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Motivation

Numerical problems are everywhere
in geometric modeling!

Quick summary!

Mostly for common ground: You may already know this material.
First half is important; remainder summarizes interesting recent tools.



Our Bias

Patterns, algorithms, & examples
common in geometry.
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Numerical analysis is a huge field.
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Rough Plan

 Linear problems
» Unconstrained optimization

» Equality-constrained
optimization

» Variational problems



Rough Plan

 Linear problems



Vector Spaces and Linear Operators

LT+ y] = L|Z]+ Ly
Llct| = cL|T]



Abstract Example

C™(R)

L

S

— df/d:r:

Eigenvectors?



In Finite Dimensions

A T
S S~

matrix vector

r— Axr
R,_/

linear operator



Linear System of Equations

S
|
Sl

A S,

Simple “inverse problem”



Common Strategies

» Gaussian elimination
— O(n?) time to solve Ax=b or to invert

« But: Inversion is unstable and slower!

« Never ever compute A1 if you can avoid it.
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Structure?



Linear Solver Considerations

- Never construct A~ explicitly
(if you can avoid 1it)

* Added structure helps
Sparsity, symmetry, positive definiteness,
bandedness

inv(A)*b < (A’*A)\ (A’xb) < A\Db



Two Classes of Solvers

» Direct (explicit matrix)
— Dense: Gaussian elimination /LU, QR for least-
squares

— Sparse: Reordering (SuiteSparse, Eigen)

- Iterative (apply matrix repeatedly)
— Positive definite: Conjugate gradients
— Symmetric: MINRES, GMRES
— Generic: LSQR



Very Common: Sparsity

Z;E

Induced by the connectivity of
the triangle mesh.
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Iteration of CG has local effect
= Precondition!




For IFT 6112

* No need to implement a linear solver

- If a matrix is sparse, your code should

store it as a sparse matrix!
E Eigen 335

Overview

Sparse matrix manipulations

Sparse linear algebra

Getting started

Chapters
Dense matrix and array manipulation
Dense linear problems and decompositio | Manipulating and solving sparse problems involves various modules which are summarized below:
Sparse linear algebra

Sparse matrix manipulations Module Header file Contents

Solving Sparse Linear Systems

" ; ‘ SparseCore #include <Eigen/SparseCore> SparseMatrix and SparseVector classes, matrix assembly, basic sparse linear algebra (including sparse triangular
Viatrix-free solvers
solvers)
Reference
Quick reference guide for sparse matr SparseCholesky #include <Eigen/SparseCholesky>| Direct sparse LLT and LDLT Cholesky factorization to solve sparse self-adjoint positive definite problems
Geometry SparseLU #include<Eigen/SparselU> Sparse LU factorization to solve general square sparse systems
Extending/Customizing Eigen N N
® ~ SparseQR #include<Eigen/SparseQR>| Sparse QR factorization for solving sparse linear least-squares problems
eneral topics
Class List IterativeLinearSolvers #include <Eigen/Iterativelinearsolvers> lterative solvers to solve large general linear square problems (including self-adjoint positive definite problems)
Sparse #include <Eigen/Sparse| Includes all the above modules

Sparse matrix format

In many applications (e.g., finite element methads) it is common to deal with very large matrices where only a few coefficients are
o e different from zero. In such cases, memory consumption can be reduced and performance increased by using a specialized
First example representation storing only the nonzero coefficients. Such a matrix is called a sparse matrix.

Table of contents

The SparseMatrix class .
- ) The SparseMatrix class
Filling a sparse matrix

Supported operators and functions . . ) . . . ) .
e i The class SparseMatrix is the main sparse matrix representation of Eigen's sparse module; it offers high performance and low

_— memory usage. It implements a more versatile variant of the widely-used Compressed Column (or Row) Storage scheme. It consists of
atrix products
Block operations four compact arrays:

Basic operations

Triangular and selfadjoint views -

Generated on Mon Aug 27 2018 06:59:39 for Eigen by dj))xy‘ o)) 1813

https:/ /eigen.tuxfamily.org /dox /group__ TutorialSparse.html

< \nlaan. otarae tha enaffiniant 1mline of tha nan zarne



Optimization Terminology

minazER” f(:li‘)
s.t.g(x) =0
h(xz) > 0

Objective (“Energy Function™)



Optimization Terminology

minazER” f(ilf)
s.t.g(x) =0
h(xz) > 0

Equality Constraints



Optimization Terminology

minazER” f(ilf)
s.t.g(x) =0
h(xz) > 0

Inequality Constraints



Encapsulates Many Problems
mianR” f(fL‘)

s.t.g(x) =0
h(z) > 0

Ax =b < f(z) = ||Ax — b||2
Ar=Ar < f(x)=|Az|]2, g(x)=||z|]2—1

Roots of g(z) <> f(z) =0



Notions from Calculus

f:R" >R
C(of of of
= VIS (8331’83’:2"”’83:71)

https://en.wikipedia.org /?title=Gradient

Gradient



Notions from Calculus
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Notions from Calculus

https:/ /en.wikipedia.org /wiki/Jacobian_matrix_and_determinant

Jacobian



Notions from Calculus

http:/ /math.etsu.edu/multicalc /prealpha /Chap2 /Chap2-5/10-3a-t3.gif

Hessian



Optimization to Root-Finding

Vf(r)=0

(unconstrained

addle point

Local max

Local min
h

Critical point



tf (x1) + (1 =) f (22)

f (t:lj'l —+ (1 — t)l‘g)

Convex Functions
f"(x)>0

=

1 try + (1 —t)xs T2

https:/ /en.wikipedia.org /wiki /Convex_function
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Convex Functions

H(x)>0

https:/ /en.wikipedia.org /wiki /Convex_function



Generic tools are often not too effective!



Generic Advice

Try the
simplest solver first.



Rough Plan

» Unconstrained optimization



Unconstrained optimization

min f(x)

xRN

Trivial when f(x) is linear
Easy when f(x) is quadratic

Hard in case of generic non-linear.



Special Case: Least-Squares

1
min 5 | Az — b||5

1
— min §xTATAa: —b' Az + ||b]|5

— A" Az =A"b

Normal equations
(better solvers for this case!)



Useful Document

The Matrix Cookbook

Petersen and Pedersen

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274 .pdf



Example: Mesh Embedding

« Y
= =27 DA
8 e e aVAVAY !;;,
P

(q°)

=

AVAVav,
JIATA A AV,
S LAY

Comb

Mesh

Conformal

G. Peyre, mesh processing course slides




Linear Solve for Embedding

minwl,...,$|v| Z(z,j)EE wZ]HxZ - SUJH%
s.t. x, fixed Yv € V]

* w;; = 1. Tutte embedding
* w;; from mesh: Harmonic embedding

Assumption: w symmetric.



Rough Plan

 Linear problems
« Unconstrained optimization

» Equality-constrained
optimization

» Variational problems



Unconstrained Optimization

min f(x
Xz T

Unstructured.



Basic Algorithms

J(BO'el) 0

}

L+l =— Tk — oszf(a:k)
Gradient descent



Basic Algorithms

1 — Ao

1
Mo =00 = =(14/1+4X2_,), 7, =
0 : 2( "‘\/ + 4N 1), s

1
Ys+1 = Ls ﬁvf(-’l?s)

Ls+1 = (1 — 78)98+1 T VsYs

Accelerated gradient descent



Basic Algorithms

Tiy1 = o — [Hf(xr)] " Vf(xg)

Newton’s Method



Basic Algorithms

L+l — Lk — M,;1Vf(aj‘k)

» (Often sparse) approximation from
previous samples and gradients

 Inverse in closed form!

Quasi-Newton: BFGS and friends



Example: Shape Interpolation

P
G
ﬁ ) i “

Figure 5: Interpolation and extrapolation of the yellow example poses. The blending weights are 0, 0.35, 0.65, 1.0, and 1.25.

Figure 6: Interpolation of an adaptively meshed and strongly twisted helix with blending weights 0, 0.25, 0.5, 0.75, 1.0.

Frohlich and Botsch. “"Example-Driven Deformations Based on Discrete Shells.” CGF 2011.



Interpolation Pipeline

Roughly:
1. Linearly interpolate edge lengths and dihedral angles.

0F = (1 — )0V + to}
p* = (1 —1¢)8° + o}

2. Nonlinear optimization for vertex positions.

(Ce(@) — £2)°




Software

« Matlab: fminunc or minfunc
 C++: 1ibLBFGS, dlib, others

Typically provide functions for function
and gradient (and optionally, Hessian).

Try several!



Some Tricks

Lots of small elements: ||z||3 = > . 27
Lots of zeros: ||z|1 =), |zi
Uniform norm: ||z||,c = max; |x;
Low rank: || X ||« = ). 0;
Mostly zero columns: || X|j21 =) . \/ D i T3,
Smooth: [ ||V f]3

Piecewise constant: [ ||V f||2
777 Barly stopping

Regularization



Some Tricks

Original Blurred

Multiscale /graduated optimization



Rough Plan

 Linear problems
» Unconstrained optimization

» Equality-constrained
optimization

» Variational problems



Lagrange Mu

ltipliers: ldea

min, f(x)

St g(x)

U




Lagrange Multipliers: Idea

_vg

(@,

- ~uming,  f(x)

St g(r) =

U

/

- Decrease f:—Vf
- Violate constraint: +Vg




Lagrange Multipliers: Idea

- ~umin,  f(x)
s.t. g(x) =0

A




Use of Lagrange Multipliers

Turns constrained optimization into

unconstrained root-finding.

Vf(z) =AVg(x)
g(z) =0



Quadratic with Linear Equality

min,, %ZL‘TALU —b'x+c

s.t. Mx =

(assume A is symmetric and positive definite)

|

(o ) (3)=(



Many Options

» Reparameterization

Eliminate constraints to reduce to unconstrained case

* Newton’s method

Approximation: quadratic function with linear constraint

» Penalty method

Augment objective with barrier term, e.g. f(x) + p|g(x)|



Example: Symmetric Eigenvectors

flz)=z' Az = Vf(z) =24z
g(x) = ||zl = Vg(z) =2z
— Ax = A\x



Returning to Parameterization

minwl,...,$|v| Z(z,j)EE wZJHCCZ - SUJH%
s.t. x, fixed Yv € V]

What if
Vo =}




Nontriviality Constraint

S.t. QZ‘HQ — ]

{ ming || Az } s AT Az — A

Prevents trivial solution x = 0.

Extract the smallest eigenvalue.



Back to Parameterization

Mullen et al. “Spectral Conformal Parameterization.” SGP 2008.

m&n w' Lou  <——  L.u = \Bu

uw' Be=0+ Easy fix
u' Bu=1




Basic Idea of Eigenalgorithms

AU = ClAfl + -+ Cn..Afn

=i\ T+ -+ A\, Ty Since AT = N7

)\2 )\n —
= )\1 ClTl + —CQ-TQ + -+ —ChTy
)\1 )\1

A27 — )2 A2 L AR
UV = )\1 (’15[‘1 —|— CoI9 —|- T ‘|‘ ~ Cnln
)\1 )\1



Trust Region Methods

10 ming,, §5a:TH5:U+wT:C
2
».e s.t. |[0z]|5 < A
<

Example: Levenberg-Marquardt



Example: Polycube Maps

S.t. Zb,,; A(b@, X)

Note: Final method includes more
terms!




Aside:
Convex Optimization Tools

((((((((

Sometines work o‘oﬁ HON-CONVEN /MMM& ..

Try lightweight options



Iteratively Reweighted Least Squares

: L mingy, 32, 4i(2 ' ai + b;)?
ngnz ¢z aitbi) <_>{ s.t. y; = oz a;+b;)(z" a; + b;) 3

 mi 2

. ) . )

min g |z — p;lls = {a: 1T Zz_yl%||37 pill5
v i Yi < ”3j pz||2

Repeatedly solve linear systems



Alternating Projection

Po n%in d(p7 pO)

st.pelCiNCyN---NCy




Augmented Lagrangians

Add constraint to objective



Alternating Direction
Method of Multipliers (ADMM)

min, . f(z)+ g(2)
s.t. Ax + Bz =c

Ay(z,z30) = f(z) +9(2) + )\T(A:U—I—Bz —c) + gHAa:—l—Bz — cH%
r < argmin A, (z, z, \)
X
z <—argmin A, (z, 2, )
Y

A4 A+ p(Ax + Bz — ¢)

https:/ /web.stanford.edu/~boyd /papers /pdf /admm_ slides.pdf



Frank-Wolfe </asile™

To minimize f(z) s.t. € D:

: T
argming s' Vf(xg)
AN { s.t. se€D }

2
k+ 2
Tpt+1 < T + Y(Sk — zk)

v <

https:/ /en.wikipedia.org /wiki/Frank%E2%80%93Wolfe__algorithm

Linearize objective, preserve constraints



Rough Plan

 Linear problems
» Unconstrained optimization

» Equality-constrained
optimization

 Variational problems



Variational Calculus: Big ldea

Sometimes your unknowns
are not numbers!

Can we use calculus to optimize anyway?



On the Board

mm/ |v(x



Gateaux Derivative

0F (9] 1= o Flut o

Vanishes for all ¢ at a critical point!

Analog of derivative at u in ¢ direction



