raster Vector 4.1

Beautification
Vector Vector

4.2
Vector in 3D Vector in 3D

Cleanup Raster or Vector Raster or Vector 4.3

Flat Colorization
Raster or Vector 2D region partition

4.4
Vector in 3D 3D cycles

Lifting Vector Vector in 3D 4.5

(a) Input raster sketch (b) Outlines (c) Centerlines

Figure 13: Common vectorization software converts raster
sketches (a) into stroke outline polygons (b) or stroke centerlines
(c). In this example, Potrace [Sel03] was used for outline vec-
torization, and Adobe Illustrator’s Image Trace [Ado] for center-
line vectorization, both with default settings. Even simple, clean
raster inputs pose challenges for accurate vectorization using com-
mon software with off-the-shelf configurations. Input image is from
[NHS∗13].

lem of correspondences can be formulated via graph isomorphism
[WNS∗10]. In practice, this is a very restrictive requirement, and
sketch connectivity can be very unreliable. Of course, identifying
this stroke matching itself is a difficult discrete problem; a typ-
ical approach requires many-to-many matching with some form
of shape descriptors [YBS∗12]. Similarly, whenever regions are
identified, finding correspondences between them is a difficult dis-
crete matching problem. However, once it is known, pointwise
correspondence becomes an easier task [ZLWH16]. Realistically,
sketches often contain open curves in addition to closed regions,
making this approach also limited in practice. In a spirit of non-
rigid registration, Mo et al. [MGW24] predict a deformation of a
given vector sketch onto an input bitmap, thus forming pointwise
correspondences.

4. State-of-the-Art Methods

We organize sketch processing methods based on the specific tasks:
vectorization, beautification, cleanup, flat colorization, and lifting

(a) Raster input (b) Content pixels (c) Initial graph (d) Final graph

Figure 14: Typical clean sketch vectorization methods begin by
identifying content pixels (b) through binarizing the input raster
sketch (a). These methods then construct an initial graph (c), which
is refined into a final graph with a more accurate topology (d). The
final graph is further up-sampled and optimized to capture finer
stroke geometries. Figure adapted from [BS19].

to 3D. The input and output formats of these tasks are summarized
in Table 1. We focus on tasks involving 2D sketches and only dis-
cuss 3D sketch processing literature when it extends or adapts 2D
approaches (see the later parts of Sec. 4.2, 4.4.2, 4.5). For further
readings on 3D sketching, see Sec. 1.1.

4.1. Vectorization

Many sketches are stored in raster format when they are initially
drawn on paper and later scanned or directly created using raster
drawing software. To print the image in high resolution or use in
downstream applications, such as colorization or animation, the
sketch might need to be converted into a vector format, or vec-
torized. Compared to image vectorization targeting photographs,
which converts similarly coloured areas of a photo into poly-
gons (Fig. 13b), sketch vectorization outputs strokes that include
endpoints, centerlines, and width (Fig. 13c). Sketch vectorization
methods can be further divided into two categories: clean and rough
sketch vectorization. The former assumes the input is clean and
tries to preserve details as much as possible; the latter vectorizes
and cleans up the input at the same time and is related to clean up
methods (Sec. 4.3). The majority of sketch vectorization methods
fall into the first category. The second category, i.e., rough sketch
vectorization can be thought of as and compared with a combi-
nation of clean vectorization (Sec. 4.1.1) with subsequent cleanup
(Sec. 4.3.2).

4.1.1. Clean sketch vectorization

One of the key stages in many clean vectorization methods is ex-
tracting a union of stroke centerlines, represented as an undirected
graph, known as a 1-skeleton. Often this extraction is guided by
aligning stroke centerline directions with raw image gradient. Most
of these methods follow a common workflow in Fig. 14: (1) iden-
tify the content pixels, a process called binarization (Sec. 3.4);
(2) construct an initial graph by skeletonization [NHS∗13, DCP17,
DCP19, CDQM18], creating curves aligned with local tangents
[BF12, CLMP15, BS19, PNCB21, SBBB20, GHB∗23] (Sec. 3.2,
3.3); (3) finalize by random sampling [HT06] or optimizing graph
topology with several methods focusing on junction topology as
well as optimizing the graph geometry [NHS∗13, CLMP15, BS19,
PNCB21,CDQM18,FLB16]. An early work [HT06] presents a sys-
tem that vectorizes graphical parts of paper-based technical line

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

12 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

drawings into primitives of line segments and arcs with an anal-
ysis of algorithm robustness and complexity. The system elimi-
nates detected text and separates input pixels into layers of even
stroke thickness before vectorization. Noris et al. [NHS∗13] ad-
ditionally decide junction connectivity by using thresholds deter-
mined on a set of annotated sketches (Fig. 15). The methods by
Donati et al. [DCP17, DCP19] extract curvilinear pixel structures
using Pearson’s correlation coefficient, skeletonize, and fit Bézier
curves. Chen et al. [CDQM18] vectorize rasterized vector images
where curves are relatively clean but can come in various thick-
ness. They adapted a similar pipeline of thinning and refining the
topology taking into account that the clean curve outlines can pro-
vide additional hints for topology reconstruction. Bessmeltsev and
Solomon [BS19] improve the noisy raw image gradients (Fig. 8a)
by solving for a smooth frame field (Fig. 8b) where one direc-
tion is aligned with the gradient. To tackle the challenge surround-
ing sketch tangents (Sec. 3.2), this formulation of two local direc-
tions allows forming of more accurate junctions, especially around
T- and X-junctions. However, the precise reconstruction of sketch
topology remains a challenge to this method — it may produce re-
dundant parallel strokes; junction positions and connectivities are
determined by error-prone heuristics. Puhachov et al. [PNCB21]
use the same frame field and improve the topology reconstruction
with the help of a keypoint extraction neural network that deter-
mines keypoint types (junction, sharp corners, and endpoints) and
positions, as discussed in Sec. 3.1. After connecting keypoints with
strokes, they optimize the stroke geometry to align to the frame
field. In practice, relying on the keypoint predictor may cause this
method to occasionally miss some parts of the line drawing when
predictor fails. Gutan et al. [GHB∗23] improve the frame field used
in these methods by making it singularity-free, albeit at a consider-
ably larger computational cost. The vectorization method by Bao
et al. [BF23] follows the common workflow with coarse-to-fine
curve network optimization to improve resulting junction connec-
tivity and geometry fidelity.

Some recent approaches are based on supervised or self-
supervised learning [GZH∗19, BCY∗21, KWÖG18, EVA∗20,
YLA∗24]. Guo et al. [GZH∗19] extract sketch centerlines, us-
ing convolutional neural networks (CNN) similar to Smart Inker
[SII18b], and a junction image. Then they subdivide the cen-
terlines at junctions and reconstruct junction connectivity via a
topology construction network. Their networks are trained on a
fully synthetic dataset of rasterized vector curves, possibly lead-
ing to issues with generalization. Bhunia et al. [BCY∗21] adapt
a self-supervised training framework by posing the problem as
cross-modal translation between vector and raster image spaces.
Trained on vector and raster image pairs, their approach learns la-
tent representations and corresponding raster and vector encoders
and decoders. These encoders and decoders can be assembled with
the shared latent representation to complete various tasks such as
sketch recognition and vectorization. Kim et al. [KWÖG18] formu-
late the problem as a stroke segmentation in pixel space, which can
then be converted into vector strokes. They adapt the classic graph
cut segmentation setup by dropping the data term, duplicating the
overlapping pixels and learning the binary similarity term with a
CNN. Egiazarian et al. [EVA∗20] present a deep learning–based
method to vectorize technical line drawings, such as floor plans,

(e)

Em
pi

ric
al

 M
in

im
um

20 30 40 50 60 70 80
0

5

10

15

20

25

30

Stroke-Curvature Threshold t (degrees)

Average (6 drawings) Dracolion Moose

(a) (b)

(c) (d)

(f) (g) (h)

Figure 15: Noris et al. [NHS∗13] additionally focuses on the junc-
tion connectivity: their method identifies ambiguous junction re-
gions (a), removes the corresponding curves (b), constructs candi-
date centerlines (c) and determines the final junction connectivity
based on curvature thresholds determined by a set of annotated
sketches (e). Given an input (f), the method may be inaccurate in
fine details (g) and may extract incorrect topologies (h). Figure
adapted from [NHS∗13].

(a) Stroke encoding

(b) Jointly-trained stroke
decoder and vectorizer

Stroke Decoder

Shared Weight

Stroke Vectorizer

Input

Input

Vectorized Storke

UNet Transformer

UNet

Input

Stroke Features

Stroke Encoder

ResNet Transformer

Raster Stroke

ResNet

(c) Example result

Figure 16: Liu et al. [LLLW22] applies a global Transformer-
based stroke encoder to the raster input (a). Each identified stroke
is then passed to a raster stroke decoder and a Transformer-based
stroke vectorizer with shared weights (b). This method produces
relatively clean topologies but may miss fine details, as indicated
by the red arrow (c). Figure adapted from [LLLW22].

architectural drawings, and 2D CAD images. The input to their
method is first preprocessed by a raster-space cleaning network that
removes the noise, adjusts the contrast, and fills in missing parts.
The cleaned image is then broken into patches, then each patch is
fed into a network predicting primitives; these primitives are then
aligned with the input via optimization. Cloud2Curve [DYH∗21]
targets 2D point clouds, which can be derived from sketch pix-
els. It employs a generative model that iteratively outputs Bézier
curves to approximate the input point cloud. Liu et al. [LLLW22]
adapt a stroke tracing workflow, similar to Mo et al. [MSSG∗21] in
Sec. 4.1.2, with Transformer-based networks (Fig. 16). Unlike the
sliding window view of Mo et al.’s, this method applies a global
Transformer-based stroke encoder to the raster input to identify

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 13 of 32

strokes and encode them into stroke features, each of which is
then passed to a raster stroke decoder and a Transformer-based
stroke vectorizer. The stroke decoder and vectorizer are trained
with shared weights with multi-modal supervision. Their results
tend to contain longer, more consistent vector strokes than the ones
of [MSSG∗21]. Yan et al. [YLA∗24] propose an efficient vectoriza-
tion method based on distance fields and junction detection, using
the keypoint detectors similar to [PNCB21] (Fig. 17). Their key
idea is to predict unsigned distance field and extract the sketch cen-
terlines via Neural Dual Contouring [CTFZ22]. The reconstruction
from Neural Dual Contouring depends on the grid size and suf-
fers from under-sampling. To fix this issue, the authors explicitly
detect undersampling and refine the corresponding parts in a post-
processing step. Additionally, to improve the accuracy of junction
recovery, the system predicts keypoint maps, which help in resolv-
ing sharp corners and complex multi-way junctions during post-
processing.

4.1.2. Rough sketch vectorization

Rough sketch vectorization methods simultaneously clean up and
vectorize an input raster sketch. In theory, the same can be done
via a combination of a clean vectorization method and a cleanup
method, yet there are multiple issues with that approach. Using
raster cleanup methods (Sec. 4.3.1) as preprocessing for a clean
vectorization can significantly change the topology of the sketch,
e.g., by introducing gaps or deforming junctions; semi-manual
cleanup is similarly challenging and error-prone (Fig. 18c,d).
Applying clean sketch vectorization methods first and then us-
ing vector-based cleanup methods (Sec. 4.3.2) is also far from
ideal: Clean sketch vectorization methods produce many redundant
strokes that have different structure or shape from natural over-
drawn sketches (Fig. 18b), contradicting the assumptions of vec-
tor cleanup methods that are designed for natural sketches. Rough
sketch vectorization methods are specifically designed to resolve
this issue.

An early method [BCF∗07] follows a similar workflow as the
clean sketch vectorization and uses a bank of 32 Gabor filters to ac-
count for various local orientations and stroke cluster internal gaps

Figure 17: Yan et al. [YLA∗24] propose an efficient vectorization
method based on distance fields and junction detection. The recon-
structed vector strokes from Neural Dual Contouring may suffer
from under-sampling with large grid sizes, which the authors ad-
dress by detecting and refining these areas in a post-processing
step. Figure adapted from [YLA∗24].

in rough sketches. The estimated orientations and centerline loca-
tions are then traced using Kalman filter.

Many methods [FLB16, PPM18, PCS21] are based on region
information (Sec. 3.4). They extract the intermediate vector line
drawing as boundaries defined by these regions, simplify the graph
topology and optimize the geometry into the final vector result.
This formulation relate these vectorization methods to the flat col-
orization problem (Sec. 4.4.1) as they can produce region par-
titions as a by-product and vice versa. Fidelity vs. simplicity
[FLB16] extracts the initial skeleton of the overdrawn input using
the trapped ball algorithm [ZCZ∗09] (Sec. 3.3), then constructs a
hypergraph where nearby potential junctions are grouped, and fi-
nally optimizes for the junction connectivities balancing a fidelity
term for fitting accuracy and simplicity term for graph simplicity
(Fig. 19). In practice, their implementation has problems handling
open curves due to the dependence on the trapped ball algorithm.
Parakkat et al. introduce two Delaunay-triangulation-based meth-
ods [PPM18, PCS21] that start by finding regions in the sketch
(Sec. 3.4). They then mark all other triangles as strokes and per-
form morphological thinning on that, which after some smooth-
ing, creating a 1-skeleton; they expand it into an interactive system
in [PCS21].

Stanko et al. [SBBB20] define the strokes as integer isolines
of a parameterization aligned to the frame field, thus applying
quad meshing methods to the vectorization problem. However,
this method’s ability to discern small details heavily depends on
a global kernel size, while level of detail can be different in differ-
ent areas of the same sketch, so they resort to user-painted level of
detail masks.

In Mo et al. [MSSG∗21] at each iteration, a combination of CNN
and recurrent neural network (RNN) outputs a pen trajectory start-
ing from a center of a small window, and a pen state. Pen state
refers to drawing (pen down) or shifting the pen (pen up). Even
though to avoid redundant overlapping strokes, they use a loss that
balance fidelity and simplicity similar to the prior art [FLB16], their
outputs often contain redundant overlapping curves. A followup
work [MGW24] adapts this tracing framework to the new scenario
of joint tracing (Fig. 20). In 2D animation production, animators
typically trace consecutive raster frames manually, despite the close
correspondences between the traced vector sketches. Given a traced
vector sketch from the first raster frame and a sequence of subse-
quent frames, the method aligns local tracing windows — centered
at stroke starting points — between the reference frame and the tar-
get using a MLP. It then traces in the target window given the refer-
ence vector stroke using a RNN. To reduce the redundant strokes in
results, they introduce a new window transformation module which
enables tracing windows to have higher degrees of freedom.

4.2. Beautification

Sketches people draw may not al-
ways look exactly as intended,
especially when the artist is less
experienced or drawing with im-
precise digital devices (red/left,
inset; adapted from [TSB11]).

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

14 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

(a) Rough raster sketch (b) Result by clean
sketch vectorization

(c) Semi-automatic raster cleanup (d) Vectorized manual cleanup

Figure 18: (a) A typical professional raster sketch in the wild often contains a significant number of overdrawn strokes. (b) Applying state-
of-the-art clean sketch vectorization [YLA∗24] results in redundant strokes due to overdrawing. (c) A human user can produce a high-quality
cleaned-up raster sketch using semi-automatic tools, such as Smart Inker in this example [SII18b]. (d) Applying clean sketch vectorization
to this cleaned raster sketch may introduce additional errors. Images are from [YLA∗24] and [SII18b].

(e) Balance between fidelity and simplicity

curves
50

33

25

Error w.r.t. GT
0.5

0.4

0.3
λ0. 01 . 05 .9

(a) Rough raster
sketch

(b) Regions from
trapped ball algo

(c) Region
boundaries

(d) Skeleton with
open curves

Figure 19: Fidelity vs. simplicity [FLB16] extracts the initial
skeleton of the overdrawn input using the trapped ball algorithm
[ZCZ∗09] (a-d), and optimizes for the junction connectivities bal-
ancing a fidelity term for fitting accuracy and simplicity term for
graph simplicity (e). Figure adapted from [FLB16].

Since the early days of digi-
tal sketching systems, beautifica-
tion has been a necessary compo-
nent. For instance, the pioneering
SketchPad [Sut98] supports snap-
ping close endpoints and con-
straining strokes to lines or circles. The process to correct these
errors is referred as beautification, neatening or auto-correction.
More formally, a beautification method refines strokes in a vector
sketch to make the overall sketch more visually appealing (black-
/right, inset). While most methods achieve this by beautifying each
vector stroke individually, recent approaches have begun optimiz-
ing stroke layouts [YLGF23].

4.2.1. 2D Beautification

For general purpose sketches, beautification systems fit strokes
closely to the input points (Fig. 21a). In contrast, beautification
systems for technical diagrams often perform template matching,
as the range of admissible stroke shapes is typically more lim-
ited (Fig. 21b). PaleoSketch [PH08] is a stroke recognition sys-
tem which also beautifies the input stroke as a by-product. Their
system supports a range of geometric primitives such as ellipses
or straight lines, as well as Bézier curves, each time providing a
list of suggestions of beautified strokes. Frisken [Fri08] propose a
beautification method that incrementally fits cubic Bézier curves
to incoming input points, leveraging a vector distance field for
gradient-based optimization. Baran et al. [BLP10] promote the use
of clothoid splines, a curve representation with a piecewise lin-
ear curvature profile. A key to their problem is a segmentation of
a stroke into curve primitives (lines, arcs, and clothoids), which
they cast as a shortest path problem on a weighted graph. McCrae
and Singh [MS11] get inspiration from traditional design where
French curves or sweeps have been extensively used in the creation
and editing of 2D design curves. Their system loads a set of pre-
authored French curves and automatically finds an optimal piece-
wise combination of French curve segments with user controlled
continuity up to G2. Elasticurves [TSB11] focuses on real-time
beautification and is based on the observation that slower sketch-
ing speed indicates more accurate strokes, while fast sketching of-
ten induces more noise and thus requires more smoothing. Elas-
ticurves are represented by arc splines where the individual arcs
have curvatures corresponding to the local sketching speed. Help-
ingHand [LYFD12] is a data-driven beautification method that not
only neatens strokes but also assigns calligraphic widths. Built on
artist stroke datasets, HelpingHand segments a stroke into smaller
segments, retrieves corresponding artist segments, and blends these
segments via optimization. EZ-Sketching [SLWF14] is an image-
tracing system that automatically refines sketches to be more faith-
ful to the underlying images and visually pleasing. The system em-
ploys an optimization framework at three levels: local, where sev-
eral candidate image edges are proposed for a stroke to snap onto;
semi-global, where points on strokes are triangulated, and spatio-
temporal neighboring stroke points are brought closer through en-

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 15 of 32

Figure 20: Mo et al. [MGW24] transform a given traced vector
sketch from the first raster frame to a later raster frame in the se-
quence. At each iteration, their method first identifies correspond-
ing tracing windows on the reference and target frames, then, given
a reference vector stroke, generates a pen trajectory starting from
the center of the target window (top). Given a traced vector sketch
on the first keyframe, this method generates vector sketches for all
subsequent keyframes (bottom). Figure adapted from [MGW24].

(a) Beautification for
general purpose sketches

(b) Beautification for
technical diagrams

Figure 21: Beautification systems for general-purpose sketches fit
more closely to the input points (a) compared to those designed for
technical diagrams (b). For example, Baran et al.’s [BLP10] system
utilizes three types of curve primitives to construct flexible splines
(a), while ShipShape [FASS16] replaces entire strokes with lines,
arcs, or template strokes drawn earlier in the same sketch (blue, b).
Images are from [BLP10] and [FASS16].

ergy minimization; and global, where undetermined strokes are de-
formed based on the underlying mesh.

Beautification methods for technical drawings often match and
replace input raw stroke samples with a template shape from
a library. Some methods in this category also neaten junctions
[IMKT07, MSR09, CGL12, FASS16] or account for high-level
global properties such as path identity or symmetry [IMKT07,
FASS16]. Pavlidis and Van Wyk’s method [PVW85] first clusters
the input line segments based on three properties (angle, line seg-
ment length, and endpoint alignment), then enforces the proper-
ties of member segments to match the cluster means. Igarashi et
al. [IMKT07] propose an incremental and semi-automatic method
for interactive geometric design. Every time when a new stroke is
created, their system generates the set of all possible constraints
satisfying endpoint snapping, endpoint alignment, line axis align-

ment, symmetry, and parallelism. Then, based on the user selected
constraints, the system solves constrained line fitting problems and
presents the user with a set of all possible line segments to select
from. Murugappan et al. [MSR09] introduce a pipeline and an inter-
active workflow similar to the previous work [IMKT07]. They con-
sider multiple strokes, more primitives than just the line segment,
and more constraint types. To prevent potential constraint combina-
tions and solutions from explosion, they have a constraint selection
step and a more complex suggestion evaluation step. QuickDraw
[CGL12] is a drawing system that follows the similar pipeline of
recognizing primitives (lines and circles), inferring geometric con-
straints, and solving for constrained fitting. ShipShape [FASS16]
extends the work on incremental and semi-automatic beautification
methods with three improvements: (1) the primitive set includes
Bézier curve chains drawn early in the input; (2) activated con-
straints are selected by exploring a constraints tree; (3) the stroke
similarity detection is based on Fréchet distance and supports sim-
ilarity measure between Bézier chains. See Fig. 21 for an example.
Yu et al. [YLGF23] propose a learning-based beautification system
for human-made objects. The system first semantically parses the
input into parts, then retrieves clean parts from the training data
and beautifies through interpolation between the two. Finally, the
layout of the parts is refined through structure beautification.

4.2.2. 3D Beautification

3D sketching systems that process mid-air 3D strokes face chal-
lenges similar to those in 2D sketching, such as imprecision from
digital devices and less experienced users. These challenges are
even more pronounced as VR/AR technologies and drawing prac-
tices are still evolving. Basic filtering or smoothing strategies are
commonly used due to their simplicity and low computational cost
[AMW∗23, Chapter 7]. Despite their differences, many 3D sketch-
ing systems are inspired by 2D beautification, extending them as
components of more complex systems that incorporate novel inter-
actions, visual guidance, and editing tools. Currently, few papers
explore match-and-replace strategies, similar to 2D common tech-
nical drawing beautification, while most focus on generating high-
fidelity strokes that closely fit the input sample points, akin to 2D
general-purpose beautification.

In the first category, Mockup Builder [DACJH13] uses a cus-
tomized stereoscopic multi-touch system to support a workflow in-
volving silhouette creation, volume creation (through pushing and
pulling), and shape manipulation (e.g., scaling, rotation, and trans-
lation). Silhouette creation is performed by sketching directly on
the multi-touch surface. In addition to the incremental fitting of
lines and cubic Bézier curves, the system detects circles and el-
lipses and converts them into precise Bézier curve representations.
Multiplanes [MAS∗18] displays visual guidance planes for snap-
ping and points to trigger beautification. Beyond snapping to ver-
tices, strokes, and planes, 3D strokes are detected and replaced with
neat lines, general curves, arcs, and circles.

The majority of 3D sketching systems focus on producing high-
fidelity 3D strokes, though these systems can be specialized for
certain types of drawings, such as curve networks, industrial de-
sign sketches, and curves on 3D surfaces. An early work, Drawing
on Air [KZL07], proposes two complementary input techniques

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

16 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

(a) CASSIE [YAS∗21]

(b) Sca�oldSketch [YDSG21]

Freehand Armatures Surface patches

Input sca�old Auto-corrected sca�old Input shape curves Auto-corrected shape curves

Figure 22: CASSIE [YAS∗21] (a) and ScaffoldSketch [YDSG21]
(b) are 3D sketching systems designed for curve networks and
3D industrial design sketches, respectively. They can be consid-
ered complementary: CASSIE focuses on a more freeform and
seamless sketching experience; ScaffoldSketch closely follows tra-
ditional precise industrial design sketching practices. Images are
from [YAS∗21] (a) and [YDSG21] (b).

that implicitly beautify 3D strokes. The one-handed drag draw-
ing technique employs a “tow rope” metaphor, similar to the one
used by Elasticurves [TSB11], to dynamically smooth the draw-
ing direction and reduce jitter. CASSIE [YAS∗21] is a 3D curve
network creation system for VR that offers three modes: freehand
(with minimal smoothing), armatures (curve network), and surface
patches (Fig. 22a). The armature mode is inspired by beautifica-
tion and supports the creation of precise curve networks through
continuous and discrete stroke optimization. Another crucial com-
ponent is curve network surfacing of the patch mode, which is
discussed in Sec. 4.4.2.1. Their user studies show that, compared
to the freehand mode, the additional mental load imposed by the
armature and patch modes does not noticeably hinder users’ cre-
ative potential. ScaffoldSketch [YDSG21] is a 3D industrial design
sketching system for VR that utilizes two types of lines: scaffold
and shape, each beautified with distinct auto-correction algorithms
(Fig. 22b). Scaffold lines are straight lines that can be easily drawn
accurately, commonly serving as visual guides for precise and aes-
thetic projections. ScaffoldSketch implements scaffolds as elastic
lines with tick marks. The auto-correction is formulated as deter-
mining a set of mutually satisfiable constraints, discarding conflicts
via iteratively re-weighted least squares. Shape lines describe the
intended form, which are beautified by constraining to be smooth
while passing through and tangent to the scaffold lines. CASSIE
and ScaffoldSketch can be considered as two complementary sys-
tems since curve networks bear connections to shape lines. While
CASSIE targets a more freeform and seamless sketching experi-
ence, ScaffoldSketch follows closely to traditional precise indus-
trial design sketching practices. Moreover, both systems report in-
correct system responses due to thresholds determined empirically
by system developers, highlighting the need for advances in de-
termining more customized interpretations of user inputs. Arora et

Figure 23: Liu et al. [LRS18] conducted a perceptual study demon-
strating that human viewers effortlessly perceive clusters or strips
of rough strokes as jointly depicting a single, artist-intended curve,
and their observations generally align with one another. The over-
drawn strokes in question are shown in black, while manually cre-
ated clean lines by ten study participants are overlaid in blue. Fig-
ure adapted from [LRS18].

al. [AS21] study a more specific question: how to intuitively and
aesthetically project a mid-air 3D stroke onto a 3D surface. They
demonstrate the limitations of the most commonly used projec-
tion method in commercial VR painting software, which adopts a
“spray can” metaphor where a raycast projection creates the stroke.
Instead, Arora and Singh introduce “mimicry”, a curve beautifi-
cation method that transposes the user’s 3D painting motion to a
stroke that is smoothly projected onto a nearby 3D surface. This
method achieves a smooth projection that corresponds to the user’s
input motion by anchoring the current stroke offset (the vector be-
tween two consecutive stroke points) to the last projected point on
the surface and applying a smooth closest-point projection (a mod-
ified Phong projection [PBDSH13]).

4.3. Cleanup

When creating an initial sketch, artists often draw roughly parallel
strokes, a technique called overdrawing, to correct or refine ear-
lier strokes, add emphasis, depict thickness, or break down hard to
draw long and complex curves into shorter, easier to sketch strokes
(Fig. 3). While human viewers effortlessly perceive a cluster or a
strip of rough strokes as jointly depicting a single artist intended
curve (Fig. 23), downstream sketch-based applications have diffi-
culties process such sketches. Sketch cleanup, also referred to as
consolidation or simplification, takes a rough sketch with over-
drawing and produces a corresponding clean line drawing.

4.3.1. Raster-to-raster cleanup

Raster-to-raster cleanup methods transform a raster sketch with
overdrawing into a clean raster sketch. These methods are closely
related to the problem of vectorization, where the majority of sys-
tems (Sec. 4.1) only support clean raster sketches as inputs. For
such vectorization systems, raster-to-raster cleanup methods can
serve as preprocessing (Fig. 18cd). In addition to overdrawing,
these methods also handle raster sketches scanned in poor condi-

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 17 of 32

Input

Output

Figure 24: Simo-Serra et al. [SII18a] base their raster-to-raster
cleanup network on the network proposed in their first approach
[SISI16]. With the newly introduced discriminator network, this
model is jointly trained with supervised and unsupervised data. An
example is shown on the right. Figure from [SII18a].

tions, such as non-uniform canvas textures, uneven lighting, and
low contrast.

A classical method of Chen et al. [CGBG13], after computing a
line field parallel to local tangents (Sec. 3.2), uses the directions of
the line field for an oriented filter with a fixed kernel size, merg-
ing parallel strokes. Due to the fixed kernel size, their method may
not work on sketches containing details of different sizes. Recent
raster-to-raster cleanup methods are often deep learning based and
often struggle because of scarcity of training data. Simo-Serra et
al. [SISI16] start this line of work by training a CNN with anno-
tated rough-clean sketch pairs. They improve the performance in
a followup paper [SII18a] by jointly training with supervised and
unsupervised data leveraging a GAN (Generative Adversarial Net-
work) loss (Fig. 24). Smart Inker [SII18b] is an interactive cleanup
system that introduces smart tools designed specifically for rough
sketches to connect strokes, erase shading, and fine-tune the line
drawing output (Fig. 18c). This system has a module that improves
the anti-aliasing and normalizes input line widths for a more con-
sistent training dataset. Xu et al. [XXM∗19] show that compared to
the pixel loss or discriminator loss, the perceptual loss is more ef-
fective at global semantic understanding and cleanup of extremely
sketchy inputs. They propose a new CNN model with the integra-
tion of VGG (Very Deep Convolutional Networks) layers trained
on a new rough sketch dataset. SketchCleanNet [MKDM22] tar-
gets rough query sketches for 3D CAD model retrieval systems.
The method uses a Fully Convolutional Network trained on syn-
thetic line drawings traced based on 3D CAD objects.

A generic reconstruction method by Chen et al. [CGBG13] can
also be applied to the raster-to-raster cleanup task. They introduce
a moving least squares–based (MLS) method to robustly construct
continuous gradient line fields (Sec. 3.2) from a variety of noisy

(a) Coherence-enhancing filtering for
raster-to-raster cleanup

(b) MLS approximations of
sketches in di�erent styles

Figure 25: Chen et al. [CGBG13] demonstrate that their MLS
method can be applied to clean up raster sketches with overdrawn
strokes as an image filter (a), and to process sketches across var-
ious drawing styles (b). The result in (a) is generated using their
isotropic linear approximation with a uniform shock size (i.e., line
width). Inputs are shown on the left, and results on the right. Figure
adapted from [CGBG13].

(a) Input vector sketch (b) Stroke clusters (c) Final clean vector strokes

Figure 26: Given an input vector sketch (a), most vector-to-vector
cleanup methods identify groups of strokes perceived as depicting
single curves (b), and fitting the aggregate curve to each group (c).
Images are results of [LABS23].

discrete samples, such as general raster images and point clouds.
When applied to raster rough sketches, their method performs line
drawing stylization, producing a raster image with improved line
density and directional coherence, i.e., cleaner lines (Fig. 25a).
They also demonstrate the application of their method to sketches
in different styles (Fig. 25b).

4.3.2. Vector-to-vector cleanup

Vector-to-vector cleanup methods mainly follow a framework of
identifying clusters, groups of strokes perceived as depicting single
curves (Fig. 26b), and fitting the aggregate curve to each group us-
ing methods like Bézier curve fitting or StrokeStrip [PvMLV∗21]
(Fig. 26c) (Sec. 2.4, 3.3). Early vector-to-vector cleanup methods

(a) Input vector sketch (b) Intermediate clustering (c) Final clean sketch

Figure 27: StrokeAggregator [LRS18] utilizes global and local
perceptual cues determined by perceptual studies and This method
performs clustering in three stages: angle and density-based coarse
clustering, branch separation, and final merging. Figure adapted
from [LRS18].

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

18 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

(a) Input vector sketch and scribbles (b) Output stroke clustering

Scribble

Stroke

Figure 28: Noris et al. [NSS∗12] leverage user-drawn guiding
strokes, called scribbles (dashed lines), and cluster raw input
strokes based on their perceptual similarities to those scribbles,
taking drawing order into account. Figure adapted from [NSS∗12].

[Ros94, BTS05, SC08] compute stroke-wise similarities based on
perceptual cues such as absolute proximity, degree of parallelism,
and Gestalt good continuation. These methods determine group-
ing via hard thresholding, which often requires manual tweaking
of threshold per input. Some methods [Ros94, BTS05] quantify
cues based on correspondences, e.g., the closest points, endpoints
and midpoints, which are sensitive to noise; Shesh et al. [SC08]
rely on all combinations of sufficiently close points, which is com-
putationally expensive. Orbay and Kara [OK11] propose a neu-
ral network–based method and identify branching, when adjacent
strokes diverge forming a Y-junction, as a challenge for vector-to-
vector cleanup. Their model learns a pairwise probability function
based on angles and distances, then builds initial clusters by thresh-
olding the probabilities and subsequently refines these clusters us-
ing branch separation. The method works well when trained and
tested on drawings produced by the same artist, but fails to gener-
alize to drawings from multiple sources; it typically over-merges.
Liu et al. [LWH15] introduce contextual angle and proximity met-
rics defined relative to the size of empty spaces, or regions, en-
closed by the input strokes (Sec. 3.4). Their method still requires
users to manually adjust two thresholds per input. StrokeAggrega-
tor [LRS18] performs stroke grouping based on a cluster parame-
terization, following global and local perceptual cues determined
by perceptual studies. This method performs clustering in three
stages: angle and density-based coarse clustering, branch separa-
tion, and final merging (Fig. 27).

Some vector-to-vector cleanup methods are interactive, i.e. they
produce clean strokes on the fly, enabling sketching in vector draw-
ing systems. Several interactive drawing systems [Bau94, BBS08,
GJ12] are designed for 3D sketching, and due to the usage of sim-
ple cues similar to those of early consolidation methods, heavily
depend on additional user input, such as gestures or clicks. Noris
et al. [NSS∗12] leverage user-drawn guiding strokes, called scrib-
bles, and cluster raw input strokes based on their perceptual similar-
ities to those scribbles, taking drawing order into account. Unlike
the cleanup setting where raw strokes are grouped into strips, this
interactive stroke grouping system aims to divide strokes into se-
mantic components (Fig. 28b). StripMaker [LABS23] (Fig. 26) is
an interactive learning-based method that formulates the grouping
problem into smaller binary decisions of whether to merge a stroke
and a group or a group and another group. To address training data
scarcity, their local approach allows them to break down each an-

(a) Input sketch (b) Inaccurate junctions (c) Flat colorization

Figure 29: Manually drawn sketches (a) often contain imprecise
junctions (b), including falsely closed lines (green, b) and falsely
open areas (red, b). In this example, a professional comic artist
needs to carefully correct these issues to achieve the desired flat
colorization. Figure adapted from [YCY∗22].

(c) Regions with
hand-picked colors

(b) Fla�ed regions(a) Input raster sketch

Figure 30: Fourey et al.’s [FTR18] system extends dangling stroke
endpoints (red dots, b) with line segments or splines (blue curves,
b) to close regions (colorized regions, c). The system is semi-
automatic and relies on users to select over-partitioned regions for
flat colorization. Figure adapted from [FTR18].

notated sketch into many training examples. One drawback of this
method is its runtime, which increases significantly with the num-
ber of existing groups and strokes. Typically, once the clusters are
known, those methods find centerlines, as explained in Sec. 3.3.

4.4. Flat Colorization

Flat colorization, or flatting, a common stage of colorizing a sketch,
involves partitioning a drawing into regions and filling each with a
constant color. The exact colors do not matter — those are later
often manually picked by an artist, which distinguishes this prob-
lem from the broader topic of image colorization. As described
in Sec. 3.1, the key issue is that the standard tools like flood
fill (‘bucket tool’) typically fail: junctions in sketches are impre-
cise, burdening artists with tedious low-level manual corrections
(Fig. 29).

4.4.1. Raster flat colorization

In raster drawing software, flatting is often done manually by se-
lecting the pixels in a perceived region. As an automation of this
tedious process, Zhang et al. [ZCZ∗09] propose a trapped ball al-
gorithm (Sec. 3.4) as the segmentation step of their cartoon vector-
ization pipeline. A useful UI tool to speed up manual selection of
regions is “color scribbles”, a short curve with an intended color to
loosely indicate the region [QWH06, SDC09]. Qu et al. [QWH06]
develop a scribble-style method based on level-set segmentation
for black and white mangas that contain hatching, halftoning, and
screening. Lazybrush [SDC09] follows a similar interaction and

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 19 of 32

Figure 31: Zhang et al. [ZLSS∗21] use deep neural networks to es-
timate influence areas (c) and resulting colors (d) in a classic semi-
automatic workflow based on user scribbles (a). Figure adapted
from [ZLSS∗21].

(a) Reference frame (b) Target frame (c) Flat colorization by
[DZL∗24]

(d) Manual GT

Figure 32: Dai et al. [DZL∗24] use deep neural networks to trans-
fer flat colorization from a reference frame (a) to a target frame
(b). Their method accurately handles tiny segments (c), closely re-
sembling the results of manual flat colorization (d). Figure adapted
from [DZL∗24].

detects regions with the classic multiway graph cut segmenta-
tion. This method is integrated into several commercial drawing
software, such as TVPaint [Laz24] and Krita [Kri24]. Fourey et
al. [FTR18] develop a semi-automatic method for digital drawing
that extends dangling strokes with line segments or splines to close
regions (Fig. 30).

More modern raster flat colorization methods use neural net-
works. An early raster-to-raster model by Sasaki et al. [SISI17] di-
rectly fills in the gaps for easy partitioned by other methods. Zhang
et al. [ZLSS∗21] apply deep neural network to the classic semi-
automatic approach based on the DanbooRegion dataset of anno-
tated colorized artwork [ZJL20] (Fig. 31). A recent raster based
deep learning method [DZL∗24] targets a similar animation pro-
duction scenario as Mo et al. [MGW24] (Sec. 4.1.2) and allows
users to simultaneously colorize characters across a sequence of
raster frames (Fig. 32). The system first generates a coarse coloriza-
tion using optical flows between two frames, and then refines it
by deforming reference regions with a multiplex transformer. The
model is trained on a new dataset consisting of professional an-
notations and synthetic data generated through non-photorealistic
rendering.

A recent system, FlatMagic [YCY∗22], introduces an improved
bucket tool and fine-grained control over region boundaries. Their
design choices are informed by their user studies with professional
comic artists (Fig. 33). Their bucket tool combines the classic
trapped ball algorithm and a neural fill method. The fine-grained
boundary editing allows users to either select from a set of bound-
aries proposed by a neural network or draw the boundary manually.

(a) Automatic fla�ing

(b) Interactive correction
with neural lines

Input

Recursion

Bleeding removel

Neural re-lining Trapped ball

Figure 33: FlatMagic [YCY∗22] provides users with automatically
generated flatted regions (a) and allows further user corrections us-
ing neural line options (green, b). The automatic flatting is achieved
by detecting neural fills with the trapped ball algorithm (top, a)
and classic connected-components filling (bottom, a). These re-
gions then undergo iterative bleeding removal (right, a). Figure
adapted from [YCY∗22].

Another recent system, FlatGAN [KLL∗23], generates a re-
gion map and a distance field of the input lines, referred to as a
contour map. This GAN is trained on augmented DanbooRegion
data [ZJL20], with segments of lines randomly erased and ran-
dom noise added. The region map and contour map are then post-
processed to produce accurate regions with anti-aliased boundaries.

4.4.2. Vector flat colorization

Even when input sketches are provided in vec-
tor format, flat colorization remains a non-
trivial problem. Many methods in this category
follow a common pipeline: (1) construct po-
tential junctions using stroke geometry (inset,
dashed lines; adapted from [JSL21]); (2) for
each junction, determine its connectivity or re-
move it from consideration. A group of meth-
ods focus on wireframe drawings of polyhe-
dra [WY09, CPVC19, WZW∗20], i.e. with all
the lines visible, and leverage stronger assump-
tions that these drawings contain only straight
lines and do not contain intentionally dangling
endpoints. These assumptions, as well as domain-specific obser-
vations allows for a rather straightforward detection of poten-
tial junctions. In those methods, the final connectivity is deter-
mined by hand-crafted rules based on angle and distance thresh-
olds [WY09, WZW∗20] that are sometimes chosen via perceptual
studies [CPVC19]. Jiang et al. [JSL21] propose a semi-automatic
method that first constructs potential junctions by clustering dan-
gling endpoints, then determines final connectivity based on a se-
ries of cues and thresholds. Since their method assumes that the
vast majority of dangling endpoints are unintended, their results
often contain incorrect junctions requiring user corrections. Yin
et al. [YLL∗22] follow a similar workflow and further categorize
junctions into binary junctions and high-valence junctions, which
are composed of binary ones (Fig. 34). This junction formula-
tion allows them to adapt a learning based approach, using binary
junction connectivity as a basic decision (Sec. 3.1). Scrivener et
al. [SCC24], without explicitly constructing junctions, utilize gen-
eralized winding number to find regions of clean vector sketches

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

20 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

(a) Input vector sketch (b) Trivial regions (c) Final regions
13%

1%

2%
22% 2%

1% 31%

57%
17%

4%

62%98%

100%

100%

100%

84% 69%

100%

100%

1%

2%
22% 2%

1%13%

61%

3%

74%

2%

1%

57%
17%

4%

3%
46%
10%

68% 18%88%

100%

100%

53%

79%

96%

93%

100%

95%

100%

100%

1%

10%
92%

76%

31%

1%

3%

7%
47%

19% 67%

39%

1%

96%

8%

87%

52%

98%

100%

100%

Figure 34: Yin et al. [YLL∗22] categorize junctions into binary
junctions and high-valence junctions, which consist of multiple bi-
nary junctions (zooms, b). Zoom in to see the predicted connectivity
scores in this example. Figure adapted from [YLL∗22].

(Sec. 3.4, Fig. 35). Parakkat et al. [PMC22] further extend their
Delaunay-based cleanup method [PPM18, PCS21] for flat col-
orization. This improved method supports better gap completion
lines, colorization of hatched regions and automatic colorization
via flooding.

4.4.2.1. Cycle de-
tection in 3D curve
networks Cycle de-
tection is a necessary
step in surfacing a
3D curve network
and can be thought of as a higher-dimensional form of colorization.
While there are analogies between cycle detection and flat col-
orization in 2D vector sketches, the challenges arise from different
causes: 3D curve networks have precise junctions, but the topology
of the intended surfaces can remain ambiguous (inset; adapted
from [BWSS12]). Since cycle detection is at the boundary of our
scope, we provide only a brief summary of existing work, hoping
that future 3D sketching systems can incorporate these components
as building blocks. Cycle detection methods generally assume
that the input 3D curve network represents human-ideated shapes
rather than arbitrary ones. As a result, most approaches rely on
sets of perception-inspired heuristics and regularization conditions
within a global optimization framework [AJA12, ZZCJ13b].
Rose et al. [RSW∗07] construct developable surfaces from input
boundary curves using a branch-and-bound algorithm that explores
locally convex triangulations. Sadri and Singh [SS14] observe that
human perception of 3D curve networks tends to be consistent
and aligns with persistent homology, which they leverage in their
flow complex-based method. Several approaches make stronger
assumptions about the network to simplify the cycle detection. For
instance, Orbay and Kara [OK12] assume the curves form a con-
nected graph, enabling graph loop detection; CASSIE [YAS∗21]
assumes that the network is incrementally created, allowing for
local updates and curve sorting.

4.5. Lifting to 3D

Sketch strokes often can be viewed as a
2D depiction of 3D curves on or close to
a 3D surface (Sec. 2.3). The goal of 3D
lifting is reconstructing these 3D curves,
which can then be used for visualization
purposes, edited, or used in 3D surface
reconstruction. Starting with the pio-

(a) Input vector sketch (b) Winding numbers for
best stroke orientations

(c) Final regions

Figure 35: Scrivener et al. [SCC24] determine the optimal stroke
orientations based on the total variance of generalized winding
numbers (b) and conduct flat colorization using k-means cluster-
ing (c). Figure adapted from [SCC24].

(a) Input vector sketch (b) Initial wireframe (c) Final wireframe

Figure 36: Kyratzi et al. [KS09] design their method to infer the
hidden lines (c) such that the wireframe sketch remains valid while
minimizing its complexity (b). Figure adapted from [KS09].

neering work of Roberts [Rob63], these
methods algorithmically undo this pro-
jection and lift a sketch into 3D by de-
termining depth values of points along
the strokes. The focus of these methods
is typically sketches of machine-made shapes, commonly used in
industrial and architectural design. Formally, this is an ill-posed
problem, as even if we assume 2D strokes are a perfect projection
of 3D curves (Sec. 2.2), a single 2D sketch can correspond to an in-
finite number of 3D objects (inset; adapted from [SA93]). The main
challenge of this line of work is exactly resolving this ambiguity.

4.5.1. Offline lifting

Early works are based on labelling of strokes, referred to as ‘edges’
in this literature, and object corners in clean vector line drawings
consisting of line segments [Clo71, Huf71], shadows [Wal75], or
curves [Coo08]. The edge labelling process distinguishes convex
and concave edges, bounding areas of the surface that are convex
or concave for the viewer. Similarly, edge labelling distinguishes
curved from planar surface patches [Coo08]. These methods often
assume that at all junctions edges are orthogonal to each other in
3D, making the lifting problem less ambiguous. A later method lifts
free-hand architectural sketches [CKX∗08] by analyzing edges and
corners and applying maximum likelihood interpretation on geo-
metric primitives, detailed features and textures.

A common challenge is to determine the hidden lines occluded
from the viewpoint (Sec. 3.5). Cao et al. [CLT08] first infer the
topology of invisible straight line edges and vertices based on ge-
ometric and topological constraints, and then recover the depth
information using perceptual clues such as symmetry. Kyratzi et

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 21 of 32

ParallelSymmetricOrthogonalPlanar

(a) Input curve network

(b) Local regularity cues

(c) Surfaced and li�ed
curve network

Figure 37: True2Form [XCS∗14] reconstructs 3D curve networks
(c) from 2D curve network sketches consisting of piecewise-smooth
curves (a) by selectively applying geometric regularity properties,
such as parallelism, symmetry, orthogonality, and planarity (b).
Figure adapted from [XCS∗14].

(a) Input vector
industrial design sketch

(b) Symmetry planes and
stroke correspondences

(c) Novel view of
li�ed sketch

Figure 38: Hähnlein et al. [HGSB22] adapt symmetry cues (b)
to lift freehand industrial design sketches (a). The resulting lifted
sketch can be used for sketch novel view synthesis (c). Figure
adapted from [HGSB22].

al. [KS09] minimize the number of hidden lines and regions added
to the sketch (Fig. 36). In contrast to the methods above, Var-
ley et al. [VMS05] question the necessity of line labeling for lift-
ing sketches of CAD objects, instead relying solely on visible T-
junctions.

A curve network is a set of interconnected curves that define the
shape and structure of a surface or object in the context of 3D mod-
eling and CAD (Fig. 37a). Methods in this category often adopt
an optimization-based framework with domain-specific regulariz-
ers or constraints. Although designed for 2D freehand sketches of
wireframe CAD objects rather than curve networks, Lipson and
Shpitalni [LS96] propose an early example of these optimization-
based lifting approaches. Domain-specific properties of curve net-
works are often formulated into regularizers or constraints to re-
solve projection ambiguities. For instance, Cordier et al. [CSMS13]
propose a system to lift a 2D sketch of a mirror-symmetric 3D
shape. The algorithm infers the 3D geometry by identifying pairs
of symmetric curves and computing their 3D positions while en-
suring that their orthogonal projections match the input sketch.
True2Form [XCS∗14] reconstructs 3D curve networks from 2D
curve network sketches consisting of piecewise-smooth curves by
selectively applying geometric regularity properties, such as paral-
lelism, symmetry, orthogonality, and planarity (Fig. 37). Their key
observation is that cross-sections, often drawn in those sketches
(Sec. 2.4), are depiction of principal curvature lines and therefore
are orthogonal in 3D. Their inputs must be clean, without over-
drawing, and have precise junctions labelled by users.

(a) Hand-motion sca�olding (b) Sketch shape on sca�old with pen

Figure 39: Kim et al. [KALB18] propose a 3D sketching system
that complements regular pen sketching with quick hand-motion
scaffold creation (a). With a rough 3D scaffold, users can sketch
and refine 3D strokes relative to this scaffold (b). Figure adapted
from [KALB18].

Free-hand industrial design sketches share similarities with
curve network sketches but are often more challenging due to the
presence of overdrawn strokes and inaccurate topology (Sec. 3.1).
Mitani et al. [MSK02] design a sketching system, used for novel
view synthesis, that inflates input vector sketches potentially con-
taining overdrawn strokes by matching a predefined cube template.
In a later paper, Gryaditskaya et al. [GHL∗20] focus on automat-
ically lifting raw, real-world freehand industrial design sketches,
which include both scaffold lines and surface curves. The authors
formulate depth estimation as the problem of assigning binary ac-
tivation values to intersections, namely distinguishing accidental
(not intersecting in 3D, but intersecting in 2D due to the projec-
tion) and true intersections (intersecting in 3D and 2D), and pro-
pose an efficient search algorithm that exploits stroke drawing or-
der. In a following paper, Hähnlein et al. [HGSB22] adapt symme-
try as a powerful cue into this intersection formulation (Fig. 38):
This method identifies local and global symmetries within the
sketches, leveraging them in an integer programming framework.
The authors show improved robustness for imperfect or incomplete
sketches.

Another closely related topic is single-view modelling of
freeform shapes. Many methods begin by lifting input descriptive
construction lines [AS11,BCHS20b] or silhouette lines [BCV∗15],
often using T-junctions as cues for Z-ordering, followed by a later
surfacing step. Additionally, these methods often require users to
provide topologically accurate junctions to correctly determine the
stacking order of different shape regions. We refer readers to a sur-
vey [BC20] for a full discussion of sketch-based single-view mod-
elling.

4.5.2. Interactive lifting

Interactive lifting of 2D strokes enables 3D sketching with a 2D
input interface. The resulting 3D sketch can be displayed as a 3D
scene on a 2D screen or in a VR/AR environment. Lifting meth-
ods vary by target display — VR/AR approaches assume a larger
physical workspace and a more immersive viewing experience.

When sketching on a 3D scene displayed in 2D, users draw
strokes directly on the scene, sometimes supplemented by addi-
tional input such as curve shadows [CMZ∗99] or alternative tech-
niques such as hand gestures [KB16, KALB18] (Fig. 39). Many
works in this category develop complete drawing systems targeting
seamless interactions, where lifting serves as a submodule. Lifting
is mainly done by projecting to 3D proxies: base template models

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

22 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

Figure 40: VRSketchIn [DGK∗20] is a VR drawing system that
allows users to freely place 3D drawing surfaces (a) and lifts
2D strokes on these surfaces to 3D via direct mapping. Figure
from [DGK∗20].

[KS07]; surface patches selected and created by the user [BBS09];
planes that are created to be axis-aligned or freely via pen ticking
[BBS08, KB16] or with respect to a scaffold [SKSK09, KALB18];
plane canvases that can be positioned in 3D [DXS∗07]; freeform
canvases created via extrusion [OCR∗19]. Some papers approach
lifting through more advanced optimization techniques, such as
geodesic deformation when only the stroke endpoints lie on the
base template model [KS07], or combinatorial optimization based
on a fixed configuration set of the input stroke and salient geo-
metric features [XFZ∗18]. Schmidt et al. [SKSK09] introduce a
pioneering interactive design tool for industrial design, based on
priors about sketching techniques — as done in other later work
[GHL∗20, HGSB22, YDSG21]. Using this tool, designers first cre-
ate 3D scaffold lines lifted based on rules of parallelism, perpen-
dicularity, and connections to known 3D points. Freehand shape
lines are lifted with respect to scaffold lines via optimization with a
total absolute curvature minimization regularizer and position and
tangency constraints. SecondSkin [DPS15] is a sketch-based mod-
eling system designed for in-context layered shape creation, such
as garments that conform closely to character shapes. To lift a 2D
stroke, it is first classified into one of four predefined curve types.
Based on the curve type, stroke points are projected or aligned with
the underlying layer geometry, including the input model and pre-
viously created layers. The system then generates surfaces or vol-
umes defined by stroke loops. SweepCanvas [LLZ∗17] focuses on
in-context modelling within an RGB-D photo of a real-world scene.
In this system, a pair of 2D strokes representing a profile is used
to generate a sweep surface along a trajectory stroke. Lifting is
formulated as a stroke-plane assignment problem given estimated
planes in the scene. Skippy [KYC∗17] is an interactive single-view
modelling tool designed for intuitive curve creation around input
shapes. A curve is generated by finding a path in a segment graph
and then smoothed by minimizing internal and external curvature-
related energies.

An early work about lifting in a VR/AR environment explores
fully manual lifting, where a user draws over a 2D sketch displayed
in VR and manually adjusts the depth of the endpoints [JK16].
However, physical constraints make it challenging to lift arms and
draw on a floating canvas over a 3D scene, unlike on a 2D dis-
play. Recent VR/AR drawing systems often incorporate an ad-
ditional handheld input surface, such as a touch-sensitive tablet
[AHKG∗18, DGK∗20] or the user’s non-dominant hand [JZF∗21]

(Fig. 40). In this scenario, projection is no longer applicable; in-
stead, direct mapping is used to lift 2D strokes drawn on a texture-
mapped 3D surface into the VR/AR scene.

5. Datasets

Sketch datasets can be roughly divided into two categories based
on their function: used as an input and created as an art form
or for visual design. The former are utilized for computer vision
tasks, while the latter are studied in research on visual creation un-
derstanding and assistance. As demonstrated in Fig. 41, sketches
drawn as an input for recognition, retrieval, and other classical com-
puter vision tasks, tend to be abstract and symbolic. Similarly, most
sketches drawn for 3D shape generation are restricted to single ob-
jects. For instance, QuickDraw [HE18], a popular dataset for re-
trieval, consists of abstract sketches drawn by users under 20 sec-
onds, typically with a mouse. In comparison, sketches drawn as an
art form or for visual design tend to be less abstract (right, Fig. 41).
Such sketches are often created by professional artists and design-
ers on digital tablets and often are more complex and refined. Draw-
ing, as well as annotating many of these sketches requires domain-
specific knowledge. As a result, datasets in this category tend to
be smaller (hundreds to thousands) compared to sketches as input
(thousands to millions). In this survey, we focus on datasets with
sketches as an art form or for visual design and only briefly mention
well-known machine learning sketch datasets as they can serve as
out-of-distribution test sets (see the survey by Xu et al. [XHY∗22]
for a comprehensive list). The detailed dataset statistics are sum-
marized in Table 2.

Compared to more widespread representations, such as videos
and photos, sketches are harder to create and collect. As identi-
fied by Xu et al. [XHY∗22], challenges in collecting or record-
ing sketches are due to their (1) time-sequence nature: while raster
sketches are abundant online, they often lack crucial temporal in-
formation; (2) missing demographic information: meta-data about
the artists may not always be available, which is crucial to the fair-
ness and bias-mitigation of the sketch-based applications. Further-
more, vector sketches have an additional format challenge: vector
sketches are frequently stored in SVG format that does not sup-
port timestamps and varying stroke thickness, posing challenges to
sketch data collection and sharing. Finally, sketches as an art form
require an advanced expertise: as visual creation applications target
professional artists, it is vital to use data created and annotated by
professionals, preventing the usage of crowdsourcing platforms.

Raster sketch data can be used to understand the creation pro-
cess on the pixel level and to train raster-to-raster learning based
methods [SII18a,SII18b,SISSI18,ZLSS∗21]. Cole et al. [CGL∗08]
prompt professional artists with 3D object renderings and then ask
the artists to manually register their freehand raster sketches to the
3D renderings. They focus on measuring pixel overlap to under-
stand where people draw lines when depicting a 3D object. In later
papers inspired by this work, people turn to collect vector sketches
and study them on the stroke level. As mentioned in Sec. 2.4, the
majority of production drawing software is raster based, which mo-
tivates raster-to-raster methods. Danbooru [AcB21] is an anime im-
age dataset with sketches assigned with tags that can directly be
used for image recognition tasks. Based on Danbooru, DanbooRe-

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 23 of 32

[CGL∗08b] DanbooRegion Sketch2Pose

[BSM∗13] OpenSketch [YVG20] SpeedTracer &
Di�erSketching

Danbooru

Data for Assisting and Understanding Visual Creation

Vector Sketches

Manual
vectorization

Manual
cleanup

Traced

Professional
freehandNovice

�ickDraw DomainNet ProSketch-3DChair

FS-COCO

sk
et

ch
re

al
qu

ic
kd

ra
w

pa
in

tin
g

in
fo

gr
ap

h
cl

ip
ar

t

computer

mouse
keyboard

book

[ZCL∗18]

Data for Computer Vision Tasks

Object Sketches

Scene Sketches

[LL21]

Raster Sketches

[YAB∗22]

Figure 41: Sketch data can be roughly categorized based on their function: sketches used as input for computer vision tasks (left) and
sketches created as an art form or for visual design (right). The former tend to be abstract and symbolic, such as QuickDraw sketches drawn
by users in under 20 seconds [HE18]. The latter are typically more complex and application-specific, such as sketches accompanied by 2D
character skeletons [BB22] or scaffold lines [GSH∗19].

Table 2: Summary of sketch datasets. “Gr.” stands for “Granularity,” where “o,” “c,” and “s” represent “object,” “character,” and “scene,”
respectively. “Vect” indicates whether sketches are stored in vector format, and “Time” indicates whether temporal information is available.
“K” and “M” denote “thousand” and “million.” Under “Creator,” “P” and “N” stand for “Professional” and “Novice.” “Repetition”
shows how many different responses are collected per prompt; depending on the dataset, “prompt” could refer to a category (listed as
“/cat”) or a single reference photo or rendering. “ ” indicates “Yes”, while a blank space in the corresponding column indicates “No.”

Dataset Gr. Subject Vect Time # Sketches Creator Repetition Public Remark
Cole et al. [CGL∗08] o 3D models 208 P 5-10 3D registration of 12 objects
Danbooru [AcB21] c Anime characters 4.23M P+N 1 130M tags
DanbooRegion [ZJL20] c Anime characters 5,377 P ≥3 Region annotations
Sketch2Pose [BB22] c Cartoon characters 4,631 P+ N 18 14,462 2D character skeletons
Berger et al. [BSM∗13] c Protraits 672 P 7 24 faces at 4 abstraction levels
OpenSketch [GSH∗19] o 3D models 417 P 7-15 3D registration of 12 objects, stroke annotations
Yan et al. [YVG20] o, c, s In-the-wild subjects 281 P 3-5 Raster-vector pairs, clean vector sketches
SpeedTracer [WQF∗21] o, c, s In-the-wild subjects 1,498 P+N 11-21 100 photorealistic image prompts, pressure data
DifferSketching [XSL∗22] o Multi-view 3D ren-

derings
3,620 P+N 10 9 object categories

QuickDraw [HE18] o Common objects 25.9M N ~75k 345 object categories
TU-Berlin [EHA12] o Common objects 20K N ~80 250 object categories
DomainNet [PBX∗19] o Common objects 0.6M P+N 220 6 categories, multi-modal images including sketches
ProSketch-3DChair [ZQG∗20] o Chairs 1.5K P 1 500 3D shapes drawn by 10 artists
Zhang et al. [ZCL∗18] s Real-world scenes 332 N 1 70 object categories, 7 types of scenes
FS-COCO [CSB∗22] s Real-world scenes 10K N 1-866/cat Over 92 object categories, photo-sketch pairs
SFSD [ZDL∗23] s Real-world scenes ≥12K N 141-6429/cat 40 object category, photo-sketch pairs
FrISS [KS24] s Real-world scenes 1K N N/A 403 object category, textual descriptions
Bainbridge et al. [BHB19] s Real-world scenes 2,682 N 12 30 scenes
Bainbridge et al. [BPEB21] s Indoor scenes 655 N N/A 3 scene categories
Manga109 [AFO∗20] o, c, s Manga pages 21,142 P 1 109 books by 94 authors
Luo et al. [LL21] o 3D chairs 1,497 N 1 3D models from ShapeNetCore chairs [CFG∗15]
Yu et al. [YAB∗22] o Common objects 62 P+N 1 Created by previous papers or with commercial tools

gion [ZJL20] is a dataset with regions annotated by artists in a semi-
automatic manner for flat colorization task. Sketch2Pose [BB22]
collected bitmap character sketches, annotated with 2D skeletons.

In vector sketch datasets, Berger et al. [BSM∗13] collect vector
portrait sketches from professional artists at four abstraction lev-

els. OpenSketch [GSH∗19] is a dataset of freehand industrial de-
sign sketches in vector format created by product designers with
varying expertise. Yan et al. [YVG20] collect a benchmark dataset
for sketch vectorization, simplification, and cleanup tasks. Speed-
Tracer [WQF∗21] is a dataset designed to understand the similarity

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

24 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

between traced sketches and freehand sketches. It contains tracings
and freehand drawings by 110 participants (85 are professional).
DifferSketching [XSL∗22] studies the difference between novice
and professional freehand sketches. It consists of sketches for 362
prompts (multi-view 3D renderings of 136 objects) created by 70
novice and 38 professional artists.

Datasets for machine learning tasks can be used for sketch pro-
cessing methods. QuickDraw [HE18] and TU-Berlin [EHA12] are
two popular large sketch datasets (roughly 25.9 million and 20
thousands respectively). The sketches are created in vector for-
mat given text prompts and typically in a matter of seconds. These
datasets are mostly used for recognition and retrieval tasks but can
be utilized as stress test inputs [YLL∗22]. DomainNet [PBX∗19] is
a multi-modal dataset with categorized images from different do-
mains, including raster sketches. ProSketch-3DChair [ZQG∗20] is
created by professional artists for sketch-based 3D shape genera-
tion. Apart from object-centric datasets, there are datasets of scene
sketches. Zhang et al. [ZCL∗18] collect vector sketches of sim-
ple real-world scenes consisting of annotated common objects. FS-
COCO [CSB∗22] is a dataset of freehand scene vector sketches cre-
ated by 100 non-expert individuals with photos as reference. SFSD
[ZDL∗23] is a scene sketch dataset organized as photo-sketch pairs,
similar to FS-COCO. FrISS [KS24] is a smaller dataset of scene
vector sketches covering a larger object category set. Psychology
researchers also collect smaller sketch datasets to study memory
[BHB19] and the mental ability to visualize [BPEB21]. Manga109
[AFO∗20] is a raster dataset of annotated manga pages. Although
it is designed and annotated for manga recognition and understand-
ing tasks, it provides example sketches with manga-specific tex-
tures, screentone — an important entity to manga creation applica-
tions [QWH06, TIA19].

Compared to 2D sketch data, 3D sketch data is even rarer. Luo
et al. [LL21] collect the first fine-grained dataset of 1,497 3D VR
sketches paired with 3D shapes, covering 1,005 chair models from
ShapeNetCore with high shape diversity, contributed by 50 par-
ticipants. Yu et al. [YAB∗22], along with their surfacing method,
curate and release a dataset of 62 3D sketches from several pre-
vious works [GSV∗17,YAS∗21,LCC∗21,SKSK09,BBS08,KB16,
XCS∗14] as well as new sketches created with commercial tools.

Apart from academic datasets, some professional artists share
their artwork under creative commons (CC) licenses online, provid-
ing valuable sources for professional in-the-wild sketches. Blender
Art Gallery [Ble24] is a collection of free Blender projects with
animation frames and drawings. These drawings are in a non-
conventional vector format created with Blender Grease Pencil.
Unlike the universal Scalable Vector Graphics (SVG) format, this
vector format supports varying thickness along a stroke — a stroke
property that is rarely considered by algorithms due to its uncom-
monness [YLL∗22]. David Revoy [Rev24] is an artist promoting
open source. He has published a large number of sketches online
under CC licenses, and his work is frequently used by researchers
[FTR18, YVG20]. For 3D sketches, many Tilt Brush [Goo16] and
Quill [Smo16] users share their work on platforms such as Sketch-
fab [Ske12].

(a) (b) (c)

Figure 42: Even though hatching and shading strokes are ubiq-
uitous in real sketches (a), many sketch processing methods do
not account for them, leading to suboptimal results (b, vectorized
by [NHS∗13]). Manual vectorization (c). Input image by Rui Hao
(CC-BY-NC-4.0). Results from [YVG20].

6. Conclusions and Directions for Future Research

Sketch processing remains an active research area for advancing
our understanding of and assisting visual creation, enabling various
applications ranging from shape retrieval to animation and mod-
elling. By outlining and discussing its core challenges and provid-
ing a summary of the existing literature, we aim to inspire future
research into both practical applications and the fundamental prin-
ciples of sketch processing.

One necessary direction of future work is classification of strokes
into textural, shading strokes, including hatching, occluding con-
tours, and other types. Shading and textural strokes are omnipresent
in many if not most natural sketches, and yet numerous sketch pro-
cessing methods assume the input drawings are free of those kinds
of strokes (Fig. 42). While collecting datasets for such classification
task may be costly, it will benefit numerous downstream frame-
works, including 3D reconstruction.

Another vast direction of potential future work is expanding
the set of benchmarks for sketch processing. Currently, the main
benchmark [YVG20] spans only a subset of tasks, namely vector-
ization, simplification, and cleanup. They also use purely geometri-
cal error metrics, such as Chamfer distance, while perceptual error
metrics might be more relevant for some applications.

One interesting direction is developing a sketch representation
that can support a variable number of strokes, both open and closed,
in a differentiable manner. Typical explicit representations, such as
a set of parametric curves, necessarily require a fixed number of
strokes or complex sequence architectures to train, such as RNN or
Transformers. Both signed and unsigned distance fields combined
with extraction algorithms, such as marching cubes or dual con-
touring, differentiably represent topological changes and thus nei-
ther require nor control the number of strokes, but are best-suited
for closed curves without intersections. For a set of closed curves,
this has been explored [MCR23]; for a variable number of open as
well as closed curves this remains an active area of research. Open
strokes or strokes with intersections can be represented as level set
of non-differentiable functions, but extracting those level sets might

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 25 of 32

be challenging [YLA∗24]. An alternative is to represent stroke out-
line, but then extracting centerline is non-trivial, as discussed in
Sec. 3.3 (Fig. 13).

Reconstructing perceived foreground and perceptually correct
deformations in 3D sketches in general is a new scarcely explored
area. For instance, one of the typical challenges when sketching in
VR is the absence of surfaces occluding some strokes. Without oc-
cluding surfaces, all strokes are visible, making the whole sketch-
ing experience difficult and messy. While one way of occluding
strokes might be a full surface reconstruction, the main challenge
is that this has to be done and updated in real time as an artist adds
new strokes. One could imagine drawing inspiration from point
cloud–based visibility methods [KT15], yet unlike point clouds,
3D sketches typically do not densely sample the intended surface.
There are many other open problems in 3D sketches, for instance,
finding loops in rough 3D sketches, similar to [ZZCJ13a], would
significantly simplify modern 3D surface reconstruction from 3D
sketches.

One general underexplored area is modeling human perception
of sketches, for instance modeling how artists omit or simplify
some strokes, leading to abstraction, or quantifying and undoing
how artists distort proportions and layouts. There are some ap-
proaches for modelling how artists select which lines to draw given
a 3D model [LNHK20] or how they stylize [LFHK21], but these
works do not explore the artistic choices of overdrawing, distor-
tions, and layout. Progress in this area is crucial for improving
the quality of non-photorealistic renders of 3D models in a style
of a sketch and thus narrowing the domain gap between renders
and real sketches. Sketch abstraction in general has also been ex-
plored in some limited scenarios. For instance, there are early ap-
proaches to sketch abstraction that predict which strokes can be
omitted [MYS∗18], but they do not shed light on the perceptual
significance of strokes, and do not generalize to simplifying the
stroke shapes. Alternatively, some works like [VACOS23] convert
an image into a sketch with a given level of abstraction, but do not
connect the strokes with a particular 3D model. Understanding and
undoing distortions in object proportions, as well as scene layouts,
would be crucial for beautification and 3D reconstruction systems.

Many sketch processing tasks face the challenge of limited high-
quality data, as discussed in Sec. 5. Researchers typically approach
this issue by incorporating unlabelled data [SII18a] and utilizing
data synthesis [SII18b,GZH∗19,MKDM22,DZL∗24]. However, as
shown by Zhong et al. [ZQG∗20], systems built entirely on synthet-
ically rendered or novice-created data often fall short of meeting
the practical needs of professional artists. Recently, pretrained large
text-based models like CLIP [RKH∗21] and text-to-image models
have emerged as high-quality priors for visual tasks. This trend mo-
tivates new research in sketch generation and editing using neural
priors, such as CLIPasso [VPB∗22] and DiffSketcher [XWZ∗23].
Leveraging these neural priors for sketch processing tasks, partic-
ularly within professional visual creation contexts, presents an ex-
citing direction for future research.

Acknowledgment

We thank Emilie Yu for her valuable suggestions on the sections
covering 3D sketching, Thor Vestergaard Christiansen and Ab-

hishek Madan for their careful proofreading, and other DGP mem-
bers at the University of Toronto for their support throughout the
project. We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC) under Grant
No.: RGPIN-2019-05097 (“Creating Virtual Shapes via Intuitive
Input”) and RGPIN-2024-04968 (“Modelling and animation via in-
tuitive input”), the NSERC - Fonds de recherche du Québec - Na-
ture et technologies (FRQNT) NOVA Grant No. 314090., and Arts
& Science Postdoctoral Fellowship at the University of Toronto.

References

[AcB21] ANONYMOUS, COMMUNITY D., BRANWEN G.: Dan-
booru2020: A large-scale crowdsourced & tagged anime illustration
dataset. https://gwern.net/Danbooru2020, January 2021.
2024-07-31. URL: https://gwern.net/Danbooru2020. 22, 23

[ADN∗17] ARORA R., DAROLIA I., NAMBOODIRI V. P., SINGH K.,
BOUSSEAU A.: Sketchsoup: Exploratory ideation using design sketches.
Computer Graphics Forum (2017). 10

[Ado] ADOBE INC.: Adobe illustrator. URL: https://adobe.com/
products/illustrator. 11

[AFO∗20] AIZAWA K., FUJIMOTO A., OTSUBO A., OGAWA T., MAT-
SUI Y., TSUBOTA K., IKUTA H.: Building a manga dataset “manga109”
with annotations for multimedia applications. IEEE multimedia 27, 2
(2020), 8–18. 23, 24

[AHKG∗18] ARORA R., HABIB KAZI R., GROSSMAN T., FITZMAU-
RICE G., SINGH K.: Symbiosissketch: Combining 2d & 3d sketching
for designing detailed 3d objects in situ. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (2018), pp. 1–15.
22

[AJA12] ABBASINEJAD F., JOSHI P., AMENTA N.: Surface patches from
unorganized space curves. In Proceedings of the twenty-eighth annual
symposium on Computational geometry (2012), pp. 417–418. 20

[AMW∗23] ARORA R., MACHUCA M. D. B., WACKER P., KEEFE D.,
ISRAEL J. H.: Introduction to 3d sketching. In Interactive Sketch-Based
Interfaces and Modelling for Design. River Publishers, 2023, pp. 151–
177. 2, 3, 15

[AS11] ANDRE A., SAITO S.: Single-view sketch based modeling. In
Proceedings of the Eighth Eurographics Symposium on Sketch-Based In-
terfaces and Modeling (2011), pp. 133–140. 21

[AS21] ARORA R., SINGH K.: Mid-Air Drawing of Curves on 3D Sur-
faces in Virtual Reality, Mar. 2021. arXiv:2009.09029 [cs]. 16

[Bau94] BAUDEL T.: A mark-based interaction paradigm for free-hand
drawing. In Proc. UIST (1994), pp. 185–192. 18

[BB22] BRODT K., BESSMELTSEV M.: Sketch2pose: Estimating a 3d
character pose from a bitmap sketch. ACM Transactions on Graphics
41, 4 (7 2022). 2, 4, 23

[BB24] BRODT K., BESSMELTSEV M.: Skeleton-driven inbetweening
of bitmap character drawings. ACM Transactions on Graphics (TOG)
43, 6 (2024). 9, 10

[BBP09] BELLETTINI G., BEORCHIA V., PAOLINI M.: Completion of
visible contours. SIAM Journal on Imaging Sciences 2, 3 (2009), 777–
799. 10

[BBS08] BAE S.-H., BALAKRISHNAN R., SINGH K.: Ilovesketch: As-
natural-as-possible sketching system for creating 3d curve models. In
Proc. UIST (2008), pp. 151–160. 18, 22, 24

[BBS09] BAE S.-H., BALAKRISHNAN R., SINGH K.: Everybodylovess-
ketch: 3d sketching for a broader audience. In Proceedings of the 22nd
annual ACM symposium on User interface software and technology
(2009), pp. 59–68. 22

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://gwern.net/Danbooru2020
https://gwern.net/Danbooru2020
https://adobe.com/products/illustrator
https://adobe.com/products/illustrator

26 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

[BC20] BHATTACHARJEE S., CHAUDHURI P.: A survey on sketch based
content creation: from the desktop to virtual and augmented reality.
In Computer Graphics Forum (2020), vol. 39, Wiley Online Library,
pp. 757–780. 2, 21

[BCF∗07] BARTOLO A., CAMILLERI K. P., FABRI S. G., BORG J. C.,
FARRUGIA P. J.: Scribbles to vectors: preparation of scribble drawings
for cad interpretation. In Proceedings of the 4th Eurographics workshop
on Sketch-based interfaces and modeling (2007), pp. 123–130. 7, 13

[BCHS20a] BOBENRIETH C., CORDIER F., HABIBI A., SEO H.: De-
scriptive: Interactive 3d shape modeling from a single descriptive sketch.
Computer-Aided Design 128 (2020), 102904. 10

[BCHS20b] BOBENRIETH C., CORDIER F., HABIBI A., SEO H.: De-
scriptive: Interactive 3d shape modeling from a single descriptive sketch.
Computer-Aided Design 128 (2020), 102904. 21

[BCV∗15] BESSMELTSEV M., CHANG W., VINING N., SHEFFER A.,
SINGH K.: Modeling character canvases from cartoon drawings. ACM
Transactions on Graphics (TOG) 34, 5 (2015), 1–16. 21

[BCY∗21] BHUNIA A. K., CHOWDHURY P. N., YANG Y.,
HOSPEDALES T. M., XIANG T., SONG Y.-Z.: Vectorization and
rasterization: Self-supervised learning for sketch and handwriting. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2021), pp. 5672–5681. 12

[BF12] BAO B., FU H.: Vectorizing line drawings with near-constant line
width. In 2012 19th IEEE International Conference on Image Processing
(Sept. 2012), pp. 805–808. 8, 9, 11

[BF23] BAO B., FU H.: Line drawing vectorization via coarse-to-fine
curve network optimization. Computer Graphics Forum 42, 6 (2023),
e14787. 8, 12

[BHB19] BAINBRIDGE W. A., HALL E. H., BAKER C. I.: Drawings
of real-world scenes during free recall reveal detailed object and spatial
information in memory. Nature communications 10, 1 (2019), 5. 23, 24

[Ble24] BLENDER: Blender Cloud, 2024. URL: https://cloud.
blender.org/p/gallery/5b642e25bf419c1042056fc6.
24

[BLP10] BARAN I., LEHTINEN J., POPOVIĆ J.: Sketching Clothoid
Splines Using Shortest Paths. Comput. Graph. Forum 29, 2 (2010), 655–
664. 14, 15

[BPEB21] BAINBRIDGE W. A., POUNDER Z., EARDLEY A. F., BAKER
C. I.: Quantifying aphantasia through drawing: Those without visual im-
agery show deficits in object but not spatial memory. Cortex 135 (2021),
159–172. 23, 24

[BS19] BESSMELTSEV M., SOLOMON J.: Vectorization of Line Draw-
ings via Polyvector Fields. ACM Trans. Graph. 38, 1 (Jan. 2019), 9:1–
9:12. 8, 9, 11, 12

[BSM∗13] BERGER I., SHAMIR A., MAHLER M., CARTER E., HOD-
GINS J.: Style and abstraction in portrait sketching. ACM Transactions
on Graphics (TOG) 32, 4 (2013), 1–12. 5, 23

[BTS05] BARLA P., THOLLOT J., SILLION F.: Geometric clustering for
line drawing simplification. In Proceedings of the Eurographics Sympo-
sium on Rendering (2005). 7, 18

[BVS16] BESSMELTSEV M., VINING N., SHEFFER A.: Gesture3d: pos-
ing 3d characters via gesture drawings. ACM Trans. Graph. 35, 6 (Dec.
2016). 4

[BWSS12] BESSMELTSEV M., WANG C., SHEFFER A., SINGH K.:
Design-driven quadrangulation of closed 3d curves. ACM Trans. Graph.
31, 6 (2012), 178–1. 20

[CDQM18] CHEN J., DU M., QIN X., MIAO Y.: An improved topol-
ogy extraction approach for vectorization of sketchy line drawings. Vis
Comput 34, 12 (Dec. 2018), 1633–1644. 11, 12

[CFG∗15] CHANG A. X., FUNKHOUSER T., GUIBAS L., HANRAHAN
P., HUANG Q., LI Z., SAVARESE S., SAVVA M., SONG S., SU H.,
XIAO J., YI L., YU F.: ShapeNet: An Information-Rich 3D Model
Repository. Tech. Rep. arXiv:1512.03012 [cs.GR], Stanford University

— Princeton University — Toyota Technological Institute at Chicago,
2015. 23

[CGBG13] CHEN J., GUENNEBAUD G., BARLA P., GRANIER X.: Non-
oriented mls gradient fields. Computer Graphics Forum 32, 8 (2013),
98–109. 7, 8, 17

[CGL∗08] COLE F., GOLOVINSKIY A., LIMPAECHER A., BARROS
H. S., FINKELSTEIN A., FUNKHOUSER T., RUSINKIEWICZ S.: Where
do people draw lines? ACM Trans. Graph. 27, 3 (Aug. 2008).
URL: https://doi.org/10.1145/1360612.1360687, doi:
10.1145/1360612.1360687. 4, 5, 10, 22, 23

[CGL12] CHEEMA S., GULWANI S., LAVIOLA J.: QuickDraw: Im-
proving drawing experience for geometric diagrams. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (May
2012), CHI ’12, Association for Computing Machinery, pp. 1037–1064.
15

[CKX∗08] CHEN X., KANG S. B., XU Y.-Q., DORSEY J., SHUM H.-
Y.: Sketching reality: Realistic interpretation of architectural designs.
ACM Transactions on Graphics (TOG) 27, 2 (2008), 1–15. 7, 20

[CLMP15] CHEN J., LEI Q., MIAO Y., PENG Q.: Vectorization of line
drawing image based on junction analysis. Sci. China Inf. Sci. 58, 7 (July
2015), 1–14. 7, 9, 11

[Clo71] CLOWES M. B.: On seeing things. Artificial intelligence 2, 1
(1971), 79–116. 20

[CLT08] CAO L., LIU J., TANG X.: What the back of the object looks
like: 3d reconstruction from line drawings without hidden lines. IEEE
Transactions on Pattern Analysis and Machine Intelligence 30, 3 (2008),
507–517. 10, 20

[CMV17] CARVALHO L., MARROQUIM R., VITAL BRAZIL E.: Dilight:
Digital light table – inbetweening for 2d animations using guidelines.
Computers & Graphics 65 (2017), 31–44. 10

[CMZ∗99] COHEN J. M., MARKOSIAN L., ZELEZNIK R. C., HUGHES
J. F., BARZEL R.: An interface for sketching 3d curves. In Proceedings
of the 1999 symposium on Interactive 3D graphics (1999), pp. 17–21. 21

[Coo08] COOPER M.: A rich discrete labeling scheme for line drawings
of curved objects. IEEE Transactions on Pattern Analysis and Machine
Intelligence 30, 4 (2008), 741–745. 20

[CPVC19] COMPANY P., PLUMED R., VARLEY P. A. C., CAMBA J. D.:
Algorithmic Perception of Vertices in Sketched Drawings of Polyhedral
Shapes. ACM Trans. Appl. Percept. 16, 3 (Aug. 2019), 18:1–18:19. 19

[CS07] CORDIER F., SEO H.: Free-form sketching of self-occluding ob-
jects. IEEE Computer Graphics and Applications 27, 1 (2007), 50–59.
doi:10.1109/MCG.2007.8. 10

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.: Variational
shape approximation. 905–914. 9

[CSB∗22] CHOWDHURY P. N., SAIN A., BHUNIA A. K., XIANG T.,
GRYADITSKAYA Y., SONG Y.-Z.: Fs-coco: Towards understanding of
freehand sketches of common objects in context. In European conference
on computer vision (2022), Springer, pp. 253–270. 23, 24

[CSMS13] CORDIER F., SEO H., MELKEMI M., SAPIDIS N. S.: Infer-
ring mirror symmetric 3D shapes from sketches. CAD Computer Aided
Design 45, 2 (2013), 301–311. 21

[CSSaJ05] CHERLIN J. J., SAMAVATI F., SOUSA M. C., A. JORGE J.:
Sketch-based modeling with few strokes. Proceedings of the 21st spring
conference on Computer graphics - SCCG ’05 1, 212 (2005), 137. 4

[CTFZ22] CHEN Z., TAGLIASACCHI A., FUNKHOUSER T., ZHANG H.:
Neural dual contouring. ACM Transactions on Graphics (TOG) 41, 4
(2022), 1–13. 13

[DACJH13] DE ARAÚJO B. R., CASIEZ G., JORGE J. A., HACHET M.:
Mockup Builder: 3D modeling on and above the surface. Computers &
Graphics 37, 3 (May 2013), 165–178. 15

[dB94] DI BAJA G. S.: Well-shaped, stable, and reversible skeletons from
the (3, 4)-distance transform. Journal of visual communication and im-
age representation 5, 1 (1994), 107–115. 8

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://cloud.blender.org/p/gallery/5b642e25bf419c1042056fc6
https://cloud.blender.org/p/gallery/5b642e25bf419c1042056fc6
https://doi.org/10.1145/1360612.1360687
https://doi.org/10.1145/1360612.1360687
https://doi.org/10.1145/1360612.1360687
https://doi.org/10.1109/MCG.2007.8

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 27 of 32

[DCLB19] DELANOY J., COEURJOLLY D., LACHAUD J.-O.,
BOUSSEAU A.: Combining voxel and normal predictions for multi-view
3d sketching. Computers & Graphics 82 (2019), 65–72. 10

[DCP17] DONATI L., CESANO S., PRATI A.: An Accurate System for
Fashion Hand-Drawn Sketches Vectorization. In 2017 IEEE Interna-
tional Conference on Computer Vision Workshops (ICCVW) (Oct. 2017),
pp. 2280–2286. 9, 11, 12

[DCP19] DONATI L., CESANO S., PRATI A.: A complete hand-drawn
sketch vectorization framework. Multimed Tools Appl 78, 14 (July 2019),
19083–19113. 9, 11, 12

[DFRS03] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S., SAN-
TELLA A.: Suggestive contours for conveying shape. ACM Trans.
Graph. 22, 3 (July 2003), 848–855. URL: https://doi.org/10.
1145/882262.882354, doi:10.1145/882262.882354. 5

[DGK∗20] DREY T., GUGENHEIMER J., KARLBAUER J., MILO M.,
RUKZIO E.: Vrsketchin: Exploring the design space of pen and tablet
interaction for 3d sketching in virtual reality. In Proceedings of the 2020
CHI conference on human factors in computing systems (2020), pp. 1–
14. 22

[DL15] DELAYE A., LEE K.: A flexible framework for online document
segmentation by pairwise stroke distance learning. Pattern Recognition
48, 4 (2015), 1197–1210. 9

[DLKS18] DVOROZNAK M., LI W., KIM V. G., SYKORA D.: Toon-
Synth: Example-based synthesis of hand-colored cartoon animations.
ACM Transactions on Graphics 37, 4 (2018). 10

[DPS15] DE PAOLI C., SINGH K.: Secondskin: sketch-based construc-
tion of layered 3d models. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1–10. 22

[DRvdP14] DALSTEIN B., RONFARD R., VAN DE PANNE M.: Vector
graphics complexes. ACM Trans. Graph. 33, 4 (July 2014). 3

[DRvdP15] DALSTEIN B., RONFARD R., VAN DE PANNE M.: Vector
graphics animation with time-varying topology. ACM Trans. Graph. 34,
4 (July 2015). 3

[DSC∗20] DVOROZNÁK M., SỲKORA D., CURTIS C., CURLESS B.,
SORKINE-HORNUNG O., SALESIN D.: Monster mash: a single-view
approach to casual 3d modeling and animation. ACM Transactions on
Graphics (ToG) 39, 6 (2020), 1–12. 1, 2, 9, 10

[DVPSH14] DIAMANTI O., VAXMAN A., PANOZZO D., SORKINE-
HORNUNG O.: Designing n-polyvector fields with complex polynomi-
als. In Computer Graphics Forum (2014), vol. 33, Wiley Online Library,
pp. 1–11. 7

[DXS∗07] DORSEY J., XU S., SMEDRESMAN G., RUSHMEIER H.,
MCMILLAN L.: The mental canvas: A tool for conceptual architectural
design and analysis. In 15th Pacific Conference on Computer Graphics
and Applications (PG’07) (2007), IEEE, pp. 201–210. 22

[DYDZ22] DENG B., YAO Y., DYKE R. M., ZHANG J.: A survey of
non-rigid 3d registration. Computer Graphics Forum 41, 2 (2022), 559–
589. 10

[DYH∗21] DAS A., YANG Y., HOSPEDALES T., XIANG T., SONG Y.-
Z.: Cloud2curve: Generation and vectorization of parametric sketches,
2021. URL: https://arxiv.org/abs/2103.15536, arXiv:
2103.15536. 8, 12

[DZL∗24] DAI Y., ZHOU S., LI Q., LI C., LOY C. C.: Learning inclu-
sion matching for animation paint bucket colorization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2024), pp. 25544–25553. 19, 25

[EBC∗15] ENTEM E., BARTHE L., CANI M.-P., CORDIER F., VAN DE
PANNE M.: Modeling 3d animals from a side-view sketch. Computers
& Graphics 46 (2015), 221–230. Shape Modeling International 2014.
10

[EHA12] EITZ M., HAYS J., ALEXA M.: How do humans sketch ob-
jects? ACM Transactions on graphics (TOG) 31, 4 (2012), 1–10. 23,
24

[EPB∗19] ENTEM E., PARAKKAT A. D., BARTHE L., MUTHUGANA-
PATHY R., CANI M.-P.: Automatic structuring of organic shapes
from a single drawing. Comput. Graph. 81, C (June 2019),
125–139. URL: https://doi.org/10.1016/j.cag.2019.
04.006, doi:10.1016/j.cag.2019.04.006. 10

[ERB∗12] EITZ M., RICHTER R., BOUBEKEUR T., HILDEBRAND K.,
ALEXA M.: Sketch-based shape retrieval. ACM Transactions on Graph-
ics 31, 4 (July 2012), 1–10. 2

[ES08] EISSEN K., STEUR R.: Sketching: Drawing Techniques for Prod-
uct Designers. Bis Publishers, 2008. 5

[EVA∗20] EGIAZARIAN V., VOYNOV O., ARTEMOV A., VOLKHON-
SKIY D., SAFIN A., TAKTASHEVA M., ZORIN D., BURNAEV E.: Deep
vectorization of technical drawings. In European Conference on Com-
puter Vision (2020), Springer, pp. 582–598. 12

[FASS16] FISER J., ASENTE P., SCHILLER S., SỲKORA D.: Advanced
drawing beautification with ShipShape. Computers & Graphics 56
(2016), 46–58. 2, 15

[FLB16] FAVREAU J.-D., LAFARGE F., BOUSSEAU A.: Fidelity vs. sim-
plicity: a global approach to line drawing vectorization. ACM Transac-
tions on Graphics (TOG) 35, 4 (2016), 1–10. 8, 11, 13, 14

[Fri08] FRISKEN S. F.: Efficient curve fitting. Journal of Graphics Tools
13, 2 (2008), 37–54. 14

[FTR18] FOUREY S., TSCHUMPERLÉ D., REVOY D.: A fast and effi-
cient semi-guided algorithm for flat coloring line-arts. In International
Symposium on Vision, Modeling and Visualization (2018). 18, 19, 24

[FZLM11] FU H., ZHOU S., LIU L., MITRA N. J.: Animated construc-
tion of line drawings. In Proceedings of the 2011 SIGGRAPH Asia Con-
ference (2011), pp. 1–10. 6

[GCR13] GUAY M., CANI M.-P., RONFARD R.: The Line of Action: An
Intuitive Interface for Expressive Character Posing. ACM SIGGRAPH
Asia 2013 6, 6 (2013), 8. 2

[GHB∗23] GUŢAN O., HEGDE S., BERUMEN E. J., BESSMELTSEV M.,
CHIEN E.: Singularity-free frame fields for line drawing vectorization.
Computer Graphics Forum 42, 5 (2023). 8, 11, 12

[GHL∗20] GRYADITSKAYA Y., HAHNLEIN F., LIU C., SHEFFER A.,
BOUSSEAU A.: Lifting freehand concept sketches into 3d. ACM Trans-
actions on Graphics (Proc. SIGGRAPH Asia) 39 (12 2020). 5, 7, 21,
22

[GJ12] GRIMM C., JOSHI P.: Just drawit: A 3d sketching system. In
Proc. SBIM (2012), pp. 121–130. 18

[GKSS05] GENNARI L., KARA L. B., STAHOVICH T. F., SHIMADA K.:
Combining geometry and domain knowledge to interpret hand-drawn di-
agrams. Computers & Graphics 29, 4 (2005), 547–562. 9

[Goo16] GOOGLE LLC: Tilt brush, 2016. 24

[GRYF21] GUILLARD B., REMELLI E., YVERNAY P., FUA P.:
Sketch2mesh: Reconstructing and editing 3d shapes from sketches. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision (2021), pp. 13023–13032. 2

[GSH∗19] GRYADITSKAYA Y., SYPESTEYN M., HOFTIJZER J. W.,
PONT S. C., DURAND F., BOUSSEAU A.: Opensketch: a richly-
annotated dataset of product design sketches. ACM Trans. Graph. 38,
6 (2019), 232–1. 5, 23

[GSV∗17] GORI G., SHEFFER A., VINING N., ROSALES E., CARR N.,
JU T.: Flowrep: Descriptive curve networks for free-form design shapes.
ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–14. 24

[Gup22] GUPTILL A. L.: Sketching and Rendering in Pencil. New York,
The Pencil Points Press, Inc., 1922. 6

[GZH∗19] GUO Y., ZHANG Z., HAN C., HU W., LI C., WONG T.-T.:
Deep Line Drawing Vectorization via Line Subdivision and Topology
Reconstruction. Computer Graphics Forum 38, 7 (Oct. 2019), 81–90.
12, 25

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1145/882262.882354
https://doi.org/10.1145/882262.882354
https://doi.org/10.1145/882262.882354
https://arxiv.org/abs/2103.15536
http://arxiv.org/abs/2103.15536
http://arxiv.org/abs/2103.15536
https://doi.org/10.1016/j.cag.2019.04.006
https://doi.org/10.1016/j.cag.2019.04.006
https://doi.org/10.1016/j.cag.2019.04.006

28 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

[HE18] HA D., ECK D.: A neural representation of sketch drawings. In
ICLR 2018 (2018). 2018. 22, 23, 24

[Her20] HERTZMANN A.: Why do line drawings work? a realism hy-
pothesis. Perception 49, 4 (2020), 439–451. PMID: 32126897. 4

[Her21] HERTZMANN A.: The role of edges in line drawing perception.
Perception 50, 3 (2021), 266–275. PMID: 33706622. 4

[Her24] HERTZMANN A.: Toward a theory of perspective perception in
pictures. Journal of Vision 24, 4 (2024), 23–23. 4

[HF99] HESS R., FIELD D.: Integration of contours: New insights.
Trends in Cognitive Sciences 3, 12 (Dec. 1999), 480–486. 6

[HFL14] HUANG Z., FU H., LAU R. W. H.: Data-driven segmentation
and labeling of freehand sketches. ACM Trans. Graph. 33, 6 (Nov. 2014).
9

[HGSB22] HÄHNLEIN F., GRYADITSKAYA Y., SHEFFER A.,
BOUSSEAU A.: Symmetry-driven 3d reconstruction from concept
sketches. In ACM SIGGRAPH 2022 Conference Proceedings (2022),
pp. 1–8. 21, 22

[HLW∗16] HENNESSEY J. W., LIU H., WINNEMÖLLER H.,
DONTCHEVA M., MITRA N. J.: How2sketch: generating easy-to-follow
tutorials for sketching 3d objects. arXiv preprint arXiv:1607.07980
(2016). 6

[HS81] HORN B. K., SCHUNCK B. G.: Determining optical flow. Arti-
ficial Intelligence 17, 1 (1981), 185–203. 10

[HS88] HARRIS C., STEPHENS M.: A combined corner and edge de-
tector. In Proc. of Fourth Alvey Vision Conference (1988), pp. 147–151.
7

[HT06] HILAIRE X., TOMBRE K.: Robust and accurate vectorization
of line drawings. IEEE Transactions on Pattern Analysis and Machine
Intelligence 28, 6 (2006), 890–904. 8, 11

[Huf71] HUFFMAN D. A.: Impossible objects as nonsense sentences.
Machine intelligence 6 (1971), 295–323. 20

[HZH∗22] HUANG Z., ZHANG T., HENG W., SHI B., ZHOU S.: Real-
time intermediate flow estimation for video frame interpolation. In
Proceedings of the European Conference on Computer Vision (ECCV)
(2022). 10

[IMKT07] IGARASHI T., MATSUOKA S., KAWACHIYA S., TANAKA H.:
Interactive beautification: A technique for rapid geometric design. SIG-
GRAPH ’07, Association for Computing Machinery, p. 18–es. 15

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: A sketch-
ing interface for 3D freeform design. Proceedings of the 26th annual
conference on Computer graphics and interactive techniques - SIG-
GRAPH ’99 (1999), 409–416. 9

[JBPS11] JACOBSON A., BARAN I., POPOVIC J., SORKINE O.:
Bounded biharmonic weights for real-time deformation. ACM Trans.
Graph (2011). 2, 9

[JDA07] JUDD T., DURAND F., ADELSON E. H.: Apparent ridges for
line drawing. ACM Trans. Graph. 26, 3 (2007), 19. 5

[JK16] JACKSON B., KEEFE D. F.: Lift-off: Using reference imagery
and freehand sketching to create 3d models in vr. IEEE transactions on
visualization and computer graphics 22, 4 (2016), 1442–1451. 22

[JSL21] JIANG J., SEAH H. S., LIEW H. Z.: Handling gaps for vector
graphics coloring. Vis Comput 37, 9 (Sept. 2021), 2473–2484. 19

[JZF∗21] JIANG Y., ZHANG C., FU H., CANNAVÒ A., LAMBERTI F.,
LAU H. Y., WANG W.: Handpainter-3d sketching in vr with hand-based
physical proxy. In Proceedings of the 2021 CHI conference on human
factors in computing systems (2021), pp. 1–13. 22

[KALB18] KIM Y., AN S.-G., LEE J. H., BAE S.-H.: Agile 3d sketch-
ing with air scaffolding. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (2018), pp. 1–12. 21, 22

[Kan79] KANIZSA G.: Organization in Vision: Essays on Gestalt Per-
ception. Praeger Publishers, New York, 1979. 10

[KB16] KIM Y., BAE S.-H.: Sketchingwithhands: 3d sketching hand-
held products with first-person hand posture. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology (2016),
pp. 797–808. 21, 22, 24

[KH06] KARPENKO O. A., HUGHES J. F.: Smoothsketch: 3d free-
form shapes from complex sketches. ACM Trans. Graph. 25, 3 (July
2006), 589–598. URL: https://doi.org/10.1145/1141911.
1141928, doi:10.1145/1141911.1141928. 6, 10

[KHW∗22] KIM B., HUANG X., WUELFROTH L., TANG J., CORDON-
NIER G., GROSS M., SOLENTHALER B.: Deep reconstruction of 3d
smoke densities from artist sketches. In Computer Graphics Forum
(2022), vol. 41, Wiley Online Library, pp. 97–110. 5

[KLL∗23] KIM H., LEE C., LEE J., KIM D., LEE K., OH M., KIM D.:
Flatgan: A holistic approach for robust flat-coloring in high-definition
with understanding line discontinuity. In Proceedings of the 31st ACM
International Conference on Multimedia (2023), pp. 8242–8250. 19

[Kof55] KOFFKA K.: Principles of Gestalt Psychology. Routledge \& K.
Paul, 1955. 6

[Kri24] KRITA FOUNDATION: Krita colorize mask, 2024. URL:
https://docs.krita.org/en/reference_manual/
tools/colorize_mask.html. 19

[KS07] KARA L. B., SHIMADA K.: Sketch-based 3d-shape creation for
industrial styling design. IEEE Computer Graphics and Applications 27,
1 (2007), 60–71. 8, 22

[KS09] KYRATZI S., SAPIDIS N.: Extracting a polyhedron from a single-
view sketch: Topological construction of a wireframe sketch with mini-
mal hidden elements. Computers & Graphics 33, 3 (2009), 270–279. 10,
20, 21

[KS24] KÜTÜK A., SEZGIN T. M.: Class-agnostic visio-temporal scene
sketch semantic segmentation, 2024. URL: https://arxiv.org/
abs/2410.00266, arXiv:2410.00266. 23, 24

[KT15] KATZ S., TAL A.: On the visibility of point clouds. In 2015 IEEE
International Conference on Computer Vision (ICCV) (2015), pp. 1350–
1358. doi:10.1109/ICCV.2015.159. 25

[Kur14] KURLIN V.: Auto-completion of contours in sketches, maps, and
sparse 2d images based on topological persistence. In 2014 16th Inter-
national Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (2014), pp. 594–601. 9

[KVDKT97] KOENDERINK J. J., VAN DOORN A. J., KAPPERS A. M.,
TODD J. T.: The visual contour in depth. Perception & Psychophysics
59, 6 (1997), 828–838. 10

[KWÖG18] KIM B., WANG O., ÖZTIRELI A. C., GROSS M.: Seman-
tic segmentation for line drawing vectorization using neural networks.
In Computer Graphics Forum (2018), vol. 37, Wiley Online Library,
pp. 329–338. 12

[KYC∗17] KRS V., YUMER E., CARR N., BENES B., MECH R.:
Skippy: Single view 3d curve interactive modeling. ACM Transactions
on Graphics (TOG) 36, 4 (2017), 1–12. 22

[KZL07] KEEFE D., ZELEZNIK R., LAIDLAW D.: Drawing on Air: In-
put Techniques for Controlled 3D Line Illustration. IEEE Transactions
on Visualization and Computer Graphics 13, 5 (Sept. 2007), 1067–1081.
Conference Name: IEEE Transactions on Visualization and Computer
Graphics. 15

[LABS23] LIU C., AOKI T., BESSMELTSEV M., SHEFFER A.: Strip-
maker: Perception-driven learned vector sketch consolidation. ACM
Trans. Graph. 42, 4 (jul 2023). 3, 6, 7, 17, 18

[Laz24] LAZYBRUSH TEAM: Lazybrush tvpaint plugin, 2024. URL:
http://lazy-brush.com/. 19

[LB90] LAMB D., BANDOPADHAY A.: Interpreting a 3d object from a
rough 2d line drawing. In Proceedings of the First IEEE Conference on
Visualization: Visualization90 (1990), IEEE, pp. 59–66. 7

[LCC∗21] LIU L., CHEN N., CEYLAN D., THEOBALT C., WANG W.,
MITRA N. J.: Curvefusion: Reconstructing thin structures from rgbd
sequences. arXiv preprint arXiv:2107.05284 (2021). 24

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1145/1141911.1141928
https://doi.org/10.1145/1141911.1141928
https://doi.org/10.1145/1141911.1141928
https://docs.krita.org/en/reference_manual/tools/colorize_mask.html
https://docs.krita.org/en/reference_manual/tools/colorize_mask.html
https://arxiv.org/abs/2410.00266
https://arxiv.org/abs/2410.00266
http://arxiv.org/abs/2410.00266
https://doi.org/10.1109/ICCV.2015.159
http://lazy-brush.com/

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 29 of 32

[LCY∗11] LIU D., CHEN Q., YU J., GU H., TAO D., SEAH H. S.:
Stroke correspondence construction using manifold learning. In Com-
puter Graphics Forum (2011), vol. 30, Wiley Online Library, pp. 2194–
2207. 10

[LFHK21] LIU D., FISHER M., HERTZMANN A., KALOGERAKIS E.:
Neural strokes: Stylized line drawing of 3d shapes. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (2021),
pp. 14204–14213. 25

[LFT14] LIU J., FU H., TAI C.-L.: Dynamic sketching: Simulating the
process of observational drawing. In Proceedings of the Workshop on
Computational Aesthetics (2014), pp. 15–22. 6

[LFT18] LI L., FU H., TAI C.-L.: Fast sketch segmentation and label-
ing with deep learning. IEEE computer graphics and applications 39, 2
(2018), 38–51. 9

[LL21] LING LUO YULIA GRYADITSKAYA Y. Y. T. X. Y.-Z. S.: Fine-
Grained VR Sketching: Dataset and Insights. In Proceedings of Interna-
tional Conference on 3D Vision (3DV) (2021). 23, 24

[LLLW22] LIU H., LI C., LIU X., WONG T.-T.: End-to-end line draw-
ing vectorization. In Proceedings of Thirty-Sixth AAAI Conference on
Artificial Intelligence (AAAI2022) (Feburary 2022), vol. 36, pp. 4559–
4566. 8, 12

[LLMRK20] LI T.-M., LUKAC M., MICHAEL G., RAGAN-KELLEY
J.: Differentiable vector graphics rasterization for editing and learn-
ing. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020), 193:1–
193:15. 3

[Llo82] LLOYD S.: Least squares quantization in pcm. IEEE Transac-
tions on Information Theory 28, 2 (1982), 129–137. 9

[LLZ∗17] LI Y., LUO X., ZHENG Y., XU P., FU H.: Sweepcanvas:
Sketch-based 3d prototyping on an rgb-d image. In Proceedings of the
30th Annual ACM Symposium on User Interface Software and Technol-
ogy (2017), pp. 387–399. 22

[LNHK20] LIU D., NABAIL M., HERTZMANN A., KALOGERAKIS E.:
Neural contours: Learning to draw lines from 3d shapes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (2020), pp. 5428–5436. 25

[LPS∗19] LI K., PANG K., SONG Y.-Z., XIANG T., HOSPEDALES
T. M., ZHANG H.: Toward deep universal sketch perceptual grouper.
IEEE Transactions on Image Processing 28, 7 (2019), 3219–3231. 9

[LRS18] LIU C., ROSALES E., SHEFFER A.: Strokeaggregator: Consol-
idating raw sketches into artist-intended curve drawings. ACM Trans-
actions on Graphics (TOG) 37, 4 (2018), 1–15. 1, 3, 5, 7, 8, 16, 17,
18

[LS96] LIPSON H., SHPITALNI M.: Optimization-based reconstruction
of a 3d object from a single freehand line drawing. Computer-Aided
Design 8, 28 (1996), 651–663. 21

[LWH15] LIU X., WONG T.-T., HENG P.-A.: Closure-aware sketch sim-
plification. ACM Trans. Graph. 34, 6 (2015), 168. 9, 18

[LYFD12] LU J., YU F., FINKELSTEIN A., DIVERDI S.: Helping-
Hand: Example-based stroke stylization. ACM Transactions on Graphics
(TOG) 31, 4 (2012), 1–10. 14

[MAS∗18] MACHUCA M. D. B., ASENTE P., STUERZLINGER W., LU
J., KIM B.: Multiplanes: Assisted Freehand VR Sketching. In Pro-
ceedings of the 2018 ACM Symposium on Spatial User Interaction (New
York, NY, USA, Oct. 2018), SUI ’18, Association for Computing Ma-
chinery, pp. 36–47. 15

[MCR23] MEHTA I., CHANDRAKER M., RAMAMOORTHI R.: A the-
ory of topological derivatives for inverse rendering of geometry. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision
(2023), pp. 419–429. 24

[MFXM21] MIYAUCHI R., FUKUSATO T., XIE H., MIYATA K.: Stroke
correspondence by labeling closed areas. In 2021 Nicograph Interna-
tional (NicoInt) (2021), pp. 34–41. 10

[MGW24] MO H., GAO C., WANG R.: Joint stroke tracing and cor-
respondence for 2d animation. ACM Transactions on Graphics 43, 3
(2024), 1–17. 11, 13, 15, 19

[MKDM22] MANDA B., KENDRE P. P., DEY S., MUTHUGANAPATHY
R.: Sketchcleannet—a deep learning approach to the enhancement and
correction of query sketches for a 3d cad model retrieval system. Com-
puters & Graphics 107 (2022), 73–83. 17, 25

[MNB23] MYRONOVA M., NEVEU W., BESSMELTSEV M.: Differential
operators on sketches via alpha contours. ACM Trans. Graph. 42, 4 (jul
2023). 1, 6, 9

[MS11] MCCRAE J., SINGH K.: Neatening sketched strokes using piece-
wise french curves. In Proceedings of the Eighth Eurographics Sympo-
sium on Sketch-Based Interfaces and Modeling (2011), pp. 141–148. 14

[MSK02] MITANI J., SUZUKI H., KIMURA F.: 3d sketch: sketch-based
model reconstruction and rendering. In From Geometric Modeling to
Shape Modeling: IFIP TC5 WG5. 2 Seventh Workshop on Geometric
Modeling: Fundamentals and Applications October 2–4, 2000, Parma,
Italy (2002), Springer, pp. 85–98. 21

[MSR09] MURUGAPPAN S., SELLAMANI S., RAMANI K.: Towards
beautification of freehand sketches using suggestions. In Proceedings of
the 6th Eurographics Symposium on Sketch-Based Interfaces and Mod-
eling (Aug. 2009), SBIM ’09, Association for Computing Machinery,
pp. 69–76. 15

[MSSG∗21] MO H., SIMO-SERRA E., GAO C., ZOU C., WANG R.:
General virtual sketching framework for vector line art. ACM Trans.
Graph. 40, 4 (jul 2021). 8, 12, 13

[Mum94] MUMFORD D.: Elastica and computer vision. In Algebraic
Geometry and its Applications: Collections of Papers from Shreeram S.
Abhyankar’s 60th Birthday Conference (1994), Springer, pp. 491–506.
10

[MYS∗18] MUHAMMAD U. R., YANG Y., SONG Y.-Z., XIANG T.,
HOSPEDALES T. M.: Learning deep sketch abstraction. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(2018), pp. 8014–8023. 25

[NHS∗13] NORIS G., HORNUNG A., SUMNER R. W., SIMMONS M.,
GROSS M.: Topology-driven vectorization of clean line drawings. ACM
Trans. Graph. 32, 1 (Feb. 2013), 4:1–4:11. 1, 5, 6, 7, 8, 9, 11, 12, 24

[NM90] NITZBERG M., MUMFORD D. B.: The 2.1-d sketch. IEEE
Computer Society Press. 3

[NSS∗12] NORIS G., SỲKORA D., SHAMIR A., COROS S., WHITED
B., SIMMONS M., HORNUNG A., GROSS M., SUMNER R.: Smart
scribbles for sketch segmentation. In Computer Graphics Forum (2012),
vol. 31, pp. 2516–2527. 9, 18

[OBS04] OHTAKE Y., BELYAEV A., SEIDEL H.-P.: Ridge-valley lines
on meshes via implicit surface fitting. In ACM SIGGRAPH 2004 Papers.
2004, pp. 609–612. 5

[OCR∗19] OLIVIER P., CHABRIER R., ROHMER D., DE THOISY E.,
CANI M.-P.: Nested explorative maps: A new 3d canvas for conceptual
design in architecture. Computers & Graphics 82 (2019), 203–213. 22

[OK11] ORBAY G., KARA L. B.: Beautification of design sketches us-
ing trainable stroke clustering and curve fitting. IEEE Transactions on
Visualization and Computer Graphics 17 (2011), 694–708. 7, 8, 18

[OK12] ORBAY G., KARA L. B.: Sketch-based surface design using
malleable curve networks. Computers & Graphics 36, 8 (2012), 916–
929. 20

[OPP∗21] OHRHALLINGER S., PEETHAMBARAN J., PARAKKAT A. D.,
DEY T. K., MUTHUGANAPATHY R.: 2d points curve reconstruction
survey and benchmark. In Computer Graphics Forum (2021), vol. 40,
Wiley Online Library, pp. 611–632. 2

[PBDSH13] PANOZZO D., BARAN I., DIAMANTI O., SORKINE-
HORNUNG O.: Weighted averages on surfaces. ACM Transactions on
Graphics (TOG) 32, 4 (2013), 1–12. 16

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

30 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

[PBG∗15] PERTENEDER F., BRESLER M., GROSSAUER E.-M., LEONG
J., HALLER M.: cluster: Smart clustering of free-hand sketches on large
interactive surfaces. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology (New York, NY, USA, 2015),
UIST ’15, Association for Computing Machinery, p. 37–46. 9

[PBX∗19] PENG X., BAI Q., XIA X., HUANG Z., SAENKO K., WANG
B.: Moment matching for multi-source domain adaptation. In Pro-
ceedings of the IEEE/CVF international conference on computer vision
(2019), pp. 1406–1415. 23, 24

[PCS21] PARAKKAT A. D., CANI M.-P. R., SINGH K.: Color by num-
bers: Interactive structuring and vectorization of sketch imagery. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing
Systems (New York, NY, USA, 2021), CHI ’21, Association for Comput-
ing Machinery. 9, 13, 20

[PH08] PAULSON B., HAMMOND T.: PaleoSketch: Accurate primitive
sketch recognition and beautification. In Proceedings of the 13th Inter-
national Conference on Intelligent User Interfaces (Jan. 2008), IUI ’08,
Association for Computing Machinery, pp. 1–10. 14

[PLS∗15] PAN H., LIU Y., SHEFFER A., VINING N., LI C.-J., WANG
W.: Flow aligned surfacing of curve networks. ACM Transactions on
Graphics 34, 4 (2015), 127:1–127:10. 10

[PMC22] PARAKKAT A. D., MEMARI P., CANI M.-P.: Delaunay paint-
ing: Perceptual image colouring from raster contours with gaps. In Com-
puter Graphics Forum (2022), vol. 41, Wiley Online Library, pp. 166–
181. 20

[PMKB23] PUHACHOV I., MARTENS C., KRY P., BESSMELTSEV M.:
Reconstruction of machine-made shapes from bitmap sketches. ACM
Transactions on Graphics (Proceedings of SIGGRAPH Asia) 42, 6 (Dec.
2023). 2, 3, 6

[PNCB21] PUHACHOV I., NEVEU W., CHIEN E., BESSMELTSEV M.:
Keypoint-driven line drawing vectorization via polyvector flow. ACM
Trans. on Graph. (Proc. of SIGGRAPH Asia) 40, 6 (12 2021). 2, 7, 8, 9,
11, 12, 13

[PPM18] PARAKKAT A. D., PUNDARIKAKSHA U. B., MUTHUGANAP-
ATHY R.: A delaunay triangulation based approach for cleaning rough
sketches. Computers & Graphics 74 (2018), 171–181. 9, 13, 20

[PS83] PLASS M., STONE M.: Curve-fitting with piecewise parametric
cubics. SIGGRAPH Comput. Graph. 17, 3 (July 1983), 229–239. 8

[PvMLV∗21] PAGUREK VAN MOSSEL D., LIU C., VINING N., BESS-
MELTSEV M., SHEFFER A.: Strokestrip: Joint parameterization and fit-
ting of stroke clusters. ACM Transactions on Graphics 40, 4 (2021). 8,
17

[PVW85] PAVLIDIS T., VAN WYK C. J.: An automatic beautifier for
drawings and illustrations. SIGGRAPH Comput. Graph. 19, 3 (July
1985), 225–234. 15

[QGXS22] QI A., GRYADITSKAYA Y., XIANG T., SONG Y.-Z.: One
sketch for all: One-shot personalized sketch segmentation. IEEE Trans-
actions on Image Processing 31 (2022), 2673–2682. 9

[QT19] QI Y., TAN Z.-H.: Sketchsegnet+: An end-to-end learning of
rnn for multi-class sketch semantic segmentation. Ieee Access 7 (2019),
102717–102726. 9

[QWH06] QU Y., WONG T.-T., HENG P.-A.: Manga colorization. ACM
Trans. Graph. 25, 3 (July 2006), 1214–1220. 18, 24

[QWM∗23] QIU S., WANG Z., MCMILLAN L., RUSHMEIER H.,
DORSEY J.: Is drawing order important? Proceedings of
EUROGRAPHICS-Short Papers (2023). 6

[Ree81] REEVES W. T.: Inbetweening for computer animation utiliz-
ing moving point constraints. SIGGRAPH Comput. Graph. 15, 3 (Aug.
1981), 263–269. 10

[Rev24] REVOY D.: David revoy, 2024. URL: https://www.
davidrevoy.com/. 24

[RKH∗21] RADFORD A., KIM J. W., HALLACY C., RAMESH A., GOH
G., AGARWAL S., SASTRY G., ASKELL A., MISHKIN P., CLARK J.,

ET AL.: Learning transferable visual models from natural language
supervision. In International conference on machine learning (2021),
PMLR, pp. 8748–8763. 25

[Rob63] ROBERTS L. G.: Machine perception of three-dimensional
solids. PhD thesis, Massachusetts Institute of Technology, 1963. 20

[Ros94] ROSIN P. L.: Grouping curved lines. In BMVC (1994), Citeseer,
pp. 1–10. 7, 18

[RSW∗07] ROSE K., SHEFFER A., WITHER J., CANI M.-P., THIB-
ERT B.: Developable surfaces from arbitrary sketched boundaries. In
SGP’07-5th Eurographics Symposium on Geometry Processing (2007),
Eurographics Association, pp. 163–172. 20

[RTB∗18] RAMOS S., TREVISAN D. F., BATAGELO H. C., SOUSA
M. C., GOIS J. P.: Contour-aware 3d reconstruction of side-view
sketches. Computers & Graphics 77 (2018), 97–107. 10

[SA93] SINHA P., ADELSON E.: Recovering 3d shapes from 2d line-
drawings. In Intelligent Robotics; Proceedings of the International Sym-
posium on Intelligent Robotics (1993), pp. 7–9. 20

[Sah20] SAHILLIOĞLU Y.: Recent advances in shape correspondence.
The Visual Computer 36, 8 (2020), 1705–1721. 10

[Sau03] SAUND E.: Finding perceptually closed paths in sketches and
drawings. IEEE transactions on pattern analysis and machine intelli-
gence 25, 4 (2003), 475–491. 7

[SBBB20] STANKO T., BESSMELTSEV M., BOMMES D., BOUSSEAU
A.: Integer-grid sketch simplification and vectorization. In Computer
Graphics Forum (2020), vol. 39. 8, 11, 13

[SC08] SHESH A., CHEN B.: Efficient and dynamic simplification of line
drawings. In Computer Graphics Forum (2008), vol. 27, pp. 537–545.
18

[SCC24] SCRIVENER D., COLDREN E., CHIEN E.: Winding Number
Features for Vector Sketch Colorization. Computer Graphics Forum
(2024). 9, 19, 20

[SDBM17] SARVADEVABHATLA R. K., DWIVEDI I., BISWAS A.,
MANOCHA S.: Sketchparse: Towards rich descriptions for poorly drawn
sketches using multi-task hierarchical deep networks. In Proceedings of
the 25th ACM international conference on Multimedia (2017), pp. 10–
18. 9

[SDC09] SỲKORA D., DINGLIANA J., COLLINS S.: Lazybrush: Flexible
painting tool for hand-drawn cartoons. In Computer Graphics Forum
(2009), vol. 28, Wiley Online Library, pp. 599–608. 18

[Sel03] SELINGER P.: Potrace: a polygon-based tracing algorithm, 2003.
11

[SGX∗23] SIYAO L., GU T., XIAO W., DING H., LIU Z., LOY C. C.:
Deep geometrized cartoon line inbetweening, 2023. URL: https://
arxiv.org/abs/2309.16643, arXiv:2309.16643. 10

[SII18a] SIMO-SERRA E., IIZUKA S., ISHIKAWA H.: Mastering Sketch-
ing: Adversarial Augmentation for Structured Prediction. ACM Trans.
Graph. 37, 1 (2018), 11:1–11:13. 17, 22, 25

[SII18b] SIMO-SERRA E., IIZUKA S., ISHIKAWA H.: Real-time data-
driven interactive rough sketch inking. ACM Trans. Graph. 37, 4 (2018),
98:1–98:14. 12, 14, 17, 22, 25

[Sin02] SINGH K.: A fresh perspective. In Proceedings of the Graphics
Interface 2002 Conference (May 2002), pp. 17–24. 4

[SISI16] SIMO-SERRA E., IIZUKA S., SASAKI K., ISHIKAWA H.:
Learning to simplify: Fully convolutional networks for rough sketch
cleanup. ACM Trans. Graph. 35, 4 (2016), 121:1–121:11. 17

[SISI17] SASAKI K., IIZUKA S., SIMO-SERRA E., ISHIKAWA H.: Joint
Gap Detection and Inpainting of Line Drawings. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (July 2017),
pp. 5768–5776. 19

[SISSI18] SASAKI K., IIZUKA S., SIMO-SERRA E., ISHIKAWA H.:
Learning to restore deteriorated line drawing. The visual computer 34
(2018), 1077–1085. 22

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://www.davidrevoy.com/
https://www.davidrevoy.com/
https://arxiv.org/abs/2309.16643
https://arxiv.org/abs/2309.16643
http://arxiv.org/abs/2309.16643

Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing 31 of 32

[SKC∗14] SYKORA D., KAVAN L., CADIK M., JAMRISKA O., JACOB-
SON A., WHITED B., SIMMONS M., SORKINE-HORNUNG O.: Ink-
and-Ray: Bas-Relief Meshes for Adding Global Illumination Effects to
Hand-Drawn Characters. ACM Transactions on Graphics 33, 2 (2014),
1–15. 9

[Ske12] SKETCHFAB INC.: Sketchfab, 2012. URL: https://
sketchfab.com/. 24

[SKKS09] SCHMIDT R., KHAN A., KURTENBACH G., SINGH K.: On
expert performance in 3D curve-drawing tasks. Proceedings of the 6th
Eurographics Symposium on Sketch-Based Interfaces and Modeling -
SBIM ’09 1 (2009), 133. 4

[SKSK09] SCHMIDT R., KHAN A., SINGH K., KURTENBACH G.: An-
alytic drawing of 3D scaffolds. ACM Transactions on Graphics 28, 5
(2009), 1. 22, 24

[SLWF14] SU Q., LI W. H. A., WANG J., FU H.: Ez-sketching: Three-
level optimization for error-tolerant image tracing. ACM Transactions
on Graphics (TOG) 33, 4 (2014), 1–9. 14

[Smo16] SMOOTHSTEP LLC: Quill, 2016. 24

[SS14] SADRI B., SINGH K.: Flow-complex-based shape reconstruction
from 3d curves. ACM Transactions on Graphics (TOG) 33, 2 (2014),
1–15. 20

[ST16] SCHNEIDER R. G., TUYTELAARS T.: Example-based sketch
segmentation and labeling using crfs. ACM Trans. Graph. 35, 5 (July
2016). 9

[Sut98] SUTHERLAND I. E.: Sketchpad—a man-machine graphical com-
munication system. Association for Computing Machinery, New York,
NY, USA, 1998, p. 391–408. 14

[Sze10] SZELISKI R.: Computer Vision: Algorithms and Applications,
1st ed. Springer-Verlag New York, Inc., New York, NY, USA, 2010. 7, 8

[SZL∗23] SMITH H. J., ZHENG Q., LI Y., JAIN S., HODGINS J. K.:
A method for animating children’s drawings of the human figure. ACM
Trans. Graph. 42, 3 (June 2023). 9

[TIA19] TSUBOTA K., IKAMI D., AIZAWA K.: Synthesis of screentone
patterns of manga characters. In 2019 IEEE international symposium on
multimedia (ISM) (2019), IEEE, pp. 212–2123. 24

[TSB11] THIEL Y., SINGH K., BALAKRISHNAN R.: Elasticurves: Ex-
ploiting stroke dynamics and inertia for the real-time neatening of
sketched 2D curves. In Proceedings of the 24th Annual ACM Sympo-
sium on User Interface Software and Technology (Oct. 2011), UIST ’11,
Association for Computing Machinery, pp. 383–392. 13, 14, 16

[Ull76] ULLMAN S.: Filling-in the gaps: The shape of subjective con-
tours and a model for their generation. Biological Cybernetics 25, 1
(1976), 1–6. 10

[VACOS23] VINKER Y., ALALUF Y., COHEN-OR D., SHAMIR A.: Cli-
pascene: Scene sketching with different types and levels of abstraction.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision (2023), pp. 4146–4156. 25

[VKZHCO11] VAN KAICK O., ZHANG H., HAMARNEH G., COHEN-
OR D.: A survey on shape correspondence. In Computer graphics forum
(2011), vol. 30, Wiley Online Library, pp. 1681–1707. 10

[VMS05] VARLEY P., MARTIN R., SUZUKI H.: Frontal geometry from
sketches of engineering objects: is line labelling necessary? Computer-
Aided Design 37, 12 (2005), 1285–1307. 3, 10, 21

[VPB∗22] VINKER Y., PAJOUHESHGAR E., BO J. Y., BACHMANN
R. C., BERMANO A. H., COHEN-OR D., ZAMIR A., SHAMIR A.:
Clipasso: Semantically-aware object sketching. ACM Transactions on
Graphics (TOG) 41, 4 (2022), 1–11. 25

[Wal75] WALTZ D. L.: Understanding line drawings of scenes with shad-
ows. The psychology of computer vision (1975), 19–91. 20

[WCC∗11] WALTHER D. B., CHAI B., CADDIGAN E., BECK D. M.,
FEI-FEI L.: Simple line drawings suffice for functional mri decoding
of natural scene categories. Proceedings of the National Academy of
Sciences 108, 23 (2011), 9661–9666. 4

[Wer38] WERTHEIMER M.: Laws of organization in perceptual forms. 6

[Wil94] WILLIAMS L. R.: Topological Reconstruction of a Smooth
Manifold-Solid From Its Occluding Contour. Tech. rep., USA, 1994.
6

[WJ97] WILLIAMS L. R., JACOBS D. W.: Stochastic completion fields:
A neural model of illusory contour shape and salience. Neural computa-
tion 9, 4 (1997), 837–858. 10

[WL24] WANG J., LI C.: Contextseg: Sketch semantic segmentation by
querying the context with attention. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (June
2024), pp. 3679–3688. 9

[WNS∗10] WHITED B., NORIS G., SIMMONS M., SUMNER
R. W., GROSS M., ROSSIGNAC J.: Betweenit: An interactive
tool for tight inbetweening. Computer Graphics Forum 29, 2
(2010), 605–614. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1111/j.1467-8659.2009.01630.x,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/
10.1111/j.1467-8659.2009.01630.x, doi:https:
//doi.org/10.1111/j.1467-8659.2009.01630.x. 1, 2, 11

[WPL06] WANG W., POTTMANN H., LIU Y.: Fitting b-spline curves to
point clouds by curvature-based squared distance minimization. ACM
Trans. Graph. 25, 2 (Apr. 2006), 214–238. 8

[WQF∗21] WANG Z., QIU S., FENG N., RUSHMEIER H., MCMIL-
LAN L., DORSEY J.: Tracing versus freehand for evaluating computer-
generated drawings. ACM Transactions on Graphics (TOG) 40, 4 (2021),
1–12. 5, 6, 23

[WQLY18] WU X., QI Y., LIU J., YANG J.: Sketchsegnet: A rnn model
for labeling sketch strokes. In 2018 IEEE 28th International Work-
shop on Machine Learning for Signal Processing (MLSP) (2018), IEEE,
pp. 1–6. 9

[WY09] WANG S., YU S.-H.: Endpoint fusing of freehand 3d object
sketch with hidden-part-draw. 2009 IEEE 10th International Conference
on Computer-Aided Industrial Design & Conceptual Design (2009),
586–590. 19

[WZW∗20] WANG S., ZHANG Q., WANG S., JING X., GAO M.: End-
point fusing method of online freehand-sketched polyhedrons. Vis Com-
put 36, 2 (Feb. 2020), 291–303. 19

[XCS∗14] XU B., CHANG W., SHEFFER A., BOUSSEAU A., MCCRAE
J., SINGH K.: True2form: 3d curve networks from 2d sketches via selec-
tive regularization. Transactions on Graphics (Proc. SIGGRAPH 2014)
33, 4 (2014). 5, 10, 21, 24

[XFZ∗18] XU P., FU H., ZHENG Y., SINGH K., HUANG H., TAI C.-L.:
Model-guided 3d sketching. IEEE Transactions on Visualization and
Computer Graphics 25, 10 (2018), 2927–2939. 22

[XHY∗22] XU P., HOSPEDALES T. M., YIN Q., SONG Y.-Z., XIANG
T., WANG L.: Deep learning for free-hand sketch: A survey. IEEE
transactions on pattern analysis and machine intelligence 45, 1 (2022),
285–312. 2, 22

[XSL∗22] XIAO C., SU W., LIAO J., LIAN Z., SONG Y.-Z., FU H.: Dif-
fersketching: How differently do people sketch 3d objects? ACM Trans-
actions on Graphics (TOG) 41, 6 (2022), 1–16. 23, 24

[XWZ∗23] XING X., WANG C., ZHOU H., ZHANG J., YU Q., XU D.:
Diffsketcher: Text guided vector sketch synthesis through latent diffusion
models. Advances in Neural Information Processing Systems 36 (2023),
15869–15889. 25

[XXM∗19] XU X., XIE M., MIAO P., QU W., XIAO W., ZHANG H.,
LIU X., WONG T.-T.: Perceptual-aware sketch simplification based on
integrated vgg layers. IEEE Transactions on Visualization and Computer
Graphics (2019). 17

[YAB∗22] YU E., ARORA R., BÆRENTZEN J. A., SINGH K.,
BOUSSEAU A.: Piecewise-smooth surface fitting onto unstructured 3D
sketches. ACM Transactions on Graphics 41, 4 (July 2022), 1–16. 6, 10,
23, 24

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://sketchfab.com/
https://sketchfab.com/
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01630.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01630.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01630.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01630.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2009.01630.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2009.01630.x

32 of 32 Chenxi Liu & Mikhail Bessmeltsev / State-of-the-art Report in Sketch Processing

[YAS∗21] YU E., ARORA R., STANKO T., BAERENTZEN J. A., SINGH
K., BOUSSEAU A.: Cassie: Curve and surface sketching in immersive
environments. In Conference on Human Factors in Computing Systems
- Proceedings (2021). 16, 20, 24

[YBS∗12] YU J., BIAN W., SONG M., CHENG J., TAO D.: Graph based
transductive learning for cartoon correspondence construction. Neuro-
computing 79 (2012), 105–114. 10, 11

[YCY∗22] YAN C., CHUNG J. J. Y., YOON K., GINGOLD Y., ADAR
E., HONG S. R.: FlatMagic: Improving flat colorization through ai-
driven design for digital comic professionals. In Proceedings of the CHI
Conference on Human Factors in Computing Systems (2022), CHI. 2,
18, 19

[YDSG21] YU X., DIVERDI S., SHARMA A., GINGOLD Y.: ScaffoldS-
ketch: Accurate Industrial Design Drawing in VR. In The 34th Annual
ACM Symposium on User Interface Software and Technology (New York,
NY, USA, Oct. 2021), UIST ’21, Association for Computing Machinery,
pp. 372–384. 16, 22

[YLA∗24] YAN C., LI Y., ANEJA D., FISHER M., SIMO-SERRA E.,
GINGOLD Y.: Deep sketch vectorization via implicit surface extraction.
ACM Transactions on Graphics (TOG) 43, 4 (2024), 1–13. 2, 7, 8, 12,
13, 14, 25

[YLGF23] YU D., LAU M., GAO L., FU H.: Sketch beautification:
Learning part beautification and structure refinement for sketches of
man-made objects. IEEE Transactions on Visualization and Computer
Graphics (2023). 14, 15

[YLL∗22] YIN J., LIU C., LIN R., VINING N., RHODIN H., SHEF-
FER A.: Detecting viewer-perceived intended vector sketch connectivity.
ACM Transactions on Graphics 41 (2022). 6, 7, 10, 19, 20, 24

[YSC∗18] YANG W., SEAH H.-S., CHEN Q., LIEW H.-Z., SÝKORA
D.: Ftp-sc: Fuzzy topology preserving stroke correspondence. Computer
Graphics Forum 37, 8 (2018), 125–135. 10

[YSR∗20] YAO Y., SCHERTLER N., ROSALES E., RHODIN H., SIGAL
L., SHEFFER A.: Front2back: Single view 3d shape reconstruction via
front to back prediction. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (June 2020). 10

[Yu23] YU E.: Designing tools for 3D content authoring based on 3D
sketching. PhD thesis, Université Côte d’Azur, 2023. 2

[YVG20] YAN C., VANDERHAEGHE D., GINGOLD Y.: A benchmark
for rough sketch cleanup. ACM Transactions on Graphics (TOG) 39, 6
(2020), 1–14. 4, 23, 24

[YZF∗21] YANG L., ZHUANG J., FU H., WEI X., ZHOU K., ZHENG Y.:
Sketchgnn: Semantic sketch segmentation with graph neural networks.
ACM Trans. Graph. 40, 3 (Aug. 2021). 9

[ZCL∗18] ZHANG J., CHEN Y., LI L., FU H., TAI C.-L.: Context-based
sketch classification. In Proceedings of the Joint Symposium on Compu-
tational Aesthetics and Sketch-Based Interfaces and Modeling and Non-
Photorealistic Animation and Rendering (2018), pp. 1–10. 23, 24

[ZCZ∗09] ZHANG S.-H., CHEN T., ZHANG Y.-F., HU S.-M., MAR-
TIN R. R.: Vectorizing Cartoon Animations. IEEE Trans. Vis. Comput.
Graph. 15, 4 (July 2009), 618–629. 6, 9, 13, 14, 18

[ZDL∗23] ZHANG Z., DENG X., LI J., LAI Y., MA C., LIU Y.,
WANG H.: Stroke-based semantic segmentation for scene-level free-
hand sketches. The Visual Computer 39, 12 (2023), 6309–6321. 23,
24

[ZGZS20] ZHONG Y., GRYADITSKAYA Y., ZHANG H., SONG Y.-Z.:
Deep sketch-based modeling: Tips and tricks. In 2020 International Con-
ference on 3D Vision (3DV) (2020), IEEE, pp. 543–552. 5

[ZJL20] ZHANG L., JI Y., LIU C.: Danbooregion: An illustration region
dataset. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XIII 16 (2020),
Springer, pp. 137–154. 19, 23

[ZLSS∗21] ZHANG L., LI C., SIMO-SERRA E., JI Y., WONG T.-T.,
LIU C.: User-guided line art flat filling with split filling mechanism. In

Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition (2021), pp. 9889–9898. 19, 22

[ZLWH16] ZHU H., LIU X., WONG T.-T., HENG P.-A.: Globally opti-
mal toon tracking. ACM Transactions on Graphics (TOG) 35, 4 (2016),
1–10. 11

[ZPD∗24] ZHENG Y., PANG K., DAS A., CHANG D., SONG Y.-Z., MA
Z.: Creativeseg: Semantic segmentation of creative sketches. IEEE
Transactions on Image Processing 33 (2024), 2266–2278. 9

[ZPW∗23] ZHENG X.-Y., PAN H., WANG P.-S., TONG X., LIU Y.,
SHUM H.-Y.: Locally attentional sdf diffusion for controllable 3d shape
generation. ACM Transactions on Graphics 42, 4 (July 2023), 1–13. 7

[ZQG∗20] ZHONG Y., QI Y., GRYADITSKAYA Y., ZHANG H., SONG
Y.-Z.: Towards practical sketch-based 3d shape generation: The role of
professional sketches. IEEE Transactions on Circuits and Systems for
Video Technology 31, 9 (2020), 3518–3528. 23, 24, 25

[ZTCS99] ZHANG R., TSAI P.-S., CRYER J. E., SHAH M.: Shape-from-
shading: a survey. IEEE transactions on pattern analysis and machine
intelligence 21, 8 (1999), 690–706. 5

[ZXS∗22] ZHENG Y., XIE J., SAIN A., MA Z., SONG Y.-Z., GUO J.:
Ende-gnn: An encoder-decoder gnn framework for sketch semantic seg-
mentation. In 2022 IEEE International Conference on Visual Communi-
cations and Image Processing (VCIP) (2022), pp. 1–5. 9

[ZXS∗23] ZHENG Y., XIE J., SAIN A., SONG Y.-Z., MA Z.: Sketch-
segformer: Transformer-based segmentation for figurative and creative
sketches. IEEE Transactions on Image Processing 32 (2023), 4595–
4609. 9

[ZXZ20] ZHU X., XIAO Y., ZHENG Y.: 2d freehand sketch labeling us-
ing cnn and crf. Multimedia Tools and Applications 79, 1 (2020), 1585–
1602. 9

[ZZCJ13a] ZHUANG Y., ZOU M., CARR N., JU T.: A general and effi-
cient method for finding cycles in 3D curve networks. ACM Transactions
on Graphics 32, 6 (Nov. 2013), 1–10. 10, 25

[ZZCJ13b] ZHUANG Y., ZOU M., CARR N., JU T.: A general and effi-
cient method for finding cycles in 3d curve networks. ACM Transactions
on Graphics (TOG) 32, 6 (2013), 1–10. 20

© 0x The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

