IFT 6112 11 – MESH DEFORMATION

http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/

Image from 'As-Rigid-As-Possible Shape Modeling' by Sorkine & Alexa, 2007

Mikhail Bessmeltsev

Administrative

- Paper title due tonight!
- A3 due on Nov, 8th
- Paper presentations on Nov, 20th
 - Make sure you understand the inner workings
 - Ask tough questions!
- Face-to-face grading next time

What for?

- Animation!
- Mesh editing
- Image warping (2D)

This, and many other images in this presentation are from 'Polygon Mesh Processing' textbook by Botsch et al. or their website

Deformation: user interface

- Handles
- Cages
- Skeletons

Ju et al., SIGGRAPH 2007

Deformation: user interface

- Handles
- Cages
- Skeletons

Modeling

Paint three surface areas:

- Constrained
- Smooth falloff
- Fixed

Formulation

Find displacement vector field *d*

- Smooth
- Satisfies constraints

Simplest idea

- $d = s(p) \cdot D$
- s(p) is a smooth function:
 -1 on green vertices
 -0 on grey ones

How to find s(p)?

- Something inversely proportional to geodesic distance
- Or our favorite:

$$\Delta s(\mathbf{p}_i) = 0, \quad \mathbf{p}_i \in \mathcal{R},$$
$$s(\mathbf{p}_i) = 1, \quad \mathbf{p}_i \in \mathcal{H},$$
$$s(\mathbf{p}_i) = 0, \quad \mathbf{p}_i \in \mathcal{F}.$$

Solved?

Reality vs Expectation

Physically-Based

Find a deformation that preserves both fundamental forms

Express the fundamental forms of S' via vector field d **Expensive to optimize!** $\int_{\Omega} k_s \frac{\|\mathbf{I} - \mathbf{I}'\|_{F}^{2}}{\|\mathbf{I} - \mathbf{I}'\|_{F}^{2}} + k_b \frac{\|\mathbf{I} - \mathbf{I}'\|_{F}^{2}}{\|\mathbf{U} - \mathbf{I}'\|_{F}^{2}} du dv$ stretching bending

Physically-Based

Find a deformation that preserves both fundamental forms

Linearize Express the fundamental forms of S' via vector field d

$$\int_{\Omega} k_s \left(\|\mathbf{d}_u\|^2 + \|\mathbf{d}_v\|^2 \right) + k_b \left(\|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \right) \mathrm{d}u \mathrm{d}v$$

stretching bending

$$\int_{\Omega} k_s \left(\|\mathbf{d}_u\|^2 + \|\mathbf{d}_v\|^2 \right) + k_b \left(\|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \right) \mathrm{d}u \mathrm{d}v$$

stretching bending

Gateuax derivative =>

$$-k_s \Delta d + k_b \Delta^2 d = 0$$

$$\int_{\Omega} k_s \left(\|\mathbf{d}_u\|^2 + \|\mathbf{d}_v\|^2 \right) + k_b \left(\|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \right) \mathrm{d}u \mathrm{d}v$$

stretching bending

Gateuax derivative =>

$$-k_{s}\Delta d + k_{b}\Delta^{2} d = 0$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
Bi-Laplacian

Deformation Energies

Solved?

- Very fast
 - One linear solve!
- Physically-based
- Linearization => lose details

Linear deformation

Non-linear deformation

Issue

- We need to rotate details
 - Local rotation is nonlinear!
- Can we still survive with linear solves?

Non-linear deformation

Multiresolution Editing

 $\overline{-}$

Frequency decomposition

Add high frequency details, stored in local frames

Multiresolution Editing

How to represent details?

• For example, normal displacements

Result

Global deformation with intuitive detail preservation

Limitations

Neighboring displacements are not coupled
– Surface bending changes their angle
– Leads to volume changes or self-intersections

Limitations

Neighboring displacements are not coupled
– Surface bending changes their angle
– Leads to volume changes or self-intersections

Original

Normal Displ.

Nonlinear

Laplacian Mesh Editing

- Avoid explicit multi-scale decomposition
- Express shape in differential coordinates
- Transform those, then reconstruct the new shape

Long time ago:

Mean Value Property

$$L_{vw} = A - D = \begin{cases} 1 & \text{if } v \sim w \\ -\text{degree}(v) & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$$

$$(Lx)_v = 0$$
Value at v is average of neighboring values

Laplacian Mesh Editing

(Graph Laplacian):

$$\boldsymbol{\delta}_{i} = \mathbf{v}_{i} - \frac{1}{d_{i}} \sum_{j \in N(i)} \mathbf{v}_{j}$$
$$\boldsymbol{\delta}_{i} = \sum_{j \in N(i)} \frac{1}{d_{i}} (\mathbf{v}_{i} - \mathbf{v}_{j})$$

Local coordinates!

Laplacian Mesh Editing

- Do all transformations on δ
- Find a surface whose Laplacian coordinates are as close as possible to δ

$$\int_{\mathcal{S}} \left\| \Delta \mathbf{p}' - \boldsymbol{\delta}' \right\|^2 \mathrm{d}\mathcal{S} \to \min$$

• Gateaux derivative =>

$$\Delta^2 \mathbf{p}' = \Delta \boldsymbol{\delta}'$$

Physically-Based

$$\int_{\Omega} k_s \left(\|\mathbf{d}_u\|^2 + \|\mathbf{d}_v\|^2 \right) + k_b \left(\|\mathbf{d}_{uu}\|^2 + 2 \|\mathbf{d}_{uv}\|^2 + \|\mathbf{d}_{vv}\|^2 \right) \mathrm{d}u \mathrm{d}v$$

stretching bending

Gateuax derivative =>

$$-k_{s}\Delta d + k_{b}\Delta^{2}d = 0$$
(almost) the same equation? Bi-Laplacian

Issue

Only translation invariant

Laplacian Coordinates

- Translation invariant
- Not rotation/scale invariant

 $\delta_i = L(\mathbf{v}_i) = L(\mathbf{v}_i + \mathbf{t}); \forall \mathbf{t} \in \mathbb{R}^3$

Solutions

- Explicit transformation of the differential coordinates prior to surface reconstruction
 - Estimate rotations
- Add rotations into framework

$$E(\mathbf{V}') = \sum_{i=1}^{n} ||R_i \delta_i - L(\mathbf{v}'_i)||^2 + \sum_{i \in c} ||\mathbf{v}'_i - \mathbf{u}_i||^2$$

Interleave rotate/position (local/global) iterations

Solutions

- [Lipman et al. 2004] estimate rotation of local frames
 - Reconstruct the surface with the original Laplacians
 - Estimate the normals of the underlying smooth surface
 - Rotate the Laplacians and reconstruct again

Rotation Propagation

- For each vertex in ROI define rotation (new normal) as combination of boundary & anchor rotations
 - Use "distance" from boundary/anchors as weight
 - distance = geodesic, harmonic (Laplacian),...
 - Rotation algebra
 - quaternions
 - simple vector algebra with re-normalization...
 - ...

As-Rigid-As-Possible Surface Modelling

As-rigid-as-possible (ARAP)

ARAP in a nutshell...

- Decompose surface into small overlapping "cells"
- Define a metric for measuring local rigidity
- Create a global energy function representing global "rigidity"
- Minimize "shell energy" function to determine "optimal" vertex locations

Cell Construction

Desired Properties:

- Characterize local shape
- Used to enforce local rigidity constraints
- Overlapping, to prevent shearing/stretching at cell boundaries

Cell Construction

Simplest logical choice for cells?

- Vertex Umbrella
 - Covers entire surface
 - One cell per vertex
 - All triangles exist in 3 cells

Within cell, define translation-invariant "features":

• Vectors from central vertex to neighbours

$$\boldsymbol{e}_{ij} = \boldsymbol{p}_i - \boldsymbol{p}_j$$

Local "Rigidity"

If cell *i* moved as a rigid unit, we **could** write: $e'_{ij} = R_i e_{ij} \forall j \in N(i)$

• What if they didn't move as a rigid unit?

Rigid Error² (*C_i*, *C'_i*) =
$$\sum_{j \in N(i)} || e'_{ij} - R_i e_{ij} ||^2$$

Edge Weights

Should all edge vectors be weighted equally?

Uniform Weights

Cotangent Weights

Cotangent weights: $w_{ij} = \frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij})$

Global Rigidity

Local Rigidity:

Rigid Error² (*C_i*, *C'_i*) =
$$\sum_{j \in N(i)} w_{ij} || (p'_i - p'_j) - R_i (p_i - p_j) ||^2$$

Given {*p_i*} and {*p'_i*}, what are the optimal rigid transforms {*R_i*}?
Least squares + SVD!!!

Global Rigidity:

- All local cells as-rigid-as-possible → global shape is as-rigid-as-possible
- Global energy function:

Energy =
$$\sum_{i} \sum_{j \in N(i)} w_{ij} \| (\boldsymbol{p'}_i - \boldsymbol{p'}_j) - R_i (\boldsymbol{p}_i - \boldsymbol{p}_j) \|^2$$

Mesh Deformation

- Set the locations of some points (constraints): $p'_i = u_i, i \in C$
- Determine locations $\{{\pmb p'}_i\}$ for "free" points by minimizing global energy

Energy =
$$\sum_{i} \sum_{j \in N(i)} w_{ij} \| (\boldsymbol{p'}_{i} - \boldsymbol{p'}_{j}) - R_{i} (\boldsymbol{p}_{i} - \boldsymbol{p}_{j}) \|^{2} + \mu \sum_{i \in C} w_{ij} \| \boldsymbol{p'}_{i} - \boldsymbol{u}_{i} \|^{2}$$
soft constraints

Caveats:

- $\{\boldsymbol{p'}_i\}$ and $\{R_i\}$ are unknown
- Non-linear optimization problem

Mesh Deformation

Solution:

- Start with initial guess of $\{p'_i\}$, solve for $\{R_i\}$
 - Compute for each cell independently (L.S. + SVD)
 - Embarrassingly parallel
- Given $\{R_i\}$, minimize energy to find $\{p'_i\}$

$$\sum_{j \in N(i)} w_{ij} \left(\boldsymbol{p'}_i - \boldsymbol{p'}_j \right) = \sum_{j \in N(i)} \frac{w_{ij}}{2} \left(R_i + R_j \right) \left(\boldsymbol{p}_i - \boldsymbol{p}_j \right)$$

$$L \boldsymbol{p}' = \boldsymbol{b}$$

Advantages

"L" is only a function of the cotangent weights

- Depends only on original mesh
- Only needs to be factored once!

Rotations can be computed in parallel

- Each iteration reduces energy
 - Updating rotations guaranteed to reduce cell-error
 - Updating positions guaranteed to reduce global error

Guaranteed Convergence!!

