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05: SURFACES

Mikhail Bessmeltsev

http: / /www-labs.iro.umontreal.ca/~bmpix /teaching /6112 /2018 /



PREVIOUSLY

VA

r(s) = v (s) = k(s) -n (s)




Today

Quantify how a surface

bends.

Curvature.



High-Level Questions

v A

(8)KG>0,KH>0 BEG>0,KH<0 (QKG=0,KH=0
elliptic concave elliptic convexe plane

(DKG=0,KH=>0 (e)KG=0,KH <0 HIKG<0,KH=0

parabolic concave parabolic convexe saddle (hyperbolic)

How tO
distinguish?

http://pubs.rsc.org/is /content /articlelanding /2013 /cp /c3cp44375b

) KG <0, KH<0 (MEKG<0,KH>0
hyperbolic-like hyperbolic-like



High-Level Questions

Does curvature
depend on
space /deformation?

http: / /thegeometryofbending.blogspot.com



High-Level Questions

/

KJZERO CURVATURE POSITIVE CURVATURE  NEGATIVE CURVATURE

http: / /starchild.gsfc.nasa.gov /docs /StarChild /questions /question35.



Practical Application

The Best Way to Eat Pizza, According to

Science, Means You Probably Have Been
Do

f Share this

T B https: / /www.bustle.com /articles /43697-the-best-way-to-

eat-pizza-according-to-science-means-you-probably-have-

Cranmratiilatinme New Varkbrare Hearese mramf that v ares ammaroarntdihvy




Bocall
Frenet Frame: Curvesin R3

p T 0 k 0O T
d_ N = — K 0 T N
>\ B 0 -7 0/ \B

* Binormal: T X N
* Curvature: In-plane motion
» Torsion: Out-of-plane motion

Theorem:

Curvature and torsion determine
geometry of a curve up to rigid motion.



Can we say something about
surface curvature using
curve curvature /torsion?



Bocall:
Gauss Map

Normal map from curve to S!

4

http: / /mesh.brown.edu,/3DPGP-2007

pdfs/sg06-course01.pdf



Unit Normal




/&M/‘éigned Curvature on Plane
Curves

T(s) = (cosf(s),sinf(s))

T'(s)

- HS,( ). (— sin 9(5))
- cos 0(s)
= k(s) - n(s)



/&M/éigned Curvature on Plane
Curves

T(s) = (cosB(s),sinf(s))

0'(s) = k(s)
7s) Tangent rotates due to curvature
7(s) =

T'(s)

- HS,( ). (— sin H(S))
- cos 0(s)
= k(s) - n(s)



/&M/éigned Curvature on Plane
Curves

T(s) = (cosB(s),sinf(s))

0'(s) = k(s)
0s) Normal rotates due to curvature
7(s) >

T'(s)

- HS,( ). (— sin H(S))
- cos 0(s)
= k(s) - n(s)



Gauss Map for Surface

http: / /mathworld.wolfram.com /images /eps-gif /UnitSphere_800.gif



Gauss Map for Surface

Derivative?

http: / /mathworld.wolfram.com /images /eps-gif /UnitSphere_800.gif



Smooth maps

®(x)




Smooth maps

®(x)




Smooth maps

P(x)
d
o o(y(s))




Smooth maps

®(x)




Smooth maps

P(x) 0:M > N




Smooth maps

®(x)




Differential of a Map

Definition dp:TyM — Ty )N

d
do - y'(s) = QD(;/S(S))

Linear map of tangent spaces

Image from Wikipedia



Calculation on Boarad

Where is the
derivative of N?

Spoiler alert: T,S



Second Fundamental Form

DN, : T,S — T,S

l

Ap(V, W) := =(DNp(V), W)

“Shape operator”



Relationship to Curvature of
curves




A, Is Self-Adjoint

(on board)



Principal Directions and
Curvatures

Ko = K1 COS> 0 + Ko sin® 6

K1, k7 eigenvalues of A ; T, T, eigenvectors of A



Principal Curvatures




Extrinsic Curvature

http:/ /www.sciencedirect.com/science /article /pii/S0010448510001983



INnterpretation

both have the same Gaussian curvature in the blue/purple colours in green

Positive and negative curvature is ignored, Saddle surfaces are shown Inflections are shown

0,000
136990.45
313601.78
£62521.56
988052.50
fat
-938052.7

. -562521.5
. -313601.7

-136990.4

-0.000

<

<
Curvature Evaluation Curvature Evaluation

Type| Princ. Max ¥ Type Mean ¥

Principal Min and Max
can change the direction
of evaluation and give
sharp color changes that
don’t actually indicate
any errors

Mean avoids this by averaging both directions

0,000

446,287

1021.651

1832581

3218.874

RAat

-3218.875

-1832.581

-1021,651

-446.,287

-0.000

http:/ /www.aliasworkbench.com /theoryBuilders /TB7_evaluate3.htm



Unigueness Result

Theorem.:
A smooth surface is determined up to

rigid motion by its first and second
fundamental forms.



Who Cares?

Curvature
completely determines
local surface geometry.



Use as a Descriptor

Gaussian

http:/ /graphics.ucsd.edu/~iman/Curvature/



Smoothing and Reconstruction

Linear Surface Reconstruction from Discrete Fundamental Forms on Triangle
Meshes
Wang, Liu, and Tong
Computer Graphics Forum 31.8 (2012)



Fairness Measure

Triangular Surface Mesh Fairing
via Gaussian Curvature Flow
Zhao, Xu
Journal of Computational and
Applied Mathematics 195.1-2
(2006)

... and many more




Guiding Rendering

Highlight Lines for Conveying
Shape
DeCarlo, Rusinkiewicz
NPAR (2007)

http:/ /www.cs.rutgers.edu/~decarlo /pubs /npar07.pdf
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input mesh

Guiding Meshing

direction fields sampling

Anisotropic Polygonal Remeshing
Alliez et al.
SIGGRAPH (2003)

meshing



Challenge on Meshes

Curvature is a
second derivative,
but triangles are flat.

http: / /upload.wikimedia.org /wikipedia/commons /f/fb /Dolphin_ triangle_mesh.png



Standard Citation

ESTIMATING THE TENSOR OF CURVATURE OF A
SURFACE FROM A POLYHEDRAL APPROXIMATION

Gabriel Taubin

(CCV 1995

IBM T.].Watson Research Center
P.O.Box 704, Yorktown Heights, NY 10598

taubin@ewatson.ibm.com

Abstract

Estimating principal curvatures and principal direc-
tions of a surface from a polyhedral approximation
with a large number of small faces, such as those pro-
duced by iso-surface construction algorithms, has be-
come a basic step in many computer vision algorithms.
Particularly in those targeted at medical applications.
In this paper we describe a method to estimate the ten-
sor of curvature of a surface at the vertices of a poly-
hedral approximation. Principal curvatures and prin-
cipal directions are obtained by computing in closed
form the eigenvalues and eigenvectors of certain 3 x 3

symmetric matrices defined by integral formulas, and
F i tman

Alacalsr malotadd + o st adiar

s oo s b e b e e

mate principal curvatures at the vertices of a triangu-
lated surface. Both this algorithm and ours are based
on constructing a quadratic form at each vertex of
the polyhedral surface and then computing eigenval-
ues (and eigenvectors) of the resulting form, but the
quadratic forms are different. In our algorithm the
quadratic form associated with a vertex is expressed as
an integral, and is constructed in time proportional to
the number of neighboring vertices. In the algorithm of
Chen and Schmitt, it is the least-squares solution of an
overdetermined linear system, and the complexity of
constructing it is quadratic in the number of neighbors.

2 The Tensor of Curvature




Taubin Matrix

1 T
M = / koTyT, db
2T ) _ o

Ko := K1 cos> 0 + Ko sin?
Ty := T cosO + T5sin 6



Taubin Matrix

1 T
M = koTyT, db
2T ) _ o

 Eigenvectors are N, T, and T,

. 3 1 1 3
 Eigenvalues are Sk ok and Sky + ko



Taubin's Approximation

e -
M:=— [ kgTyT, db

21 ) _ o

!
M’Ui . — Z wzg“zyTz]Tz}_

vV~



Taubin's Approximation

Uj

Divided difference
approximation

Z wwﬁszwTT

vV~



Problem

http:/ /iristown.engr.utk.edu/~koschan/paper /CVPRO1.pdf

Local estimates are noisy



Main Take-Away

Use application to motivate
choice of curvature.

Simulation, smoothing, analysis, meshing,
nonphotorealistic rendering, ...



Another Example

Estimating Curvatures and Their Derivatives on Triangle Meshes

Szymon Rusinkiewicz
Princeton University

Abstract

The computation of curvature and other differential prop-
erties of surfaces is essential for many techniques in analysis
and rendering. We present a finite-differences approach for
estimating curvatures on irregular triangle meshes thar may
be thought of as an extension of a common method for esti-
mating per-vertex normals. The technique is efficient in space
and time, and results in significantly fewer outlier estimates
while more broadly offering accuracy comparable to existing
methods. It generalizes naturally to computing derivatives of
curvature and higher-order surface differentials.

1 Introduction

As the acquisition and use of sampled 3D geometry become
more widespread, 3D models are increasingly becoming the
focus of analysis and signal processing techniques previously
applied to data types such as audio, images, and video. A key
component of algorithms such as feature detection, filtering,
and indexing, when applied to both geometry and other data
types, is the discrete estimation of differential quantities. In

3DPYT 04

Figure 1: Left: suggestive contours for line drawings [DeCarlo
et al. 2003] are a recent example of a driving application for the
estimation of curvatures and derivatives of curvature. Right: sug-
gestive contours are drawn along the zeras of curvaiure in the
view direction, shown here in blue, but only where the derivative
of curvature in the view direction is positive (the curvature deriva-
tive zeros are shown here in red). This paper describes a general



Second Fundamental Form Matrix

I :=(D,N D,N)

—

ON - ON
_.u —.u
ok = Ok
ou oOv

U

Assume u, v are orthogonal



Second Fundamental Form Matrix



Finite Difference Per-Face




Average for Per-Vertex

» Rotate tangent plane about
cross product of normals

» Average using Voronol
weights



Completely Different Formula

Consistent Computation of First- and Second-Order
Differential Quantities for Surface Meshes

Xiangmin Jiao*

Dept. of Applied Mathematics & Statistics

Stony Brook University

Abstract

Differential quantities, including normals, curvatures, principal di-
rections, and associated matrices, play a fundamental role in geo-
metric processing and physics-based modeling. Computing these
differential quantities consistently on surface meshes is important
and challenging, and some existing methods often produce incon-
sistent results and require ad hoc fixes. In this paper, we show that
the computation of the gradient and Hessian of a height function
provides the foundation for consistently computing the differential
quantities. We derive simple, explicir formulas for the transforma-
tions between the first- and second-order differential quantities (i.e.,
normal vector and curvature matrix) of a smooth surface and the
first- and second-order derivatives (i.e., gradient and Hessian) of its
corresponding height function. We then investigate a general, flex-
ible numerical framework to estimate the derivatives of the height
function based on local polynomial fittings formulated as weighted
least squares approximations. We also propose an iterative fitting

Hongyuan Zha'
College of Computing
Georgia Institute of Technology

often require ad hoc fixes to avoid crashing of the code, and their
effects on the accuracy of the applications are difficult to analyze.

The ultimate goal of this work is to investigate a mathematically
sound framework that can compute the differential quantities con-
sistently (i.e., satisfying the intrinsic constraints) with provable con-
vergence on general surface meshes, while being flexible and easy
to implement. This is undoubtly an ambitious goal. Although we
may have not fully achieved the goal, we make some contributions
toward it. First, using the singular value decomposition [Golub and
Van Loan 1996] of the Jacobian matrix, we derive explicit formulas
for the transformations between the first- and second-order differ-
ential quantities of a smooth surface (i.e., normal vector and cur-
vature matrix) and the first- and second-order derivatives of its cor-
responding height function (i.e., gradient and Hessian). We also
give the explicit formulas for the transformations of the gradient
and Hessian under a rotation of the coordinate system. These trans-
formations can be obtained without forming the shape operator and
the associated combutation of its eicenvalues or eicenvectors We




Completely Different Formula

Consistent Computation of First- and Second-Order
Differential Quantities for Surface Meshes

Xiangmin Jiao™ Hongyuan Zha'
Dept. of Applied Mathematics & Statistics College of Computing
Stony Brook University Georgia Institute of Technology
Abstract often require ad hoc fixes to avoid crashing of the code, and their

effects on the accuracy of the applications are difficult to analyze.

Differential quantities, including normals, curvatures, principal di-
rections, and associated matrices, play a fundamental role in geo-

! Theorem 3 The mean and Gaussian curvature of the height func,- |
: R? — Rare

The ultimate goal of this work is to 1|1vextmate a II'IEllhEI'IlatICElHV

(VH'H(V ) det(H)

€4
and Hessian under a rotation of the coordinate system. These trans-

formations can be obtained without forming the shape operator and
the associated computation of its eigenvalues or eigenvectors. We

and kc

ible e herg
function based on Ioca] polynomial ﬁmnga formulated as wemhted
least squares approximations. We also propose an iterative fitting

crhama to imnecara acconracy  Thic framanrarl- coanaralizas ool




Conserved Quantity Approach

Discrete Differential-Geometry Operators

for Triangulated 2-Manifolds

Mark Meyer!, Mathieu Desbrun':2, Peter Schréder!, and Alan H. Barr!

L Caltech

e Visaalization and Math i

Summary. This paper proposes a unified and consistent set of flexible tools to
approximate important geometric attributes, including normal vectors and cur-
vatures on arbitrary triangle meshes. We present a consistent derivation of these
first and second order differential properties using averaging Voronoi cells and the
mixed Finite-Element/Finite-Volume method, and compare them to existing for-
mulations. Building upon previous work in discrete geometry, these operators are
closely related to the continuous case, guaranteeing an appropriate extension from
the continuous to the discrete setting: they respect most intrinsic properties of the
continuous differential operators. We show that these estimates are optimal in ac-
curacy under mild smoothness conditions, and demonstrate their numerical quality.
We also present applications of these operators, such as mesh smoothing, enhance-
ment, and quality checking, and show results of denocising in higher dimensions,
such as for tensor images.



Discrete differential geometry

Structure preservation:

— Keeping properties from the continuous
abstraction exactly true in a discretization.



Gauss-Bonnet Theorem

KdA—I—/ k,ds = 2mx (M)
oM

1 A

Gaussian 2-2g

curvature .
Geodesic curvature

(curvature projected
on tangent plane)



For Polygonal Cells

/KdAZQ?T—ZEj
4 j

Change is in
normal
direction

Turning angle
integrated
curvature

Figure from the paper



Flip Things Backward

DEFINITION:

Gaussian curvature integrated over region V
is given by

/KdAIQ?T—ZHj
4 j

Divide by area for curvature estimate



Booall:
Fuler Characteristic




’e""’“//'(:onseq uences for Triangle

Meshes

V—E+F =Y

¥

2 = 3F

Closed mesh: Easy estimates!

“Each edge is
adjacent to two
faces. Each face
has three edges.”




’e""’“//'(:onseq uences for Triangle

Meshes

1
V F—X

¥

2 = 3F

Closed mesh: Easy estimates!

“Each edge is
adjacent to two
faces. Each face
has three edges.”




/ewa//;C

onseqgquences for Triangle
Meshes

1
-
|

F =~ 2V

Closed mesh: Easy estimates!



Discrete Gauss-Bonnet

dA = dA
K=K

Partition the surface



Discrete Gauss-Bonnet

Apply our definition



Discrete Gauss-Bonnet

dA = dA
K=K

Pull out constants



Discrete Gauss-Bonnet

dA = dA
fraa=x ]

=27V — 7 F

Consider sum over triangles



Discrete Gauss-Bonnet

dA = dA
K=K

=2V —7nF
o =72V — F)
By definition | _o, = .ged/>



Mean Curvature Normal

E(M) = Area(M)
VE(p)=Hn

“Variational derivative”

VE(p) =0Vp €int M
Minimal surfaces



Area Functional for Meshes




Single Triangle




Single Triangle: Derivatives

D=DnN+Pc€+pi€]
1
A= 55\/p%‘|‘pz¢
=0
e O 1




Single Triangle: Complete

—

P

D =P+ pe€+piré€;
1
A= 55\/10727, —I—pi
1
VA VzA = —be|

2




Ratio of Base to Height




Do =P — (" — q)

Height Vector

tan «
tan o + tan S




Alternative Gradient Formula

VA

1

§bé’l

1 b -
—Th
2 ||h]

—(cota+ cot B) |p —

(7= q)

tan o
tan a + tan S |

5 (= 7) cot o+ (P’ — ) cot )



Summing Around a Vertex
VA= — Z(COt aj + cot Bj)(ﬁ— Q})

1
VzA = 5((17—?7)c0toz+ (p'— q) cot B)

Vanishes as you
refine the mesh




Integrated Mean Curvature
Normal

DEFINITION:

The mean curvature normal integrated over
region V is given by

1

VzA = 5 Z(cot a; + cot B;)(p— q;)
J

Divide by area for curvature estimate



Pipeline
- Compute integrated H, K

» Divide by area of cell for
estimated value



Another Mean Curvature

Processing (2012)

Used for tr1angulat10n apphcatmns



uned for Variational Applications

Computing discrete shape operators on general meshes

Eitan Grinspun Yotam Gingold Jason Reisman Denis Zorin
Columbia University New York University New York University New York University
eitan@cs.columbia.edu  gingold@mrl nyu.edu Jasonr@mrlnyu.edu dzorin@mrl.nyu.edu
Abstract
Discrete curvature and shape operators, which ¢ Cotan ut dir: Theirs
are essential in a variety of applications: simulati [ obj
geometric data processing. In many of these appl by me
approaches for formulating curvature operators ighly
expensive methods used in engineering applicatic chni
computer graphics.
We propose a simple and efficient formulation for [ prob
degrees of freedom associated with normals. On S sim,
curvature operators commonly used in graphics; mber

and produces consistent results for different rypes

—




Tuned for Robustness

Eurographics Symposium on Geometry Processing (2007)
Alexander Belyaev, Michael Garland (Editors)

Robust statistical estimation of curvature
on discretized surfaces

Evangelos Kalogerakis, Patricio Simari, Derek Nowrouzezahrai and Karan Singh

Dynamic Graphics Project, Computer Science Department, University of Toronto

Initial weighting

Abstract

A robust statistics approach to curvature estimation on discretely samy
point clouds, is presented. The method exhibits accuracy, stability and

sampled surfaces with irregular configurations. Within an M-estimation

noise and structured outliers by sampling normal variations in an ad

each point. The algorithm can be used to reliably devive higher order d)
surface normals while preserving the fine features of the normal and «
with state-of-the-art curvature estimation methods and shown to impro
across ground truth test surfaces under varying tessellation densities |
noise. Finally, the benefits of a robust statistical estimation of curvature
applications of mesh segmentation and suggestive contowr rendering,

Categories and Subject Descriptors (according w ACM CCS):  1.3.5 [Computatio ometry an
ing|: Geometric algorithms, languages, and systems; curve, surface, solid, and object representations.

Feature
boundary

404

03

0.2

08

0.7

0.5



Alternative Strategies

» Locally fit a smooth surtace
What type of surface? How to fit?

e Different formula

Function of curvature? Where on mesh?
Convergence of approximation?

e [ earn curyature
computation

Tune for application? Training data?



Practical Advice

Try as many as you can.

Most are easy to implement!



Assignment: Subdivision

D3




Assignment: Subdivision

 Each iteration
— Subdivision refines mesh

» Converges

* Questions:
— Where to place new vertices?
— How to connect them?



Triangular subdivision

New vertices

Old vertices _— 5 :

+ Every face replaced by 4 new triangular faces

 Insert new vertices (one per old edge)
— Green vertices are associated with old edges

« Update positions of old vertices



Loop’'s scheme

» List of weights called subdivision mask or stencil

Updating old vertices Rule for new vertices
(n — vertex valence) 1
1 8
WI’]
1 3 3
8 8
1
1 1
64 Q
Wn = n —n 8

2m\\?
40 — (3 + 2 cos (7»



The original control net




After Ist 1teration




After 2nd Iteration




After 3rd iteration




Heole pheme




Loop Limit Surface

Limit surface is C? almost everywhere



