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Administrative

• Paper title due tonight!
• A3 due on Nov, 8th

• Paper presentations on Nov, 20th

– Make sure you understand the inner 
workings

– Ask tough questions!
• Face-to-face grading next time



What for?

• Animation!
• Mesh editing
• Image warping (2D)

This, and many other images in this presentation are from ‘Polygon Mesh Processing’ textbook by Botsch et al. 
or their website 



Deformation: user interface

• Handles
• Cages
• Skeletons
• …

Ju et al., SIGGRAPH 2007

More on 
those later



Deformation: user interface

• Handles
• Cages
• Skeletons
• …



Modeling

Paint three surface areas:
• Constrained
• Smooth falloff
• Fixed



Formulation

Find displacement vector field 𝑑𝑑
• Smooth
• Satisfies constraints

𝑆𝑆

𝑑𝑑 known

𝑆𝑆 ′ = {𝑝𝑝 + 𝑑𝑑(𝑝𝑝)|𝑝𝑝 ∈ 𝑆𝑆 }

𝑑𝑑 = 0

𝑑𝑑 =?



Simplest idea

• 𝑑𝑑 = 𝑠𝑠 𝑝𝑝 ⋅ 𝐷𝐷
• 𝑠𝑠(𝑝𝑝) is a smooth function:

– 1 on green vertices
– 0 on grey ones 𝑑𝑑 known = 𝑫𝑫

𝑑𝑑 = 0

𝑑𝑑 =?



How to find 𝑠𝑠(𝑝𝑝)?

• Something inversely proportional to 
geodesic distance

• Or our favorite:



Solved?

Reality     vs     Expectation



Physically-Based

Find a deformation that preserves both 
fundamental forms

Express the fundamental forms of 𝑆𝑆𝑆 via vector field 𝑑𝑑
Expensive 

to optimize!

F F



Physically-Based

Find a deformation that preserves both 
fundamental forms

Linearize Express the fundamental forms of 𝑆𝑆𝑆 via vector 
field 𝑑𝑑



Physically-Based

Gateuax derivative =>

−𝑘𝑘𝑠𝑠Δ𝑑𝑑 + 𝑘𝑘𝑏𝑏Δ2𝑑𝑑 = 0



Physically-Based

Gateuax derivative =>

−𝑘𝑘𝑠𝑠Δ𝑑𝑑 + 𝑘𝑘𝑏𝑏Δ2𝑑𝑑 = 0
Bi-Laplacian𝑥𝑥

𝑦𝑦
𝑧𝑧



Deformation Energies

Initial state ∆ 2𝑑𝑑 = 0

∆ 2𝑝𝑝 = 0∆ 𝑝𝑝 = 0

∆ 𝑑𝑑 = 0
(Thin plate)(Membrane)



Deformation Energies

Initial state ∆ 2𝑑𝑑 = 0

∆ 2𝑝𝑝 = 0∆ 𝑝𝑝 = 0

∆ 𝑑𝑑 = 0
(Thin plate)(Membrane)

Higher order => 
more boundary 

conditions



• Very fast
• One linear solve!

• Physically-based
• Linearization => lose details

Solved?

Original Non-linear
deformation

Linear
deformation



• We need to rotate details
• Local rotation is nonlinear!

• Can we still survive with linear solves?

Issue

Original Non-linear
deformation

Linear
deformation



Multiresolution Editing

Frequency decomposition

Change low  
frequencies

Add high frequency details,  
stored in local frames



Multiresolution Editing

Multiresolution

Modeling

D
ec

om
po

si
tio

n

Detail  
Information

Freeform  

Modeling

R
econstruction



How to represent details?

• For example, normal displacements



Result

Global deformation
with intuitive detail

preservation



Limitations
Neighboring displacements are not coupled

– Surface bending changes their angle
– Leads to volume changes or self-intersections

Original Normal Displ. Nonlinear



Limitations
Neighboring displacements are not coupled

– Surface bending changes their angle
– Leads to volume changes or self-intersections

Original Normal Displ. Nonlinear



Laplacian Mesh Editing

• Avoid explicit multi-scale decomposition
• Express shape in differential coordinates
• Transform those, then reconstruct the new 

shape



Mean Value Property

Value at v is average of neighboring values

Long time ago:



Laplacian Mesh Editing
(Graph Laplacian):

𝛅𝛅𝑖𝑖 = �
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

1
𝑑𝑑𝑖𝑖

𝐯𝐯𝑖𝑖 − 𝐯𝐯𝑗𝑗

𝛅𝛅𝑖𝑖 = 𝐯𝐯𝑖𝑖 −
1
𝑑𝑑𝑖𝑖

�
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

𝐯𝐯𝑗𝑗

𝐿𝐿𝐿𝐿 = 𝛿𝛿
Local coordinates!



Laplacian Mesh Editing

• Do all transformations on 𝛿𝛿
• Find a surface whose Laplacian coordinates 

are as close as possible to 𝛿𝛿

• Gateaux derivative => 



Physically-Based

Gateuax derivative =>

−𝑘𝑘𝑠𝑠Δ𝑑𝑑 + 𝑘𝑘𝑏𝑏Δ2𝑑𝑑 = 0
Bi-Laplacian𝑥𝑥

𝑦𝑦
𝑧𝑧

Before:

(almost) the same
equation?



Issue
Only translation invariant

Translating a handle induces local rotations!



Laplacian Coordinates

• Translation invariant
• Not rotation/scale invariant

δi

𝛿𝛿𝑖𝑖 = 𝐿𝐿(𝐯𝐯𝑖𝑖) = 𝐿𝐿(𝐯𝐯𝑖𝑖 + 𝐭𝐭);∀𝐭𝐭 ∈ ℝ3

δi
δi



Solutions
• Explicit transformation of the differential 

coordinates prior to surface reconstruction
– Estimate rotations 

• Add rotations into framework

– Interleave rotate/position (local/global) iterations 

𝐸𝐸(𝐕𝐕𝑆) = �
𝑖𝑖=1

𝑛𝑛

𝑅𝑅𝑖𝑖𝛿𝛿𝑖𝑖 − 𝐿𝐿(𝐯𝐯𝑆𝑖𝑖) 2 + �
𝑖𝑖∈𝑐𝑐

𝐯𝐯𝑆𝑖𝑖 − 𝐮𝐮𝑖𝑖 2



Solutions
• [Lipman et al. 2004] estimate rotation of local frames

– Reconstruct the surface with the original Laplacians
– Estimate the normals of the underlying smooth surface
– Rotate the Laplacians and reconstruct again



Rotation Propagation

• For each vertex in ROI define rotation 
(new normal) as combination of 
boundary & anchor rotations
– Use “distance” from boundary/anchors as 

weight
• distance = geodesic, harmonic (Laplacian),...

– Rotation algebra 
• quaternions
• simple vector algebra with re-normalization...
• ...



As-Rigid-As-Possible Surface 
Modelling

35



As-rigid-as-possible (ARAP)

36

Presenter
Presentation Notes
Let’s start with a video of it working
Here, they freeze the foot of the armadillo, grab a point on the hand
Notice the fluidity of the motion, deformation is distributed smoothly everywhere. Doing tai chi

This is an interesting one… the sheet folds and curls as you move it the end around




ARAP in a nutshell…
• Decompose surface into small overlapping “cells”
• Define a metric for measuring local rigidity
• Create a global energy function representing global 
“rigidity”

• Minimize “shell energy” function to determine 
“optimal” vertex locations

38

Presenter
Presentation Notes
Here’s the algorithm in a nutshell… *pause*
I’ll go through each of the steps
First step: divide up your surface into a set of overlapping cells
They come up with a way to measure “rigidity”, locally, within each of these cells
Based on rigidity, construct a global energy function, sort of a “shell-energy”
To do the deformation, they minimize this shell energy to determine optimal vertex locations



Cell Construction
• Characterize local shape
• Used to enforce local rigidity constraints
• Overlapping, to prevent shearing/stretching at cell 

boundaries

Desired Properties:

39

Presenter
Presentation Notes
First: cells
We want to characterize local shape
It is these cells that we try to keep as-rigid-as-possible
Q: why do we need overlap?



Cell Construction

• Vertex Umbrella
– Covers entire surface
– One cell per vertex
– All triangles exist in 3 

cells

Within cell, define translation-invariant “features”:

• Vectors from central vertex to neighbours

pi

pj1

pj2

eij1

Simplest logical choice for cells?

40

Presenter
Presentation Notes
Simplest choice is the vertex umbrella
Union of all will cover surface
Each triangle exists in 3 cells, overlap
# cells == # vertices, we’re taking the vertex view in describing local shape

To characterize shape, we need a set of features
ideally we want them to be both translation and rotation invariant.
We were talking about this last lecture
To make translation invariant, they take “edge” vectors
For cell i, collect the vectors from all neighbours pointing inwards



Local “Rigidity”
If cell i moved as a rigid unit, we could write:

pi

pj1

eij1

p'i

p'j1

e'ij1

• What if they didn’t move as a rigid unit?

7

Presenter
Presentation Notes
Okay, so it’s translation invariant, but what if we rotated the entire cell?
If each edge is rotated the same, we could have a single rotation matrix
Following notation in the paper, original vertex locations are given by p, and new locations by p’

If they didn’t move as a rigid unit?
Well, we can assume they did, but then whatever’s left is error… so we measure the squared error 
Sum up errors for each edge
.. Notice here that if some edges are larger than others, they will naturally contribute more error





Edge Weights
Should all edge vectors be weighted equally?

42

Uniform Weights Cotangent Weights

Cotangent weights:
pi

pj

αij

βij

Presenter
Presentation Notes
Q: Should all edges be weighted equally?
Turns out that if you do, you end up with a mesh-related bias
The mesh has diagonals in one direction, causing deformation to skew
Turns out if we use cotangent weights, it reduces this

Here’s the definition of cotangent weights… I think we covered this in class
Weight an edge by the average opposite cotangent… cotangent looks like “this”, so if this edge is small relative to the neighbours, it’s weighted up… otherwise it’s weighted down



Global Rigidity

Rigid Error2 (𝐶𝐶𝑖𝑖 ,𝐶𝐶𝑆𝑖𝑖) = �
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

𝑤𝑤𝑖𝑖𝑗𝑗 (𝒑𝒑′𝑖𝑖 − 𝒑𝒑𝑆𝑗𝑗) − 𝑅𝑅𝑖𝑖(𝒑𝒑𝑖𝑖 − 𝒑𝒑𝑗𝑗) 2

• Given {𝒑𝒑𝑖𝑖} and {𝒑𝒑′𝑖𝑖}, what are the optimal rigid transforms {𝑅𝑅𝑖𝑖}? 
◦ Least squares + SVD!!!

43

Local Rigidity:

• All local cells as-rigid-as-possible    global shape is as-
rigid-as-possible

• Global energy function:

Energy = �
𝑖𝑖

�
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

𝑤𝑤𝑖𝑖𝑗𝑗 (𝒑𝒑′𝑖𝑖 − 𝒑𝒑𝑆𝑗𝑗) − 𝑅𝑅𝑖𝑖(𝒑𝒑𝑖𝑖 − 𝒑𝒑𝑗𝑗) 2

Global Rigidity:

Presenter
Presentation Notes
Adding that weight term in there gives us a weighted “rigidity” error
Q: given old locations and new locations, how to you find the optimal rotation?
You got it, least squares + SVD… the only difference between this and what we’ve done is it’s a weighted least squares problem, so there’s a weight matrix involved

To define “Global rigidity”, we assume that if each cell is “as-rigid-as-possible”, then the whole model should be, so we just sum over all cells



Mesh Deformation

soft constraints

• Set the locations of some points (constraints):   𝒑𝒑′𝑖𝑖 = 𝒖𝒖𝑖𝑖 , 𝑖𝑖 ∈ 𝐶𝐶

• Determine locations {𝒑𝒑′𝑖𝑖} for “free” points by minimizing 
global energy

Energy = �
𝑖𝑖

�
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

𝑤𝑤𝑖𝑖𝑗𝑗 (𝒑𝒑′𝑖𝑖 − 𝒑𝒑𝑆𝑗𝑗) − 𝑅𝑅𝑖𝑖(𝒑𝒑𝑖𝑖 − 𝒑𝒑𝑗𝑗) 2 + 𝜇𝜇�
𝑖𝑖∈𝐶𝐶

𝑤𝑤𝑖𝑖𝑗𝑗 𝒑𝒑′𝑖𝑖 − 𝒖𝒖𝑖𝑖
2

Caveats:

• {𝒑𝒑′𝑖𝑖} and {𝑅𝑅𝑖𝑖} are unknown

• Non-linear optimization problem

44

Presenter
Presentation Notes
To deform, all you need to do is 
set some constraints
Determine new vertex locations by minimizing the global energy function

Here, I’ve modified it to add soft constraints, but in the paper they use hard constraints

Caveats:
There are two “sets” of unknowns, the locations, and the cell rotations
This is a non-linear optimization problem
Typically equires iterative solution





Mesh Deformation
Solution:

– Start with initial guess of {𝒑𝒑′𝑖𝑖}, solve for {𝑅𝑅𝑖𝑖}
• Compute for each cell independently ( L.S. + SVD )
• Embarrassingly parallel

– Given {𝑅𝑅𝑖𝑖}, minimize energy to find {𝒑𝒑′𝑖𝑖}

�
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

𝑤𝑤𝑖𝑖𝑗𝑗 𝒑𝒑′𝑖𝑖 − 𝒑𝒑′𝑗𝑗 = �
𝑗𝑗∈𝑁𝑁(𝑖𝑖)

𝑤𝑤𝑖𝑖𝑗𝑗
2 𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑗𝑗 𝒑𝒑𝑖𝑖 − 𝒑𝒑𝑗𝑗

𝐿𝐿𝒑𝒑𝑆 = 𝒃𝒃

45

Presenter
Presentation Notes
How do we solve this?
The authors do it iteratively, alternating two steps.  First, they start with an initial guess for vertex locations, solve for cell rotations
Then, given cell rotations, minimize the global energy function
Things to note: LHS only depends on “w”, the original cotan weights – it’s a constant matrix
This looks very much what we had in class on Thursday, for the Poisson mesh editing, the difference being instead of “delta” on the RHS, we have a function that is dependent on rotations



Advantages
“L” is only a function of the cotangent 
weights

– Depends only on original mesh
– Only needs to be factored once!

Rotations can be computed in parallel

FAST!!

• Each iteration reduces energy
◦ Updating rotations guaranteed to reduce cell-error
◦ Updating positions guaranteed to reduce global error

Guaranteed Convergence!!
12

Presenter
Presentation Notes
The advantages of this technique over others…
Actually have to recompute every time you change constraints

Optimal rotation for each cell reduces it’s contribution to energy
Updating positions by minimizing energy guaranteed to reduce global error
We are guaranteed to converge to “something”



Results (vs Poisson)

Poisson:

ARAP:

47

Presenter
Presentation Notes
Compare to basic Poisson mesh editing… which is translation invariant, but not rotation
Note that spikey sheet just skews, doesn’t preserve edge or local features or fold when you bring the end in
ARAP does a smoother job with rotations
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