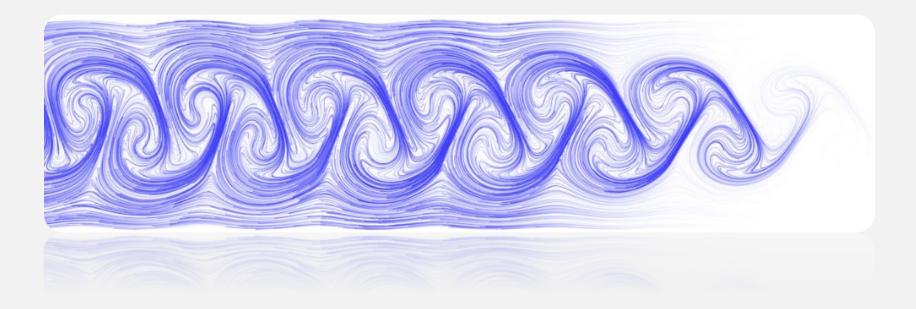
IFT 6112 11 – APPLICATIONS OF VECTOR FIELDS

http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/



Mikhail Bessmeltsev

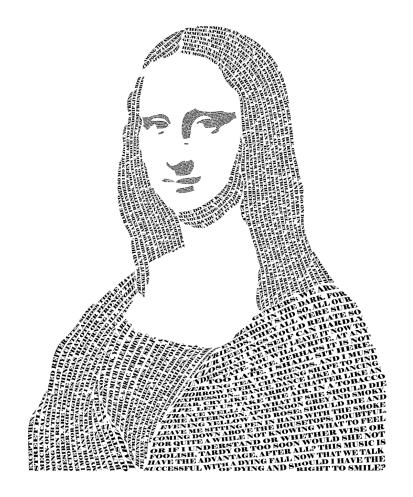
Outline

- Geometry processing
 - Mesh Generation
 - Deformation
 - Texture mapping and synthesis
- Misc
 - Non-photorealistic rendering
 - Crowd simulation

Outline

- Geometry processing
 - Mesh Generation
 - Deformation
 - Texture mapping and synthesis
- Misc
 - Non-photorealistic rendering
 - Crowd simulation

2D: Digital Micrography



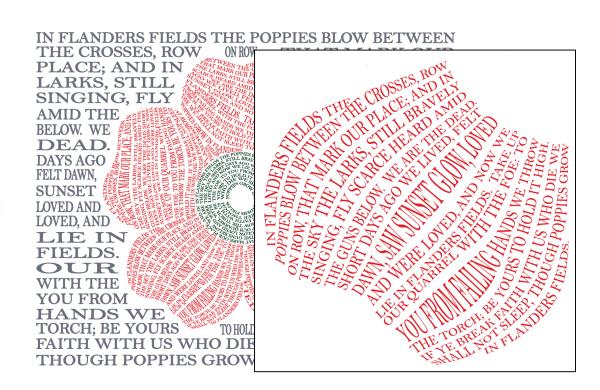
2D: Digital Micrography

In Flanders fields

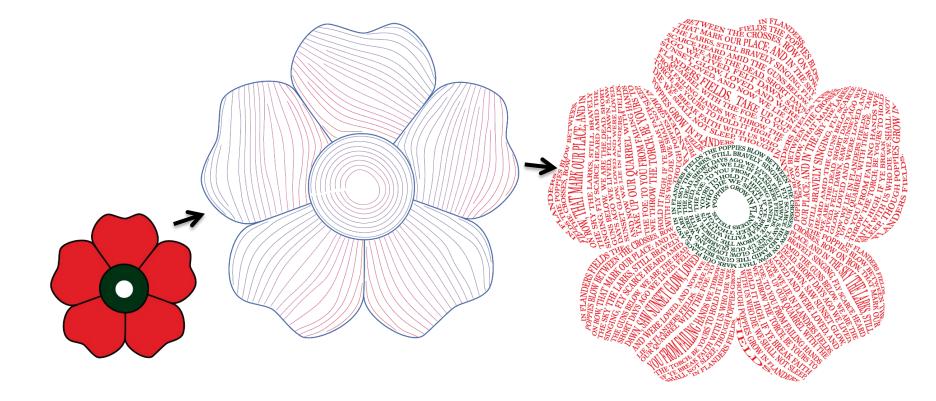
IN Flanders fields the poppies blow Between the crosses, row on row, That mark our place; and in the sky The larks, still bravely singing, fly Scarce heard amid the guns below.

We are the Dead. Short days ago We lived, felt dawn, saw sunset glow, Loved and were loved, and now we lie, In Flanders fields.

Take up our quarrel with the foe: To you from failing hands we throw The torch; be yours to hold it high. If ye break faith with us who die We shall not sleep, though poppies grow In Flanders fields.

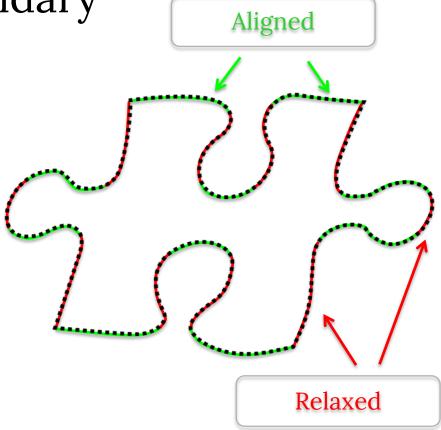


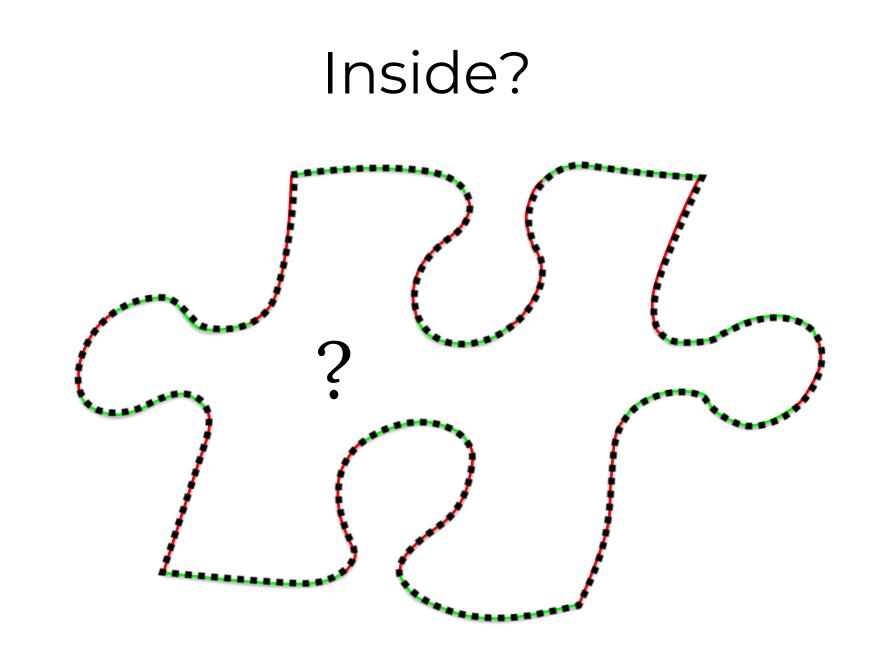
2D: Digital Micrography



Boundary conditions

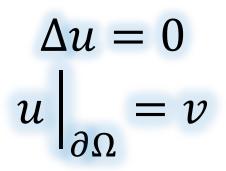
• Vector field is parallel or perpendicular to the boundary





Inside?

- Smoothest interpolation of boundary values
- Laplace equation with Dirichlet boundary conditions
- Discretization?
- Representation?

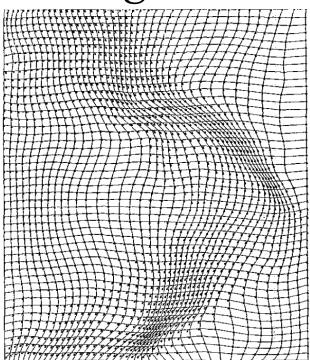


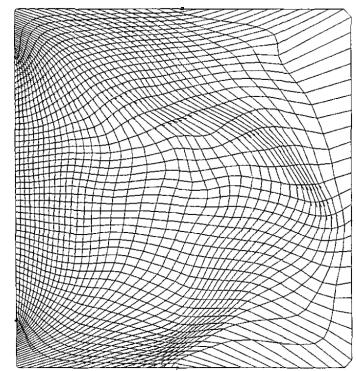
Outline

- Geometry processing
 - Mesh Generation
 - Deformation
 - Texture mapping and synthesis
- Misc
 - Non-photorealistic rendering
 - Crowd simulation

2D Mesh Generation

- Input: mesh topology + vector field (VF)
- Task: Align the mesh with the VF

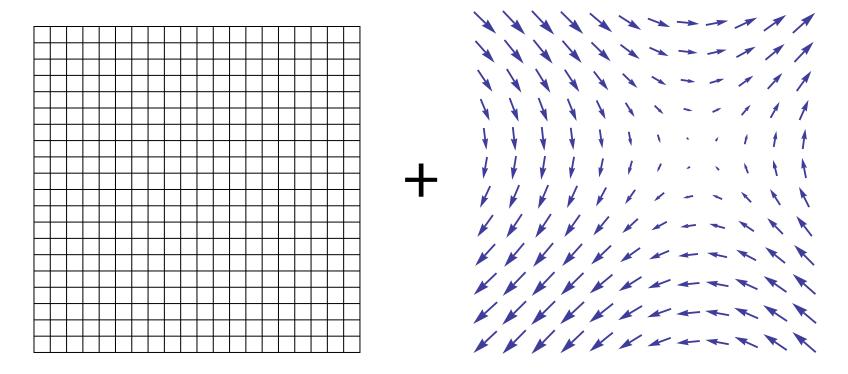




'Mesh Generation Using Vector Fields' by P.Knupp, 1994

2D Mesh Generation

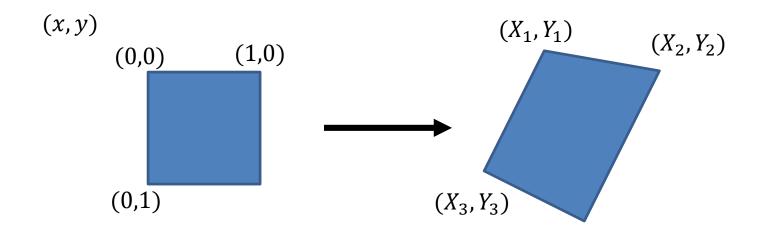
• User chooses which edge should align to VF



• How to formulate alignment?

Alignment $X_e = l_e u_i$ Edge vector Scaling factor Vector field (normalized)

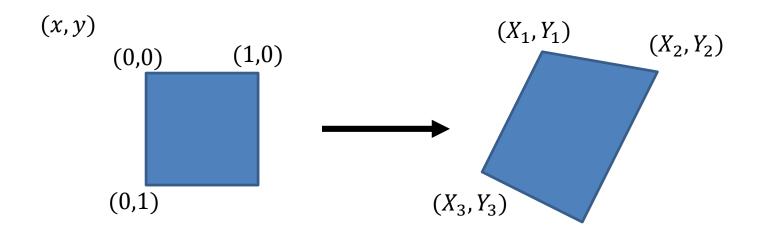
Equivalent formulation



Jacobian:
$$J = \begin{pmatrix} \frac{\partial X}{\partial x} & \frac{\partial X}{\partial y} \\ \frac{\partial Y}{\partial x} & \frac{\partial Y}{\partial x} \end{pmatrix}$$

Discretized:
$$J = \begin{pmatrix} X_2 - X_1 & X_3 - X_1 \\ Y_2 - Y_1 & Y_3 - Y_1 \end{pmatrix}$$

Equivalent formulation



$$J = \begin{pmatrix} X_2 - X_1 & X_3 - X_1 \\ Y_2 - Y_1 & Y_3 - Y_1 \end{pmatrix}$$

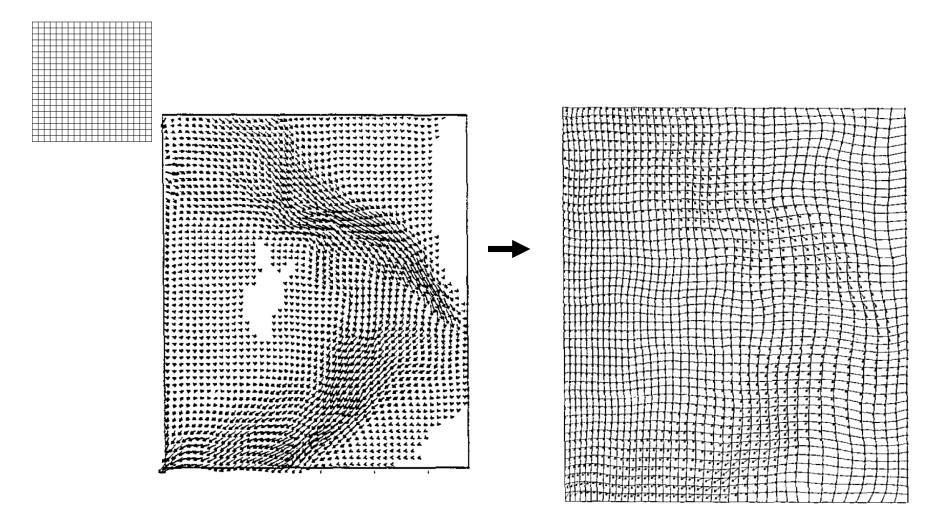
$$J = U \cdot \begin{pmatrix} l_1 & \\ & l_2 \end{pmatrix} = T_U$$

Final statement

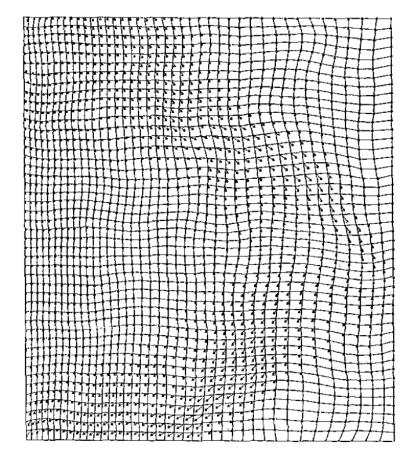
• Constrain inverses instead

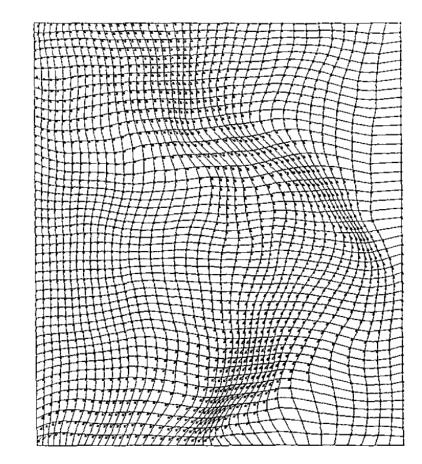
$$\min\int \det(J^{-1}-T^{-1})^2 dx dy$$

Issues?



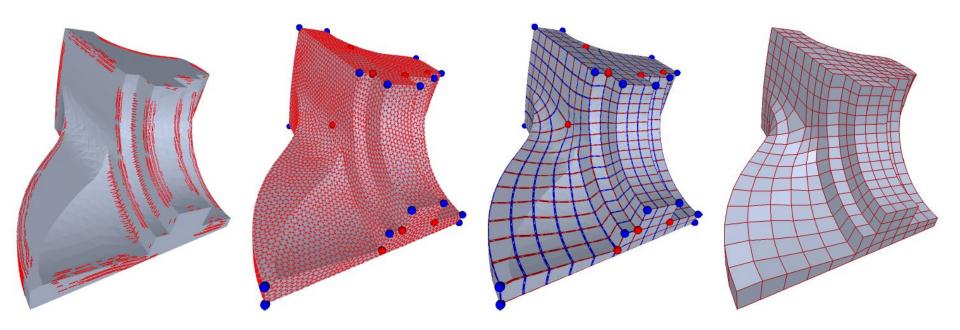
Adding non-uniform sizing





Mesh Quadrangulation

Input: Triangle mesh + sparse directions **Output**: Quad mesh aligned with the directions



'Mixed-Integer Quadrangulation' by Bommes et al., 2009

Mesh Quadrangulation

- 1. Compute two vector fields
- 2. Align a quad mesh with them

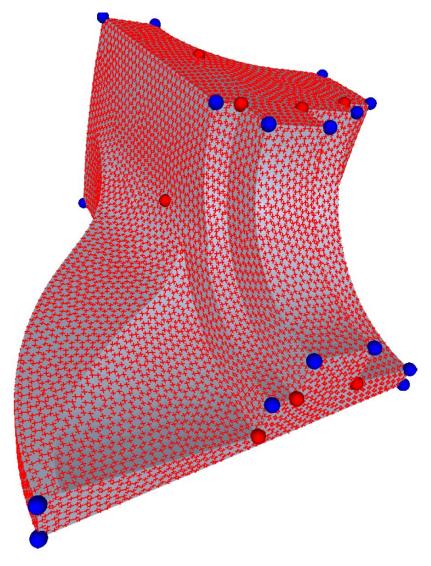
Mesh Quadrangulation

- 1. Compute a cross field
- 2. For all points on a surface, compute (*u*, *v*)

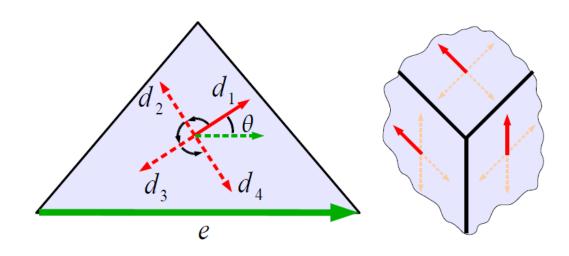
Parameterization! More on that later

Cross Fields

• 4 coupled vectors = 2 directions



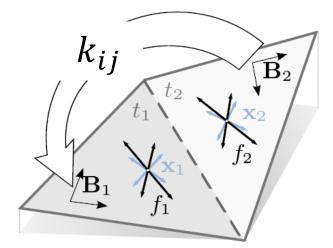
Representation and singularities



Smoothness?

- Associate tangent spaces
- Add period jumps

$$E_{smooth} = \sum_{e_{ij} \in E} \left(\frac{\theta_i + \kappa_{ij} + \frac{\pi}{2} p_{ij}}{\theta_i \text{ w.r.t. frame } j} - \theta_j \right)^2$$



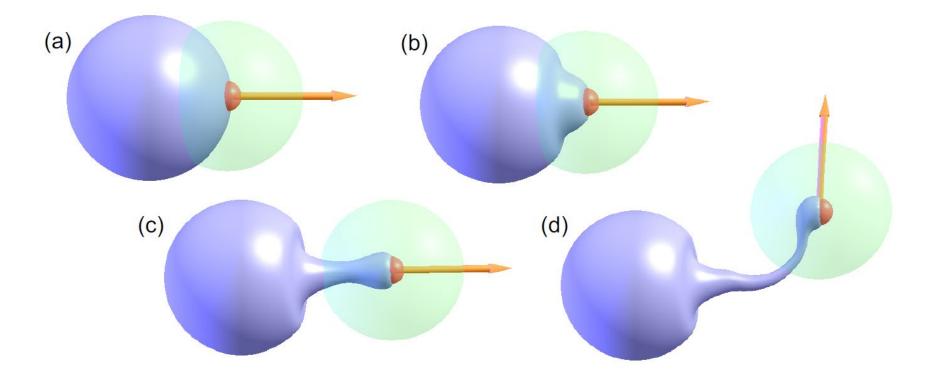
Outline

- Geometry processing
 - Mesh Generation

– Deformation

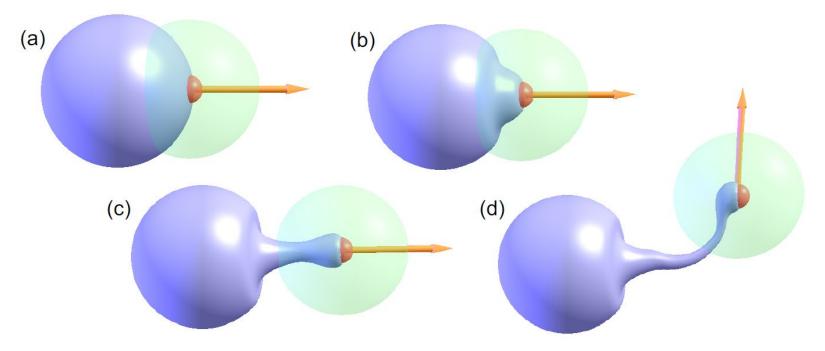
- Texture mapping and synthesis
- Misc
 - Non-photorealistic rendering
 - Crowd simulation

Mesh Deformation

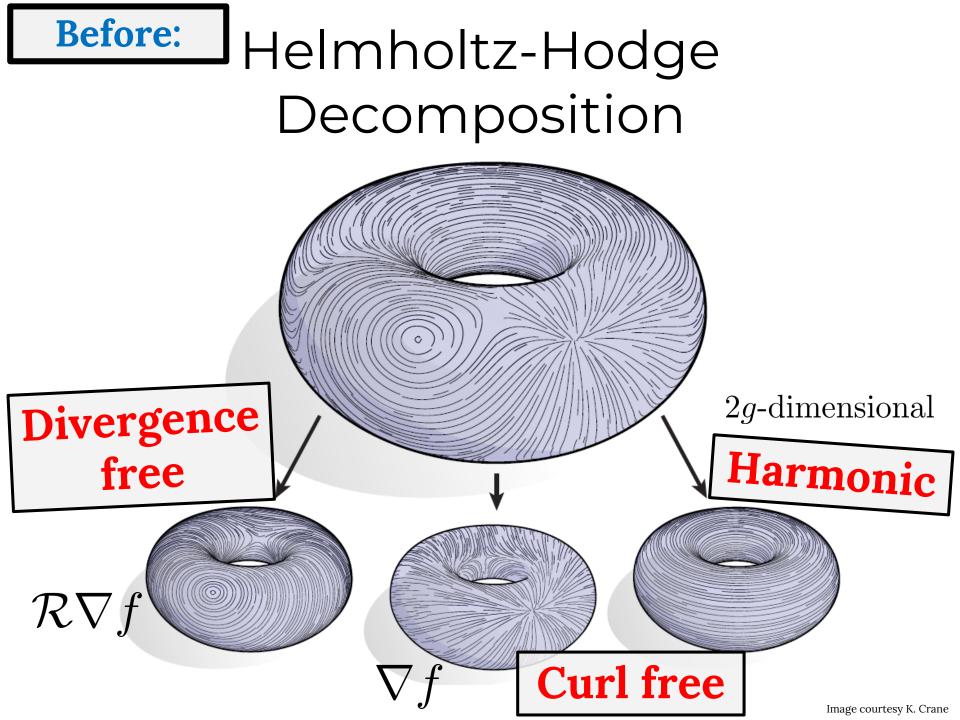


Mesh Deformation

Find a divergence-free vector field div v = 0



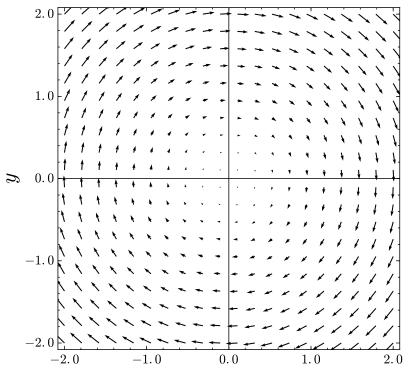
'Vector Field Based Shape Deformations' by Funck et al., 2006



Divergence-Free VF

Divergence:
$$div v = \nabla \cdot v = \frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial v}{\partial z}$$

Divergence-free => No stretch/squash!



Tangent Vector Fields

 Rotated gradient fields have zero divergence

$div R\nabla u = 0$

(proof for 2D case on the board)

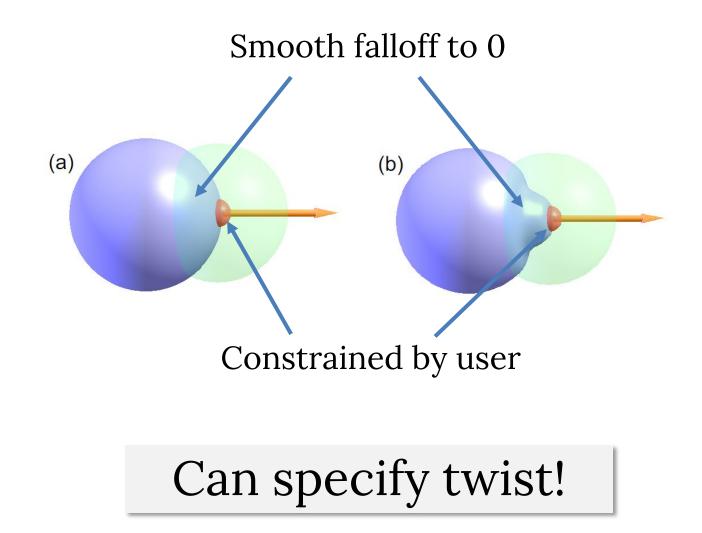
Normal Vector Fields

Cross product of two gradients has zero divergence

$$\mathbf{v}(x, y, z) = \nabla p(x, y, z) \times \nabla q(x, y, z)$$

div v = 0

Mesh Deformation



Outline

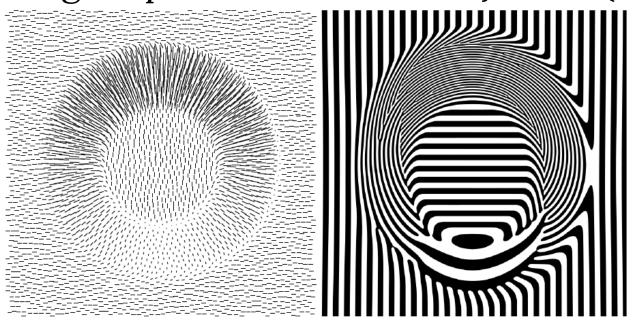
- Geometry processing
 - Mesh Generation
 - Deformation
 - Texture mapping and synthesis
- Misc
 - Non-photorealistic rendering
 - Crowd simulation

Texture Synthesis

'Stripe Patterns on Surfaces' by F. Knoppel et al., 2015

Idea

- Input: mesh + vector field (+scale)
- Output: scalar field controlling periodic texture
 - Imagine periodic texture as $f = sin(\alpha)$

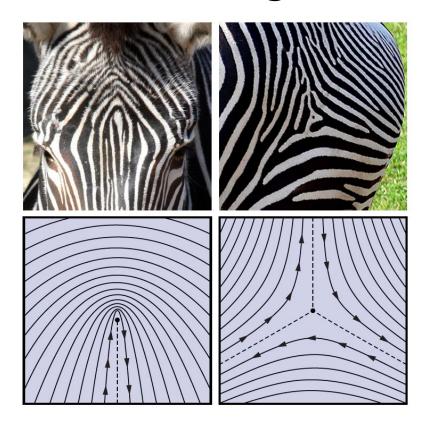


Idea

Singularities => more even spacing

Idea

Singularities => more even spacing Also occurring in nature



Familiar components!

- Representation
- Connection
- Singularities
- Dirichlet Energy

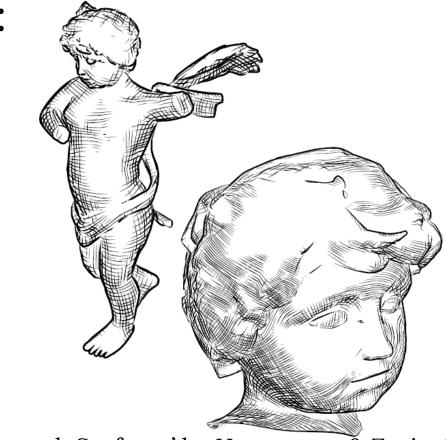
... but also some other notions beyond the scope of this course

Outline

- Geometry processing
 - Mesh Generation
 - Deformation
 - Texture mapping and synthesis
- Misc
 - Non-photorealistic rendering
 - Crowd simulation

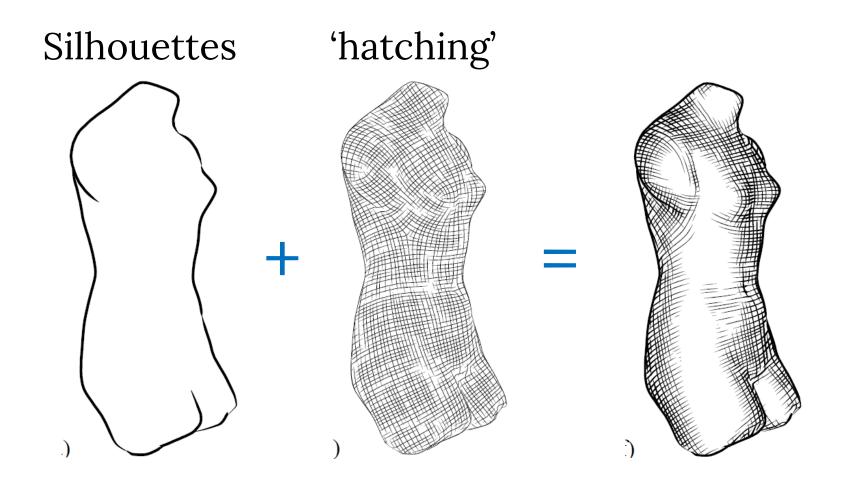
Non-photorealistic rendering

- Input: mesh
- Output:



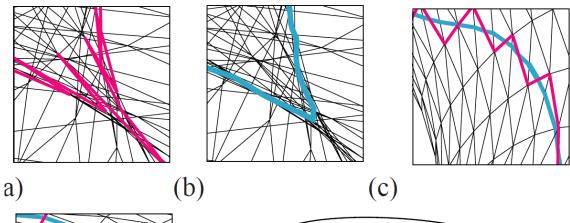
'Illustrating Smooth Surfaces' by Hertzmann & Zorin, 2001

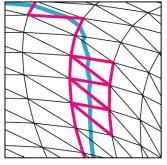
Components

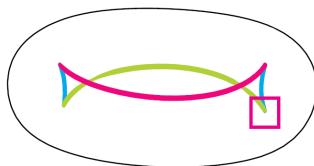


Silhouettes

• Mesh silhouettes are unreliable







Silhouettes

Better idea: Silhouettes = zeros of a scalar field

Point *p* is on silhouette \Leftrightarrow

 $n \cdot (c - p) = 0$ Camera position (homogeneous coordinates)

Silhouettes

Better idea: Silhouettes = zeros of a scalar field

Point *p* is on silhouette \Leftrightarrow

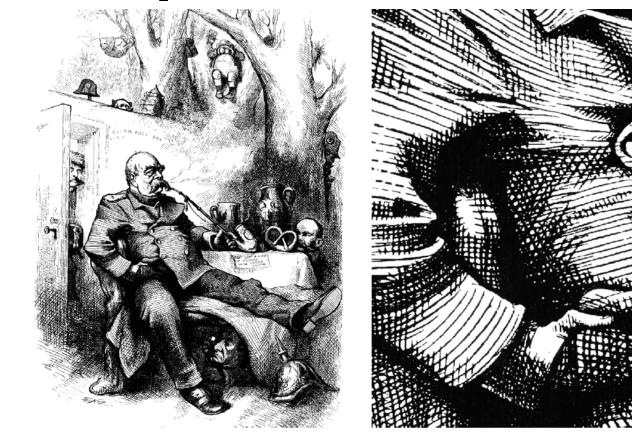
 $n \cdot (c - p) = 0$

Compute at every vertex, interpolate, find zero-crossings

Camera position (homogeneous coordinates)

Hatching

• Principle curvature directions!



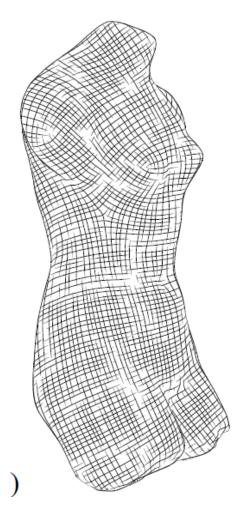
Hatching

• Principle curvature directions!

- Except those are not defined for *umbilics* (equal principal curvatures)
- At umbilics, draw geodesics!

Hatching

- Find parabolic areas of the mesh
- Constrain cross field to align with principle curvatures
- The rest should be smooth
 - Smoothness term uses a connection



Result

