IFT 6112
 BACKGROUND: OPTIMIZATION

http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/

Mikhail Bessmeltsev

Motivation

Numerical problems are everywhere in geometric modeling!

Quick summary!

Mostly for common ground: You may already know this material. First half is important; remainder summarizes interesting recent tools.

Our Bias

Patterns, algorithms, \& examples common in geometry.

Numerical analysis is a huge field.

Rough Plan

- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

Rough Plan

- Linear problems

- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

Vector Spaces and Linear Operators

$$
\begin{aligned}
\mathcal{L}[\vec{x}+\vec{y}] & =\mathcal{L}[\vec{x}]+\mathcal{L}[\vec{y}] \\
\mathcal{L}[c \vec{x}] & =c \mathcal{L}[\vec{x}]
\end{aligned}
$$

Abstract Example

$$
\begin{aligned}
& C^{\infty}(\mathbb{R}) \\
& \mathcal{L}[f]:=d f / d x
\end{aligned}
$$

Eigenvectors?

In Finite Dimensions

linear operator

Linear System of Equations

Simple "inverse problem"

Common Strategies

- Gaussian elimination
$-\mathrm{O}\left(\mathrm{n}^{3}\right)$ time to solve $\mathrm{Ax}=\mathrm{b}$ or to invert
- But: Inversion is unstable and slower!
- Never ever compute A^{-1} if you can avoid it.

Simple Example

$$
\frac{d^{2} f}{d x^{2}}=g, f(0)=f(1)=0
$$

$$
\left(\begin{array}{cccccc}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
& & & \ddots & & \\
& & & 1 & -2 & 1 \\
& & & & 1 & -2
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)=\left(\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{n}
\end{array}\right)
$$

Structure?

$$
\left(\begin{array}{cccccc}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
& & & \ddots & & \\
& & & 1 & -2 & 1 \\
& & & & 1 & -2
\end{array}\right)
$$

Linear Solver Considerations

- Never construct A^{-1} explicitly (if you can avoid it)
- Added structure helps Sparsity, symmetry, positive definiteness, bandedness
$\operatorname{inv}(\mathrm{A}) * \mathrm{~b} \ll\left(\mathrm{~A}^{\prime} * \mathrm{~A}\right) \backslash\left(\mathrm{A}^{\prime} * \mathrm{~b}\right) \ll \mathrm{A} \backslash \mathrm{b}$

Two Classes of Solvers

- Direct (explicit matrix)
- Dense: Gaussian elimination/LU, QR for leastsquares
- Sparse: Reordering (SuiteSparse, Eigen)
- Iterative (apply matrix repeatedly)
- Positive definite: Conjugate gradients
- Symmetric: MINRES, GMRES
- Generic: LSQR

Very Common: Sparsity

Induced by the connectivity of the triangle mesh.

Iteration of CG has local effect
\Rightarrow Precondition!

For IFT 6112

- No need to implement a linear solver

- If a matrix is sparse, your code should store it as a sparse matrix!

https://eigen.tuxfamily.org/dox/group__TutorialSparse.html

Optimization Terminology

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { s.t. } & g(x)=0 \\
h(x) \geq 0
\end{array}
$$

Objective ("Energy Function")

Optimization Terminology

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x)=0 \\
\text { s.t. } & g(x) \geq 0 \\
& h(x) \geq 0
\end{array}
$$

Equality Constraints

Optimization Terminology

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { s.t. } g(x) & =0 \\
h(x) \geq 0
\end{array}
$$

Encapsulates Many Problems

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} f(x) \\
\text { s.t. } g(x)=0 \\
h(x) \geq 0 \\
A x=b \leftrightarrow f(x)=\|A x-b\|_{2}
\end{gathered}
$$

$A x=\lambda x \leftrightarrow f(x)=\|A x\|_{2}, g(x)=\|x\|_{2}-1$
Roots of $g(x) \leftrightarrow f(x)=0$

Notions from Calculus

$$
\begin{gathered}
f: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
\rightarrow \nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
\end{gathered}
$$

https://en.wikipedia.org/?title=Gradient

Gradient

Notions from Calculus

cols,

Gradient

Notions from Calculus

$$
\begin{aligned}
f & : \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
\rightarrow(D f)_{i j} & =\frac{\partial f_{i}}{\partial x_{j}}
\end{aligned}
$$

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Jacobian

Notions from Calculus

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R} \rightarrow H_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

$$
f(x) \approx f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{\top}\left(x-x_{0}\right)+\left(x-x_{0}\right)^{\top} H f\left(x_{0}\right)\left(x-x_{0}\right)
$$

Hessian

Optimization to Root-Finding

(unconstrained

Saddle point

Local max

Local min

Critical point

Convex Functions

$$
f^{\prime \prime}(x)>0
$$

https://en.wikipedia.org/wiki/Convex_function

Convex Functions

$$
H(x) \geqslant 0
$$

https://en.wikipedia.org/wiki/Convex_function

Generic tools are often not too effective!

Generic Advice

Try the
 simplest solver first.

Rough Plan

- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

Unconstrained optimization

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

Trivial when $f(x)$ is linear
Easy when $f(x)$ is quadratic
Hard in case of generic non-linear.

Special Case: Least-Squares

$$
\begin{gathered}
\min _{x} \frac{1}{2}\|A x-b\|_{2}^{2} \\
\rightarrow \min _{x} \frac{1}{2} x^{\top} A^{\top} A x-b^{\top} A x+\|b\|_{2}^{2} \\
\Longrightarrow A^{\top} A x=A^{\top} b \\
\text { Normal equations } \\
\text { (better solvers for this case!) }
\end{gathered}
$$

Useful Document

The Matrix Cookbook

Petersen and Pedersen

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf

Example: Mesh Embedding

G. Peyré, mesh processing course slides

Linear Solve for Embedding

$$
\begin{aligned}
\min _{x_{1}, \ldots, x_{|V|}} & \sum_{(i, j) \in E} w_{i j}\left\|x_{i}-x_{j}\right\|_{2}^{2} \\
\text { s.t. } & x_{v} \text { fixed } \forall v \in V_{0}
\end{aligned}
$$

- $w_{i j} \equiv 1$: Tutte embedding
- $w_{i j}$ from mesh: Harmonic embedding

Assumption: w symmetric.

Rough Plan

- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

Unconstrained Optimization

Basic Algorithms

Basic Algorithms

$$
\lambda_{0}=0, \lambda_{s}=\frac{1}{2}\left(1+\sqrt{1+4 \lambda_{s-1}^{2}}\right), \gamma_{s}=\frac{1-\lambda_{2}}{\lambda_{s+1}}
$$

$y_{s+1}=x_{s}-\frac{1}{\beta} \nabla f\left(x_{s}\right)$
$x_{s+1}=\left(1-\gamma_{s}\right) y_{s+1}+\gamma_{s} y_{s}$

Quadratic convergence on convex problems! (Nesterov 1983)

Accelerated gradient descent

Basic Algorithms

$$
x_{k+1}=x_{k}-\left[H f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)
$$

Newton's Method

Basic Algorithms

$$
x_{k+1}=x_{k}-{\underset{\sim}{\uparrow}}_{\substack{\text { Hessian } \\ \text { approximation }}}^{-1} \nabla f\left(x_{k}\right)
$$

- (Often sparse) approximation from previous samples and gradients
- Inverse in closed form!

Quasi-Newton: BFGS and friends

Example: Shape Interpolation

Figure 5: Interpolation and extrapolation of the yellow example poses. The blending weights are $0,0.35,0.65,1.0$, and 1.25 .

Figure 6: Interpolation of an adaptively meshed and strongly twisted helix with blending weights $0,0.25,0.5,0.75,1.0$.
Fröhlich and Botsch. "Example-Driven Deformations Based on Discrete Shells." CGF 2011.

Interpolation Pipeline

Roughly:

1. Linearly interpolate edge lengths and dihedral angles.

$$
\begin{aligned}
& \ell_{e}^{*}=(1-t) \ell_{e}^{0}+t \ell_{e}^{1} \\
& \theta_{e}^{*}=(1-t) \theta_{e}^{0}+t \theta_{e}^{1}
\end{aligned}
$$

2. Nonlinear optimization for vertex positions.

$$
\min _{x_{1}, \ldots, x_{m}} \lambda \sum_{e} w_{e}\left(\ell_{e}(x)-\ell_{e}^{*}\right)^{2}
$$

$$
+\mu \sum_{e} w_{b}\left(\theta_{e}(x)-\theta_{e}^{*}\right)^{2}
$$

Software

- Matlab: fminunc or minfunc
- C++: libLBFGS, dlib, others

Typically provide functions for function and gradient (and optionally, Hessian).
Try several!

Some Tricks

Lots of small elements: $\|x\|_{2}^{2}=\sum_{i} x_{i}^{2}$

Lots of zeros: $\|x\|_{1}=\sum_{i}\left|x_{i}\right|$
Uniform norm: $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$

$$
\text { Low rank: }\|X\|_{*}=\sum_{i} \sigma_{i}
$$

Mostly zero columns: $\|X\|_{2,1}=\sum_{j} \sqrt{\sum_{i} x_{i j}^{2}}$ Smooth: $\int\|\nabla f\|_{2}^{2}$
Piecewise constant: $\int\|\nabla f\|_{2}$
???: Early stopping
Regularization

Some Tricks

Original

Blurred

Multiscale/graduated optimization

Rough Plan

- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Lagrange Multipliers: Idea

Use of Lagrange Multipliers

Turns constrained optimization into unconstrained root-finding.

$$
\begin{aligned}
\nabla f(x) & =\lambda \nabla g(x) \\
g(x) & =0
\end{aligned}
$$

Quadratic with Linear Equality

$$
\begin{array}{cl}
\min _{x} & \frac{1}{2} x^{\top} A x-b^{\top} x+c \\
\text { s.t. } & M x=v \\
\text { (assume A is symmetric and positive definite) }
\end{array}
$$

A
M

$\left.\begin{array}{l}b \\ v\end{array}\right)$

Many Options

- Reparameterization

Eliminate constraints to reduce to unconstrained case

- Newton's method

Approximation: quadratic function with linear constraint

- Penalty method

Augment objective with barrier term, e.g. $f(x)+\rho|g(x)|$

Example: Symmetric Eigenvectors

$$
\begin{aligned}
f(x) & =x^{\top} A x \Longrightarrow \nabla f(x)=2 A x \\
g(x) & =\|x\|_{2}^{2} \Longrightarrow \nabla g(x)=2 x \\
& \Longrightarrow A x=\lambda x
\end{aligned}
$$

Returning to Parameterization

$$
\begin{aligned}
\min _{x_{1}, \ldots, x_{|V|}} & \sum_{(i, j) \in E} w_{i j}\left\|x_{i}-x_{j}\right\|_{2}^{2} \\
\text { s.t. } & x_{v} \text { fixed } \forall v \in V_{0}
\end{aligned}
$$

> What if
> $V_{0}=\{ \} ?$

Nontriviality Constraint

$$
\left\{\begin{array}{cl}
\min _{x} & \|A x\|_{2} \\
\text { s.t. } & \|x\|_{2}=1
\end{array}\right\} \mapsto A^{\top} A x=\lambda x
$$

Extract the smallest eigenvalue.

Back to Parameterization

Mullen et al. "Spectral Conformal Parameterization." SGP 2008.

$$
\begin{aligned}
& \min _{u} u^{\top} L_{C} u \quad \longleftrightarrow \quad L_{c} u=\lambda B u \\
& u^{\top} B e=0 \longleftarrow \text { Easy fix } \\
& u^{\top} B u=1
\end{aligned}
$$

Basic Idea of Eigenalgorithms

$$
\begin{aligned}
A \vec{v} & =c_{1} A \vec{x}_{1}+\cdots+c_{n} A \vec{x}_{n} \\
& =c_{1} \lambda_{1} \vec{x}_{1}+\cdots+c_{n} \lambda_{n} \vec{x}_{n} \text { since } A \vec{x}_{i}=\lambda_{i} \vec{x}_{i} \\
& =\lambda_{1}\left(c_{1} \vec{x}_{1}+\frac{\lambda_{2}}{\lambda_{1}} c_{2} \vec{x}_{2}+\cdots+\frac{\lambda_{n}}{\lambda_{1}} c_{n} \vec{x}_{n}\right) \\
A^{2} \vec{v} & =\lambda_{1}^{2}\left(c_{1} \vec{x}_{1}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{2} c_{2} \vec{x}_{2}+\cdots+\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{2} c_{n} \vec{x}_{n}\right) \\
& \vdots \\
A^{k} \vec{v} & =\lambda_{1}^{k}\left(c_{1} \vec{x}_{1}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} c_{2} \vec{x}_{2}+\cdots+\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} c_{n} \vec{x}_{n}\right) .
\end{aligned}
$$

Trust Region Methods

Example: Polycube Maps

Huang et al. "L1-Based Construction of Polycube Maps from Complex Shapes." TOG 2014.

Align with coordinate axes

$\min _{X} \sum_{b_{i}}$

$$
\mathcal{A}\left(b_{i} ; X\right)\left\|n\left(b_{i} ; X\right)\right\|_{1}
$$

$$
\text { s.t. } \quad \sum_{b_{i}} \mathcal{A}\left(b_{i} ; X\right)=\sum_{b_{i}} \mathcal{A}\left(b_{i} ; X_{0}\right)
$$

Aside:

Convex Optimization Tools

Try lightweight options

Iteratively Reweighted Least Squares

$\min _{x} \sum_{i} \phi\left(x^{\top} a_{i}+b_{i}\right) \leftrightarrow\left\{\begin{aligned} \min _{x, y_{i}} & \sum_{i} y_{i}\left(x^{\top} a_{i}+b_{i}\right)^{2} \\ \text { s.t. } & y_{i}=\phi\left(x^{\top} a_{i}+b_{i}\right)\left(x^{\top} a_{i}+b_{i}\right)^{-2}\end{aligned}\right\}$

"Geometric median ${ }^{9}$

$\min _{x} \sum_{i}\left\|x-p_{i}\right\|_{2} \Longrightarrow\left\{\begin{aligned} x & \leftarrow \min _{x} \sum_{i} y_{i}\left\|x-p_{i}\right\|_{2}^{2} \\ y_{i} & \leftarrow\left\|x-p_{i}\right\|_{2}^{-1}\end{aligned}\right.$ Repeatedly solve linear systems

Alternating Projection

$$
\text { s.t. } p \in \mathcal{C}_{1} \cap \mathcal{C}_{2} \cap \cdots \cap \mathcal{C}_{k}
$$

\mathcal{C}_{1}

Augmented Lagrangians

$$
\begin{array}{rl}
\min _{x} & f(x) \\
\mathrm{s.t.} & g(x)=0 \\
& \downarrow
\end{array}
$$

Does nothing when

 $\min _{x} \quad f(x)+\frac{\rho}{2}\|g(x)\|_{2}^{2}$ constraint is satisfieds.t. $g(x)=0$

Add constraint to objective

Alternating Direction Method of Multipliers (ADMM)

$$
\begin{array}{rl}
\min _{x, z} & f(x)+g(z) \\
\text { s.t. } & A x+B z=c
\end{array}
$$

$$
\Lambda_{\rho}(x, z ; \lambda)=f(x)+g(z)+\lambda^{\top}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2}
$$

$x \leftarrow \arg \min _{x} \Lambda_{\rho}(x, z, \lambda)$
$z \leftarrow \arg \min _{z} \Lambda_{\rho}(x, z, \lambda)$
$\lambda \leftarrow \lambda+\rho(A x+B z-c)$

Frank-Wolfe

</aside>

https://en.wikipedia.org/wiki/Frank\�\�\�Wolfe_algorithm

Linearize objective, preserve constraints

Rough Plan

- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

Variational Calculus: Big Idea

Sometimes your unknowns are not numbers!

Can we use calculus to optimize anyway?

On the Board

$$
\min _{f} \int_{\Omega}\|\vec{v}(x)-\nabla f(x)\|_{2}^{2} d \vec{x}
$$

$$
\min _{\int_{\Omega} f(x)^{2} d \vec{x}=1} \int_{\Omega}\|\nabla f(x)\|_{2}^{2} d \vec{x}
$$

Gâteaux Derivative

$$
d \mathcal{F}[u ; \psi]:=\left.\frac{d}{d h} \mathcal{F}[u+h \psi]\right|_{h=0}
$$

Vanishes for all ψ at a critical point!

Analog of derivative at u in ψ direction

