IFT 6112 08 – DISCRETE LAPLACIAN

http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/

Mikhail Bessmeltsev

IFT 6112 08 – DISCRETE LAPLACIAN

http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/

Mikhail Bessmeltsev

Recall: Planar Region

Discretizing the Laplacian

Today's Approach

Finite element method (FEM) *First-order Galerkin*

http://www.stressebook.com/wp-content/uploads/2014/08/Airbus_A320_k.jpg

Integration by Parts to the Rescue

Slightly Easier?

 $g = \Delta f$

$$
g = \Delta f \qquad \Rightarrow \langle g, \psi \rangle = \langle \Delta f, \psi \rangle
$$

For any **test function** ψ

Uverview:
Galerkin FEM Approach

$$
g = \Delta f
$$

\n
$$
\implies \int \psi g \, dA = \int \psi \Delta f \, dA
$$

For any **test function** ψ

Galerkin FEM Approach

$$
g = \Delta f
$$

\n
$$
\implies \int \psi g \, dA = \int \psi \Delta f \, dA = -\int (\nabla \psi \cdot \nabla f) \, dA
$$

\nFor any **test**
\n**function** ψ

Overview:
Galerkin FEM Approach

$$
g = \Delta f
$$

$$
\implies \int \psi g \, dA = \int \psi \Delta f \, dA = -\int (\nabla \psi \cdot \nabla f) \, dA
$$

Approximate
$$
f \approx \sum_i a_i \psi_i
$$
 and $g \approx \sum_i b_i \psi_i$
\n \Rightarrow Linear system $\sum_i b_i \langle \psi_i, \psi_j \rangle = -\sum_i a_i \langle \nabla \psi_i, \nabla \psi_j \rangle$

Overview: Galerkin FEM Approach

$$
\Rightarrow \int \psi g \, dA = \int \psi \Delta f \, dA = -\int (\nabla \psi \cdot \nabla f) \, dA
$$

Approximate
$$
f \approx \sum_i a_i \psi_i
$$
 and $g \approx \sum_i b_i \psi_i$
\n \Rightarrow Linear system $\sum_i b_i \langle \psi_i, \psi_j \rangle = -\sum_i a_i \langle \nabla \psi_i, \nabla \psi_j \rangle$

Mass matrix: $M_{ij} := \langle \psi_i, \psi_j \rangle$ Which Stiffness matrix: $L_{ij} := \langle \nabla \psi_i, \nabla \psi_j \rangle$ basis? $\implies Mb=La$

Important to Note

Not the only way

to approximate the Laplacian operator.

- Divided differences
- Higher-order elements
- Boundary element methods
- Discrete exterior calculus

• **…**

L ² Dual of a Function Function $f: M \to \mathbb{R}$ Operator $\mathcal{L}_f: L^2(M) \to \mathbb{R}$ $\mathcal{L}_f[g] := \int_M f(x)g(x) dA$ **Test function**

Observation

Can recover function from dual

Dual of Laplacian

Space of test functions (no boundary!): $\{g \in L^{\infty}(M) : g|_{\partial M} \equiv 0\}$

$$
\mathcal{L}_{\Delta f}[g] = \int_M g \Delta f \, dA
$$

$$
= -\int_M \nabla g \cdot \nabla f \, dA
$$

Use Laplacian without evaluating

Galerkin's Approach

Choose one of each:

•Function space

•Test functions

Often the same!

One Derivative is Enough

 $\mathcal{L}_{\Delta f}[g] = -\int_M \nabla g \cdot \nabla f \, dA$

First Order Finite Elements

Image courtesy K. Crane, CMU

One "hat function" per vertex

Representing Functions

$$
\|\nabla f\| = \frac{1}{\ell_3 \sin \theta_3} = \frac{1}{h}
$$

Recall: Single Triangle: Complete

 $\vec{p} = p_n \vec{n} + p_e \vec{e} + p_\perp \vec{e}_\perp$ $A = \frac{1}{2}b\sqrt{p_n^2 + p_\perp^2}$ $\nabla_{\vec{p}}A=\frac{1}{2}b\vec{e}_{\perp}$

Similar expression

Recall: Single Triangle: Complete

Similar expression

What We Actually Need
\n
$$
\mathcal{L}_{\Delta f}[g] = -\int_M \overline{\nabla g \cdot \nabla f} dA
$$

$$
\nabla f = \frac{e_{23}^{\perp}}{2A}
$$
\n
$$
\begin{aligned}\n\n\sqrt{\nabla f} &= \frac{e_{23}^{\perp}}{2A} \\
h\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\int_{T} \langle \nabla f, \nabla f \rangle \, dA = A \|\nabla f\| 2 \\
&= \frac{A}{h^2} = \frac{b}{2h} \\
&= \frac{1}{2} (\cot \alpha + \cot \beta)
$$

What We Actually Need

$$
\mathcal{L}_{\Delta f}[g] = -\int_M \nabla g \cdot \nabla f dA
$$

Case 2: Different vertices

$$
\int_{T} \langle \nabla f_{\alpha}, \nabla f_{\beta} \rangle dA = A \langle \nabla f_{\alpha}, \nabla f_{\beta} \rangle
$$

= $\frac{1}{4A} \langle e_{31}^{\perp}, e_{12}^{\perp} \rangle = -\frac{\ell_1 \ell_2 \cos \theta}{4A}$
= $\frac{-h^2 \cos \theta}{4A \sin \alpha \sin \beta} = \frac{-h \cos \theta}{2b \sin \alpha \sin \beta}$
= $-\frac{\cos \theta}{2 \sin(\alpha + \beta)} = -\frac{1}{2} \cot \theta$

Summing Around a Vertex

$$
\sqrt{\beta_i}
$$
 $\langle \nabla h_p, \nabla h_p \rangle = \frac{1}{2} \sum_i (\cot \alpha_i + \cot \beta_i)$

$$
\theta_1
$$
\n
$$
\theta_2
$$
\n
$$
\langle \nabla h_p, \nabla h_q \rangle = \frac{1}{2} (\cot \theta_1 + \cot \theta_2)
$$

Recall: Summing Around a Vertex

$$
\nabla_{\vec{p}}A = \frac{1}{2}\sum_j(\cot\alpha_j + \cot\beta_j)(\vec{p} - \vec{q}_j)
$$

$$
\nabla_{\vec{p}}A = \frac{1}{2}((\vec{p} - \vec{r}) \cot \alpha + (\vec{p} - \vec{q}) \cot \beta)
$$

Same weights up to sign!

THE COTANGENT LAPLACIAN

 $L_{ij} = \begin{cases} \frac{1}{2} \sum_{i \sim k} (\cot \alpha_{ik} + \cot \beta_{ik}) \\ -\frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij}) \\ 0 \end{cases}$ if $i = j$ if $i \sim j$ otherwise $\dot{\imath}$ $\overline{\alpha_{ij}}$ β_{ij}

Poisson Equation

 $\Delta f = q$

http://nylander.wordpress.com/2006/05/24/finite-element-method-fem-solution-to-poisson%E2%80%99s-equation-ontriangular-mesh/

Weak Solutions

FEM Hat Weak Solutions

 $\int_M h_i \Delta f dA = \int_M h_i g dA \ \forall \text{ hat functions } h_i$

$$
\int_{M} h_{i} \Delta f dA = -\int_{M} \nabla h_{i} \cdot \nabla f dA
$$
\n
$$
= -\int_{M} \nabla h_{i} \cdot \nabla \sum_{j} a_{j} h_{j} dA
$$
\n
$$
= -\sum_{j} a_{j} \int_{M} \nabla h_{i} \cdot \nabla h_{j} dA
$$
\n
$$
= \sum_{j} L_{ij} a_{j}
$$

Stacking Integrated Products

 $\begin{pmatrix} \int_M h_1 \Delta f \, dA \\ \int_M h_2 \Delta f \, dA \\ \vdots \\ \int_M h_{|V|} \Delta f \, dA \end{pmatrix} = \begin{pmatrix} \sum_j L_{1j} a_j \\ \sum_j L_{2j} a_j \\ \vdots \\ \sum_j L_{|V|j} a_j \end{pmatrix} = L \vec{a}$

Multiply by Laplacian matrix!

Problematic Right Hand Side

$$
\int_M h_i \Delta f \, dA = \int_M h_i g \, dA \,\,\forall \,\, \text{hat functions} \,\, h_i
$$

Product of hats is quadratic

A Few Ways Out

• **Just do the integral**

"Consistent" approach

- **Approximate some more**
- **Redefine** *g*

A Few Ways Out

• **Just do the integral**

"Consistent" approach

• **Approximate some more**

• **Redefine** *g*

The Mass Matrix

 $A_{ij} := \int_M h_i h_j dA$

- **Diagonal elements:** Norm of h_i
- **Off-diagonal elements: Overlap between** h_i **and** h_j

Consistent Mass Matrix

Non-Diagonal Mass Matrix

Properties of Mass Matrix

- Rows sum to one ring area / 3
- Involves only vertex and its neighbors
- Partitions surface area

Issue: Not trivial to invert!

Use for Integration

 $\int_M f = \int_M \sum_i a_j h_j(\cdot 1)$ $= \int_M \sum_j a_j h_j \sum_i h_i$ $=\sum A_{ij}a_j$ $= \mathbf{1}^\top A \vec{a}$

Lumped Mass Matrix

$$
\tilde{a}_{ii} := \text{Area}(\text{cell } i)
$$

Won't make big difference for smooth functions

Approximate with diagonal matrix

Simplest: Barycentric Lumped **Mass**

http://www.alecjacobson.com/weblog/?p=1146

Area/3 to each vertex

Ingredients

- •**Cotangent Laplacian** *L* **Per-vertex function to integral of its Laplacian against each hat**
- •**Area weights** *A* **Integrals of pairwise products of hats (or approximation thereof)**

Solving the Poisson Equation

Helmholtz Equation $\Delta f = \lambda f$ $\int \Delta f \cdot \psi = - \int \nabla f \cdot \nabla \psi = \int \lambda f \cdot \psi$

 $\Rightarrow La = \lambda Ma$ Generalized

Eigenvalue Problem

Important Detail: Boundary Conditions

$$
\Delta f(x) = g(x) \,\forall x \in \Omega
$$

$$
f(x) = u(x) \,\forall x \in \Gamma_D
$$

$$
\nabla f \cdot n = v(x) \,\forall x \in \Gamma_N
$$

Strong form

$$
\int_{\Omega} \nabla f \cdot \nabla \phi = \int_{\Gamma_N} v(x) \phi(x) d\Gamma - \int_{\Omega} f(x) \phi(x) d\Omega
$$

$$
f(x) = u(x) \,\forall x \in \Gamma_D
$$
Weak form

Eigenhomers

Higher-Order Elements

https://www.femtable.org/

Point Cloud Laplace: Easiest **Option**

"Laplacian Eigenmaps for Dimensionality Reduction and Data Representation" Belkin & Niyogi 2003