IFT 6112 BACKGROUND: OPTIMIZATION

http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/

Mikhail Bessmeltsev

Motivation

Numerical problems are everywhere in geometric modeling!

Quick summary!

Mostly for common ground: You may already know this material. First half is important; remainder summarizes interesting recent tools.

Our Bias

Numerical analysis is a <u>huge</u> field.

Rough Plan

- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

Rough Plan

Linear problems

- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

Vector Spaces and Linear Operators

$\mathcal{L}[\vec{x} + \vec{y}] = \mathcal{L}[\vec{x}] + \mathcal{L}[\vec{y}]$ $\mathcal{L}[c\vec{x}] = c\mathcal{L}[\vec{x}]$

Abstract Example

 $C^{\infty}(\mathbb{R})$

 $\mathcal{L}[f] := df/dx$

Eigenvectors?

In Finite Dimensions

Linear System of Equations

Simple "inverse problem"

Common Strategies

Gaussian elimination

 $- O(n^3)$ time to solve Ax=b or to invert

- **But:** Inversion is unstable and slower!
- Never ever compute A⁻¹ if you can avoid it.

Simple Example

 $\frac{d^2f}{dx^2} = g, f(0) = f(1) = 0$

Structure?

Linear Solver Considerations

- Never construct A⁻¹ explicitly (if you can avoid it)
- Added structure helps <u>Sparsity</u>, symmetry, positive definiteness, bandedness

$inv(A)*b \ll (A'*A) \setminus (A'*b) \ll A \setminus b$

Two Classes of Solvers

• **Direct** (explicit matrix)

- Dense: Gaussian elimination/LU, QR for leastsquares
- **Sparse:** Reordering (SuiteSparse, Eigen)
- Iterative (apply matrix repeatedly)
 - Positive definite: Conjugate gradients
 - Symmetric: MINRES, GMRES
 - Generic: LSQR

Very Common: Sparsity

For IFT 6112

- No need to implement a linear solver
- If a matrix is sparse, your code should store it as a sparse matrix!

Eigen 3.3.5			(Q: Search
Overview Getting started Chapters Deese matrix and array manipulation	Sparse matrix manipulations Sparse linear algebra		
 Dense linear problems and decompositio Sparse linear algebra 	Manipulating and solving sparse problems involves various modules which are summarized below:		
Sparse matrix manipulations	Module	Header file	Contents
Solving Sparse Linear Systems Matrix-free solvers	SparseCore	#include ≮Eigen/SparseCore>	SparseMatrix and SparseVector classes, matrix assembly, basic sparse linear algebra (including sparse triangular solvers)
Quick reference guide for sparse matr	SparseCholesky	<pre>#include <eigen sparsecholesky=""></eigen></pre>	Direct sparse LLT and LDLT Cholesky factorization to solve sparse self-adjoint positive definite problems
Geometry	SparseLU	<pre>#include<eigen sparselu=""></eigen></pre>	Sparse LU factorization to solve general square sparse systems
 Extending/Customizing Eigen Concerel tension 	SparseQR	<pre>#include<eigen sparseqr=""></eigen></pre>	Sparse QR factorization for solving sparse linear least-squares problems
 Class List 	IterativeLinearSolvers	<pre>#include <eigen iterativelinearsolvers=""></eigen></pre>	Iterative solvers to solve large general linear square problems (including self-adjoint positive definite problems)
	Sparse	<pre>#include <eigen sparse=""></eigen></pre>	Includes all the above modules
Table of contents	Sparse matrix format In many applications (e.g., finite element methods) it is common to deal with very large matrices where only a few coefficients are different from zero. In such cases, memory consumption can be reduced and performance increased by using a specialized		
	The SparseMatrix class		
 ↓ Supported operators and functions ↓ Basic operations ↓ Matrix products ↓ Block operations ↓ Thereules and collections 	The class SparseMatrix is the main sparse matrix representation of Eigen's sparse module; it offers high performance and low memory usage. It implements a more versatile variant of the widely-used Compressed Column (or Row) Storage scheme. It consists of four compact arrays:		
 mangular and seriadjoint views 	- Values + stores the	coefficient values of the non-zeros	dommon

https://eigen.tuxfamily.org/dox/group__TutorialSparse.html

Optimization Terminology

Objective ("Energy Function")

Optimization Terminology

Equality Constraints

Optimization Terminology

Inequality Constraints

Encapsulates Many Problems

$$\min_{x \in \mathbb{R}^n} f(x) \\ \text{s.t. } g(x) = 0 \\ h(x) \ge 0$$

$$Ax = b \leftrightarrow f(x) = \|Ax - b\|_2$$

$$Ax = \lambda x \leftrightarrow f(x) = ||Ax||_2, g(x) = ||x||_2 - 1$$

Roots of $g(x) \leftrightarrow f(x) = 0$

Notions from Calculus $f : \mathbb{R}^n \to \mathbb{R}$ $\to \nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$

https://en.wikipedia.org/?title=Gradient

Gradient

Gradient

Notions from Calculus

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Jacobian

Notions from Calculus

$$f: \mathbb{R}^n \to \mathbb{R} \to H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

$$f(x) \approx f(x_0) + \nabla f(x_0)^\top (x - x_0) + (x - x_0)^\top H f(x_0) (x - x_0)$$

http://math.etsu.edu/multicalc/prealpha/Chap2/Chap2-5/10-3a-t3.gif

Optimization to Root-Finding $\nabla f(x) = 0$ (unconstrained Saddle point Local max f(x)Local min \mathcal{X}

Critical point

https://en.wikipedia.org/wiki/Convex_function

Convex Functions

 $H(x) \ge 0$

https://en.wikipedia.org/wiki/Convex_function

Generic tools are often not too effective!

Generic Advice

Try the simplest solver first.

Rough Plan

- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

Unconstrained optimization

Trivial when f(x) is linear

Easy when f(x) is quadratic

Hard in case of generic non-linear.

Special Case: Least-Squares

$$\min_{x} \frac{1}{2} \|Ax - b\|_{2}^{2}$$

$$\rightarrow \min_{x} \frac{1}{2} x^{\top} A^{\top} A x - b^{\top} A x + \|b\|_{2}^{2}$$

$$\implies A^{\top}Ax = A^{\top}b$$

Normal equations (better solvers for this case!)

Useful Document

The Matrix Cookbook Petersen and Pedersen

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf

Example: Mesh Embedding

G. Peyré, mesh processing course slides

Linear Solve for Embedding

$$\min_{\substack{x_1, \dots, x_{|V|} \\ \text{s.t.} }} \sum_{\substack{(i,j) \in E \\ V \in V_0}} w_{ij} \|x_i - x_j\|_2^2$$

- $w_{ij} \equiv 1$: Tutte embedding
- *w_{ij}* from mesh: Harmonic embedding

Assumption: w symmetric.

Rough Plan

- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

Unconstrained Optimization

Unstructured.

Gradient descent

$$egin{aligned} &\lambda_0 = 0, \lambda_s = rac{1}{2} (1 + \sqrt{1 + 4\lambda_{s-1}^2}), \gamma_s = rac{1 - \lambda_2}{\lambda_{s+1}} \ &y_{s+1} = x_s - rac{1}{eta}
abla f(x_s) \ &x_{s+1} = (1 - \gamma_s) y_{s+1} + \gamma_s y_s \end{aligned}$$

Quadratic convergence on convex problems! (Nesterov 1983)

Accelerated gradient descent

$$x_{k+1} = x_k - [Hf(x_k)]^{-1} \nabla f(x_k)$$

Newton's Method

$$x_{k+1} = x_k - M_k^{-1} \nabla f(x_k)$$
Hessian
approximation

- (Often sparse) approximation from previous samples and gradients
- Inverse in closed form!

Quasi-Newton: BFGS and friends

Example: Shape Interpolation

Figure 5: Interpolation and extrapolation of the yellow example poses. The blending weights are 0, 0.35, 0.65, 1.0, and 1.25.

Fröhlich and Botsch. "Example-Driven Deformations Based on Discrete Shells." CGF 2011.

Interpolation Pipeline

Roughly:

1. Linearly interpolate edge lengths and dihedral angles.

$$\ell_e^* = (1-t)\ell_e^0 + t\ell_e^1$$
$$\theta_e^* = (1-t)\theta_e^0 + t\theta_e^1$$

2. Nonlinear optimization for vertex positions. $\min_{x_1,...,x_m} \lambda \sum w_e (\ell_e(x) - \ell_e^*)^2$

e

Sum of squares: Gauss-Newton

$$+\mu \sum w_b (\theta_e(x) - \theta_e^*)^2$$

Software

- Matlab: fminunc or minfunc
- C++: libLBFGS, dlib, others

Typically provide functions for function and gradient (and optionally, Hessian).

Try several!

Some Tricks

Lots of small elements: $||x||_2^2 = \sum_i x_i^2$ Lots of zeros: $||x||_1 = \sum_i |x_i|$ Uniform norm: $||x||_{\infty} = \max_i |x_i|$ Low rank: $||X||_* = \sum_i \sigma_i$ Mostly zero columns: $||X||_{2,1} = \sum_{j} \sqrt{\sum_{i} x_{ij}^2}$ Smooth: $\int \|\nabla f\|_2^2$ Piecewise constant: $\int \|\nabla f\|_2$???: Early stopping Regularization

Some Tricks

Multiscale/graduated optimization

Rough Plan

- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Use of Lagrange Multipliers

Turns constrained optimization into unconstrained root-finding.

$$\nabla f(x) = \lambda \nabla g(x)$$
$$g(x) = 0$$

Quadratic with Linear Equality

$$\begin{array}{ccc} \min_{x} & \frac{1}{2}x^{\top}Ax - b^{\top}x + c \\ \text{s.t.} & Mx = v \\ \text{(assume A is symmetric and positive definite)} \end{array} \\ \left(\begin{array}{c} A & M^{\top} \\ M & 0 \end{array} \right) \left(\begin{array}{c} x \\ \lambda \end{array} \right) = \left(\begin{array}{c} b \\ v \end{array} \right) \end{array} \right)$$

Many Options

• Reparameterization Eliminate constraints to reduce to unconstrained case

Newton's method

Approximation: quadratic function with linear constraint

Penalty method

Augment objective with barrier term, e.g. $f(x) + \rho |g(x)|$

Example: Symmetric Eigenvectors

$$f(x) = x^{\top} A x \implies \nabla f(x) = 2Ax$$
$$g(x) = \|x\|_2^2 \implies \nabla g(x) = 2x$$
$$\implies Ax = \lambda x$$

Returning to Parameterization

$$\min_{\substack{x_1, \dots, x_{|V|} \\ \text{s.t.} }} \sum_{\substack{(i,j) \in E \\ V \in V_0}} w_{ij} \|x_i - x_j\|_2^2$$

What if
$$V_0 = \{\}$$
?

Nontriviality Constraint

$$\left\{\begin{array}{cc} \min_x & \|Ax\|_2\\ \text{s.t.} & \|x\|_2 = 1 \end{array}\right\} \mapsto A^\top A x = \lambda x$$

Prevents trivial solution $x \equiv 0$.

Extract the smallest eigenvalue.

Back to Parameterization

Mullen et al. "Spectral Conformal Parameterization." SGP 2008.

$$\min_{\substack{u\\ \\ u^{\top}Be=0 \\ u^{\top}Bu=1}} u^{\top} L_C u \quad \longleftrightarrow \quad L_c u = \lambda B u$$

Basic Idea of Eigenalgorithms

$$\begin{aligned} A\vec{v} &= c_1 A\vec{x}_1 + \dots + c_n A\vec{x}_n \\ &= c_1 \lambda_1 \vec{x}_1 + \dots + c_n \lambda_n \vec{x}_n \text{ since } A\vec{x}_i = \lambda_i \vec{x}_i \\ &= \lambda_1 \left(c_1 \vec{x}_1 + \frac{\lambda_2}{\lambda_1} c_2 \vec{x}_2 + \dots + \frac{\lambda_n}{\lambda_1} c_n \vec{x}_n \right) \\ A^2 \vec{v} &= \lambda_1^2 \left(c_1 \vec{x}_1 + \left(\frac{\lambda_2}{\lambda_1} \right)^2 c_2 \vec{x}_2 + \dots + \left(\frac{\lambda_n}{\lambda_1} \right)^2 c_n \vec{x}_n \right) \\ &\vdots \\ A^k \vec{v} &= \lambda_1^k \left(c_1 \vec{x}_1 + \left(\frac{\lambda_2}{\lambda_1} \right)^k c_2 \vec{x}_2 + \dots + \left(\frac{\lambda_n}{\lambda_1} \right)^k c_n \vec{x}_n \right). \end{aligned}$$

Trust Region Methods

Example: Levenberg-Marquardt

Example: Polycube Maps

Huang et al. "L1-Based Construction of Polycube Maps from Complex Shapes." TOG 2014.

$$\begin{aligned} & \underset{X \in \mathcal{A}}{\text{Mign with coordinate axes}} \\ & \underset{X \in \mathcal{A}}{\min_{X}} \sum_{b_{i}} & \mathcal{A}(b_{i};X) \| n(b_{i};X) \|_{1} \\ & \text{s.t.} & \sum_{b_{i}} \mathcal{A}(b_{i};X) = \sum_{b_{i}} \mathcal{A}(b_{i};X_{0}) \end{aligned}$$

Note: Final method includes more terms!

Preserve area

Convex Optimization Tools

Try lightweight options

Iteratively Reweighted Least Squares

Repeatedly solve linear systems

Augmented Lagrangians

$$\min_{x} f(x) \\ \text{s.t.} g(x) = 0 \\ \downarrow \\ \min_{x} f(x) + \frac{\rho}{2} ||g(x)||_{2}^{2}$$
 Does nothing when constraint is satisfi s.t. $g(x) = 0$

Add constraint to objective

nt is satisfied

Alternating Direction Method of Multipliers (ADMM) $\min_{x,z} \quad f(x) + g(z)$ s.t. Ax + Bz = c

 $\Lambda_{\rho}(x,z;\lambda) = f(x) + g(z) + \lambda^{\top}(Ax + Bz - c) + \frac{\rho}{2} \|Ax + Bz - c\|_{2}^{2}$

$$\begin{aligned} x &\leftarrow \arg \min_{x} \Lambda_{\rho}(x, z, \lambda) \\ z &\leftarrow \arg \min_{z} \Lambda_{\rho}(x, z, \lambda) \\ \lambda &\leftarrow \lambda + \rho(Ax + Bz - c) \end{aligned}$$

https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf

Frank-Wolfe

https://en.wikipedia.org/wiki/Frank%E2%80%93Wolfe_algorithm

Linearize objective, preserve constraints

Rough Plan

- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

Variational Calculus: Big Idea

Sometimes your unknowns are not numbers!

Can we use calculus to optimize anyway?

On the Board

 $\min_{f} \int_{\Omega} \|\vec{v}(x) - \nabla f(x)\|_2^2 d\vec{x}$

 $\min_{\int_{\Omega} f(x)^2 d\vec{x}=1} \int_{\Omega} \|\nabla f(x)\|_2^2 d\vec{x}$

Gâteaux Derivative

$$d\mathcal{F}[u;\psi] := \frac{d}{dh}\mathcal{F}[u+h\psi]|_{h=0}$$

Vanishes for all ψ at a critical point!

Analog of derivative at u in ψ direction