
IFT 6112
APPLICATIONS OF

CURVATURE
http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/

Mikhail Bessmeltsev

MESH SIMPLIFICATION

MESH SIMPLIFICATION

Stone Age Tools

Image from Wikipedia

Image from CGAL tutorial

Why simplify meshes?

• Faster rendering
• Faster collision detection
• Storage/transmission/etc.

Why simplify meshes?

• Faster rendering: Level of Detail

Rough, if the mesh is far Fine, if the mesh is close

Requirements

• Reduce # of polygons
• Preserve the shape

– Geometry
• Features

– Topology
– Other constraints?

Image from https://gafferongames.com/post/tessellating_the_go_stone/

Complexities

Orientable 2-manifolds with
• Arbitrary genus
• Arbitrary # of connected components
• With/without boundaries

12,000 2,000 300

Approximation error

9
size

e
rro

r

Approach

• Local operations
– Removing edges or vertices
– Keeping track of the geometry/topology

– Keep score
• how much will we lose if we remove a vertex?

Approach

• Each operation introduces error
• Quantify?

Decimation

• Vertex removal

Remove vertex → hole → triangulate

#𝑉 → #𝑉 − 1

#𝐹 → #𝐹 − 2

Decimation

• Vertex removal
#𝑉 → #𝑉 − 1

#𝐹 → #𝐹 − 2

Decimation

• Edge collapse
#𝑉 → #𝑉 − 1

#𝐹 → #𝐹 − 2

Measuring error

𝑑 , =?

How much did we distort the shape?

Measuring error

𝑑 , =?

How much did we distort the shape?

Option: Hausdorff distance

𝑑𝐻 𝑥,𝑦

= max{sup
𝑥∈X

inf
𝑦∈Y

𝑑(𝑥, 𝑦) , sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦)}

Measuring error

𝑑 , =?

How much did we distort the shape?

Option: Hausdorff distance

𝑑𝐻 𝑥,𝑦

= max{sup
𝑥∈X

inf
𝑦∈Y

𝑑(𝑥, 𝑦) , sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦)}

Hard to
compute!

Local Error Control

2𝜋 −෍𝛼𝑖

Vertex-plane distance Curvature

Algorithm

• Repeat

– Select the element with minimal error
– Perform simplification operation

(remove/contract)
– Update error (local/global)
– Preserve structure

• Until mesh size / quality is achieved

Data Structures

• Easy access to neighbors
– Filling holes
– Computing cost

• Priority queue/heap
– Quick access to the cheapest element

Vertex Removal Algorithm

• Simplification operation: Vertex
removal

• Error metric: Distance to average
plane

• May preserve mesh features
(creases)

Vertex Removal Algorithm

• Characterize local
topology/geometry

• Classify vertices as removable or
not

• Repeat
– Remove vertex
– Triangulate resulting hole
– Update error of affected vertices

• Until reduction goal is met

Characterizing structure

Simple

Boundary

Complex

Interior

Corner

Decimation Criterion

• EMAX – user defined parameter
• Simple vertex:

– Distance of vertex to the face loop average plane < EMAX

• Boundary vertices:
– Distance of the vertex to the new boundary edge < EMAX

DistanceDistance

Triangulating the Hole
• Vertex removal produces non-planar loop

– Split loop recursively
– Split plane orthogonal to the average plane

• Control aspect ratio
• Triangulation may fail

– Vertex is not removed

Example

26

Simplifier

Pros and Cons

• Pros:
– Efficient
– Simple to implement and use

• Few input parameters to control quality
– Reasonable approximation
– Works on very large meshes
– Preserves topology
– Vertices are a subset of the original mesh

• Cons:
– Error is not bounded

• Local error evaluation causes error to accumulate

27

Edge Collapse Algorithm

• Simplification
operation:
– Edge collapse (pair

contraction)

• Error metric:
distance, pseudo-global

28

Edge Collapse Algorithm

• Simplification
operation:
– Edge collapse (pair

contraction)

• Error metric:
distance, pseudo-global

29

Where should we
place the vertex?

Distance Metric: Quadrics

• Choose point closest to
set of planes (triangles)

30

Sum of squared distances to set of planes is
quadratic  convex

Quadrics

• Plane
Ax + By + Cz + D = 0

p = [A, B, C, D], v = [x, y, z, 1], v pT = 0

• Quadratic distance between v and p:
dp(v) = (v pT)2

= (v pT) (p vT) = v (pTp) vT

= v KP vT

31





















2

2

2

2

DCDBDAD

CDCBCAC

BDBCBAB

ADACABA

KP =

Distance to Set of Planes

32

𝑑𝑀 𝑣 = ෍

𝑝∈𝑝𝑙𝑎𝑛𝑒𝑠(𝑣)

𝑑𝑝 𝑣 = ෍

𝑝∈𝑝𝑙𝑎𝑛𝑒𝑠(𝑣)

𝑣𝑇𝐾𝑝𝑣 = 𝑣𝑇 ෍

𝑝∈𝑝𝑙𝑎𝑛𝑒𝑠 𝑣

𝐾𝑝 𝑣 = 𝑣𝑇𝑄𝑣𝑣
𝑇

After contracting edge between 𝑣1 and 𝑣2
• place vertex at the minimum of 𝑑𝑀 𝑣
• set 𝑄𝑣 = 𝑄𝑣1 + 𝑄𝑣2

Contracting Two Vertices
• Goal: Given edge e = (v1,v2), find

contracted
v = (x,y,z,1) that minimizes d(v):

∇𝑣𝑑 = 0

• Solve system of linear normal equations:

• If no solution - select the edge midpoint
33



















=



















1

0

0

0

v

1000

qqqq

qqqq

qqqq

34333231

24232221

14131211

Algorithm
• Compute QV for all the mesh vertices

• For each valid pair, compute
– optimal vertex position
– its error

• Store all valid pairs in a priority queue (sorted by 𝑑)

• While reduction goal not met
– Take an edge from the queue, contract
– Update the priority queue with new valid pairs

34

Examples

35

Dolphin (Flipper)

Original - 12,337 faces

2,000 faces
300 faces (142 vertices)

Pros and Cons

• Pros
– Error is bounded
– Allows topology simplification
– High quality result
– Quite efficient

• Cons
– Difficulties along boundaries
– Difficulties with coplanar planes
– Introduces new vertices not present in the

original mesh

36

MESH SALIENCY

How to choose a viewpoint to
show a mesh?

Saliency

• Gaussian curvature
• Mean curvature
• Silhouette complexity (?)

Curvature alone is not enough!

Idea

• 𝑘𝜎=Average mean curvature over
neighborhood of radius σ

• Compute |𝑘𝜎 − 𝑘2𝜎|

MEAN CURVATURE FLOW

What will happen to the curve?

Smoothing!

• aka Curve Shortening Flow
• (eventually) Produces convex curves!

Formalization

𝜕𝛾

𝜕𝑇
=
𝜕2𝛾

𝜕𝑠2

Formalization

𝜕𝛾

𝜕𝑇
=
𝜕2𝛾

𝜕𝑠2
= 𝑘𝑛

3D

Laplacian smoothing

Laplacian Smoothing

