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Administrative

 This week: Al will be out on Thursday!

2011

« Next Tuesday: different room (AA 2165)




Defining “Curve”

Curve = function?

f (1)




Subtlety

y(t) = (0,0)

Not all functions are curves!



Different from Calculus

B : : }X
Same curves?
fl (t) — (tv Zt)
B (t,2t) t <1
fQ(”‘{ (26— 1)4(t—1) t>1

http://sd271.k12.id.us /Ichs /faculty /sjacobson /ibphysics /compendium /12_files /image003



Graphs of Smooth Functions

http:/ /en.wikipedia.org /wiki/Singular_point_of_a_curve



Geometry of a Curve

A curveis a

set of points
with certain properties.

It is not a function.



Geometric Definition

Set of points that locally looks like a line.



Geometric Definition

Too restrictive?



Defining “Curve”

Curve = function?

f (1)




Defining “Curve”

Curve = function?

f (1)




Parameterized Curve

Now this is OK!




What was the problem here?

—2

+y

http://en.wikipedia.org /wiki/Singular_point_of_a_curve



FIXing

2_._ y I &
l
LS fi@&)#0
] i Non-zero velocity!
\ 1 )
il '
Ll \

http:/ /en.wikipedia.org /wiki/Singular_point_of_a_curve



Dependence of Velocity

On the board.:
Effect on velocity and acceleration.



Change of Parameter

Geometric measurements should be

invariant
to changes of parameter.




Arc Length

v (t)

On the board.
Independence of parameter

dt



Parameterization by Arc Length

http:/ /www.planetcle gg.com/projects /WarpingTextToSplines.html

/t Iy (8)]] dt

t(s) := inverse of s(t)
V(s) = (s(1))
Constant-speed parameterization



Same curve?



Moving Frame in 2D

Tangent: ©(s) ==y’ (s)
Izl =1

Normal: n(s) := Rot (g) T(s) = ((1) _01) 7(5)

https:/ /en.wikipedia.org /wiki /Frenet%E2%80%93Serret_formulas



Philosophical Point

Differential geometry “should” be
coordinate-invariant.

Referring to x and y is a hack!

(but sometimes convenient...)



Frenet-Serret Formulas

On the board:

i (Jz\;((%) B (—z?(s) km (zz\;(()>)

https:/ /en.wikip org/wiki/Fr

Use coordinates from the curve
to express its shape!



Radius of Curvature

r(s) := £(s)

https:/ /www.quora.com /What-is-the-base-difference-between-radius-of-curvature-and-radius-of-gyration



Fundamental theorem of the
local theory of plane curves:

k(s) characterizes a planar
curve up to rigid motion.



ldea of Proof

T(s) := (cosf(s),sinf(s))
— k(s) :=0'(s)

Image from DDG course notes by E. Grinspun

Provides intuition for curvature



Frenet Frame: Curves in R3

p T 0 Kk 0 T
d_ N — — K 0 T N
\ B 0 -7 0/ \B

* Binormal: TX N
* Curvature: In-plane motion
» Torsion: Out-of-plane motion

B

D)

FANER——

e s S
N




Fundamental theorem of the
local theory of space curves:

Curvature and torsion
characterize a 3D curve up
to rigid motion.



Representing
curves digitally



Traditional Approach

F(0,1,1)
F(0,0,1)

£(0,0,0) = f(0) F(1,1,1) = f(1)

Piecewise smooth approximations



Question

What is the arc length of
a cubic Bézier curve?

/ Iy (8)]] dt



Question

What is the arc length of
a cubic Bézier curve?



Only Approximations Anyway

{Bézier curves} C {v:R — R>}



Equally Reasonable Approximation

Piecewise linear



Big Problem

Boring differential structure



Finite Difference Approach

1

F'(@) ~ 5 [f(o+h) = f(@)

THEOREM: As Ah — 0, [insert statement].



Reality Check

THEOREMatementl



Two Key Considerations

» Convergence to
continuous theory

e Discrete behavior



Goal

Examine discrete theories
of differentiable curves.



Goal

Examine discrete theories
of differentiable curves.



Gauss Map

Normal map from curve to S!

4

Sl

http:/ /mesh.brown.edu/3DPGP-2007/pdfs /sg06-course01.pdf



Signed Curvature on Plane Curves

T(s) = (cosf(s),sinf(s))




Turning Numbers

@

-1 +2

http://mesh.brown

.edu/3D

O

0

PGP-2007/pdfs/sg06-course0l.pdf




Recovering Theta



Turning Number Theorem

k(s)ds = 21k

A “global” theorem!




Discrete Gauss Map

/—\

http:/ /mesh.brown.edu/3DPGP-2007/pdfs /sg06-course01.pdf



Discrete Gauss Map

/—\

Edges become
points

http:/ /mesh.brown.edu/3DPGP-2007/pdfs /sg06-course01.pdf



Discrete Gauss Map

/—\

Vertices
become arcs

http:/ /mesh.brown.edu/3DPGP-2007/pdfs /sg06-course01.pdf



Key Observation




What’s Going On?

Total change in curvature



What’s Going On?

=)o

Total change in curvature



What’s Going On?

9://{,ds ‘m% 0
r

Total change in curvature



Interesting Distinction

K1 7 K2
K1 Ko

0 0

Same integrated curvature



Interesting Distinction

K1 7 K2

Same integrated curvature



What’s Going On?

Integrated
iH: / K dj‘ quantity
I

Dual cell

Total change in curvature



Discrete Turning Angle Theorem

ds = d
/F“ zfrm
=)0,

= 27k

Structure Preservation!

R




Another Discretization

v
VL — 2/N sin 5




For Small 6

\\\\

| | SN L N T —
rg/wiki/Ta series

Same behavior in the limit



Does discrete curvature
converge in limit?

Yos/



sy

http:/ /www.grasshopper3d.com /forum /topics /offseting-3d-curves-component

Curves in 3D



http://upload .wikimedjia.or

Frenet Frame

g (T 0
d_ N — — K
S\ B 0

g /wikipedia/commons /6/6f/Frenet .png



Application

Kinked alpha helix
scanner

Structure Determination of Membrane Proteins Using Discrete Frenet Frame
and Solid State NMR Restraints
Achuthan and Quine
Discrete Mathematics and its Applications, ed. M. Sethumadhavan (2006)



Potential Discretization

T, = Pj+1 — Py

|pjr1 — pjl
Bj =1t;-1 Xt Tx = R(Bg, 0k)Tk—1
Nj — bj X tj Bk_|_1 — R(Tk,¢k)Bk
Discrete Frenet “Bond and torsion
frame angles”

(derivatives converge to
Kk and T, resp.)

Discrete frame introduced in:

The resultant electric moment of complex molecules
Eyring, Physical Review, 39(4):746—748, 1932.



Transfer Matrix

Tiv1 1;
Nz—l—l — Ri—l—l 7 Nz
Biiq B;

Discrete construction that works for fractal curves
and converges in continuum limit.

Discrete Frenet Frame, Inflection Point Solitons, and Curve Visualization
with Applications to Folded Proteins
Hu, Lundgren, and Niemi
Physical Review E 83 (2011)



http://upload .wikimedjia.or

Frenet Frame: Issue

g /wikipedia/commons /6/6f/Frenet .png

K =
fh 0 0
Nl l=|- 0 T
B O —7 0



Segments Not Always Enough

S

Discrete Elastic Rods
Bergou, Wardetzky, Robinson, Audoly, and Grinspun
SIGGRAPH 2 O O 8 http:/ /www.cs.columbia.edu/cg/rods/



Simulation Goal

http:/ /www.cs.columbia.edu/cg/rods/



Adapted Framed Curve

I = {’7(8)7 Ta may, m2}
Material
frame

http:/ /www.cs.columbia.edu/cg/rods/

Normal part encodes twist



Bending Energy

1
Frena(I) := 5 / K ds
T

Punish turning the steering wheel

kN =T’
— (T, ' T)T R (T, . ml)ml e (T, ' mg)mg
= (T - my)m1 + (T" - mo)ms

= W1y + WaMneo



Bending Energy

1
Ebend(F) = 5 / a(w% —Hu%) ds
I'

Punish turning the steering wheel

kN =T’
— (T, ' T)T R (T, . ml)ml e (T, ' mg)mg
= (T - my)m1 + (T" - mo)ms

= W1y + WaMneo



Twisting Energy

1
Etwist (F) = 5 / /BmQ ds
I}

Punish non-tangent change in material frame

/
m = my - mo
d /

= —(mq - ma) — mq - M,

dt

/
= —Mmq My



Twisting Energy

1
Etwist (F) = 5 / /BmQ ds
I}

Punish non-tangent change in material frame

/
m = my - mo

d /
= —(mq - ma) — mq - M,

dt

/
— — 11 - My €—_ Swapping m; and m,
does not affect E;,; ;!



Which Basis to Use

THERE IS MORE THAN ONE WAY TO FRAME A CURVE
RICHARD L. BISHOP

The Frenet frame of a 3-times continuously differentiable (that is, C3?) non-
degenerate curve in euclidean space has long been the standard vehicle for analysing
properties of the curve invariant under euclidean motions. For arbitrary moving
frames, that is, orthonormal basis fields, we can express the derivatives of the frame
with respect to the curve parameter in terms of the frame itself, and due to ortho-
normality the coefficient matrix is always skew-symmetric. Thus it generally has three
nonzero entries. The Frenet frame gains part of its special significance from the fact
that one of the three derivatives is always zero. Another feature of the Frenet frame
is that it is adapted to the curve: the members are either tangent to or perpendicula

o the curve. It is the purpose of this paper to show that there are other frames

hich have these same advantages and to compare them with the Frenet frame

1. Relatively parallel fields. We say that a normal vector field M along a curve
is relatively parallel if its derivative is tangential. Such a field turns only whatever
amount is necessary for it to remain normal, so it is as close to being parallel as
possible without losing normality. Since its derivative is perpendicular to it, a rel-
atively parallel normal field has constant length. Such fields occur classically in
the discussion of curves which are said to be parallel to the given curve. Indeed, if




Bishop Frame

T'=QxT
u =0 xu
v = Q X v

() := kB (“curvature binormal”)
Darboux vector

http:/ /www.cs.columbia.edu/cg/rods/



Bishop Frame

T'=QxT _ 9
U -V =
= xu No twist
— O % v (“parallelﬂ

transport”)

() := kB (“curvature binormal”)

http:/ /www.cs.columbia.edu/cg/rods/



Curve-Angle Representation

mi1 = ucost +vsind

—usin @ + v cos 6@

%,

Etwist(F) . — %/F,B(Hl)z dS

Degrees of freedom for elastic energy:
« Shape of curve
« Twist angle 0



Discrete Kirchoff Rods

Lower index: primal

Upper index: dual



Discrete Kirchoff Rods

T :—

le?]

Tangent unambiguous on edge



Discrete Kirchoff Rods

~—Turning angle

K, «— 2 tan Ll
2

Yet another
curvature!

Integrated curvature



Discrete Kirchoff Rods

1 2
0 21 €
Lo € e* 4
3 374 €
X3 €

¢. 2¢'~1 x ¢
? B); = — . . .
ki = 2tan - T [T et g

Orthogonal to osculating plane,
norm K;

Darboux vector



Bending Energy

ot (42

2
—@ZH (kB)il

Can extend for
natural bend

Convert to pointwise and integrate



Discrete Parallel Transport

P(T" Y =T
P(T" ' xTH=T""'xT

* Map tangent to tangent
« Preserve binormal
* Orthogonal /Y

http:/ /www.cs.columbia.edu/cg/rods/



Discrete Material Frame

m7 = u cosf’ + v'sin 6"
mq = —u' sin 6" 4+ v" cos 6’

http:/ /www.cs.columbia.edu/cg/rods/



Discrete Twisting Energy

6)72 L 6)73—1)2
l;

Eiwist(I') := [ Z (]

Note 6, can be arbitrary



Simulation

\omit{physics}
Worth /‘646//;(//./



Extension and Speedup

Discrete Viscous Threads

Miklés Bergou Basile Audoly Etienne Vouga Max Wardetzky Eitan Grinspun
Columbia University UPMC Univ. Paris 06 & CNRS Columbia University Universitit Gottingen Columbia University

http:/ /www.cs.columbia.edu/cg/threads/



Extension and Speedup

Discrete Viscous Threads

Miklés Bergou Basile Audoly Etienne Vouga Max Wardetzky Eitan Grinspun
Columbia University UPMC Univ. Paris 06 & CNRS Columbia University Universitit Gottingen Columbia University

"...the first numerica] =
fluid- mechamcal sewmg

et

http:/ /www.cs.columbia.edu/cg/threads/



Three different
curvature discretizations

Y 0
v, 281N — 2tan —
2 2



Easy theoretical object,
hard to use.

q T 0 k 0 T
- Nl=|-x 0 7|I|N
S\ B 0 —7 0/ \B



Next

7

A

v

http:/ /graphics.stanford.edu/data/3Dscanrep /stanford-bunny-cebal-ssh.jpg

http:/ /www.stat.washington.edu/wxs /images /BUNMID.gif



