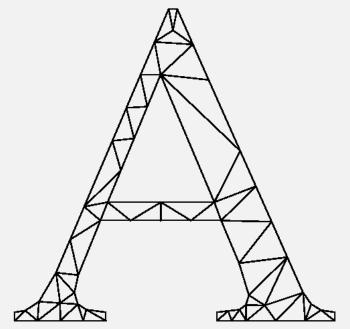
IFT 6112 13 – A (VERY) SHORT INTRO TO COMPUTATIONAL GEOMETRY

http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/



Pic from https://www.cs.cmu.edu/~quake/triangle.defs.html

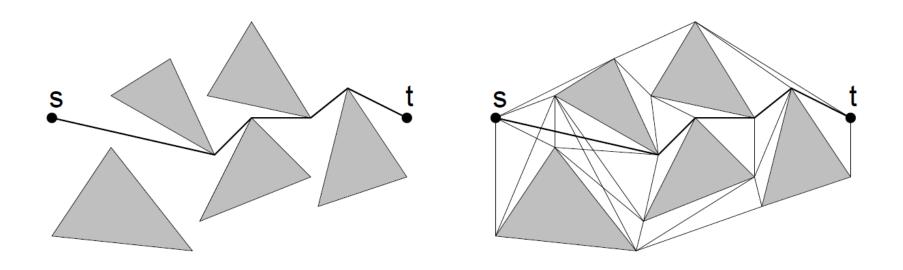
Mikhail Bessmeltsev

Today

- Intro
- Orientation and convex hulls
- Line segment intersection
- Polygons and triangulations
- Voronoi diagrams
- Delaunay triangulations

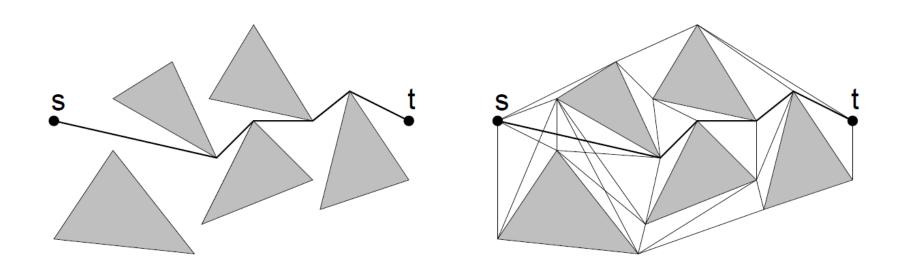
Focus: 2D algorithms

Typical problem: shortest paths



Focus: 2D algorithms

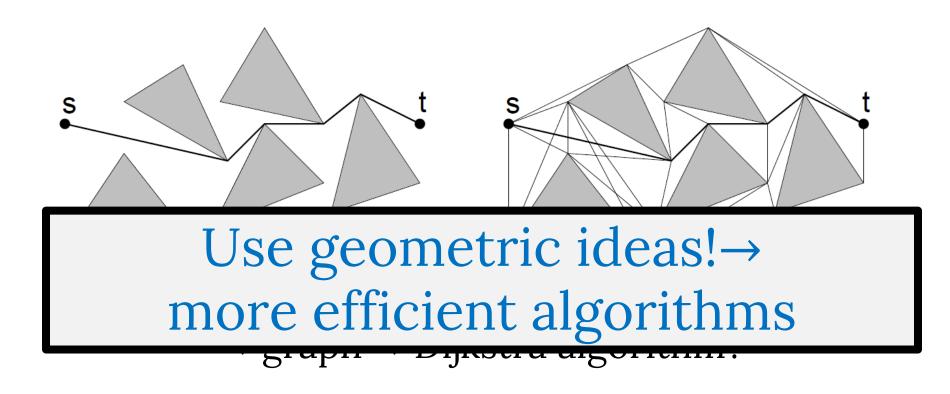
Typical problem: shortest paths



→ graph → Dijkstra algorithm?

Focus: 2D algorithms

Typical problem: shortest paths



Complexity Analysis

- Big O notation
- Mostly worst case (sometimes average)
- Less attention to constants...

Convex hulls

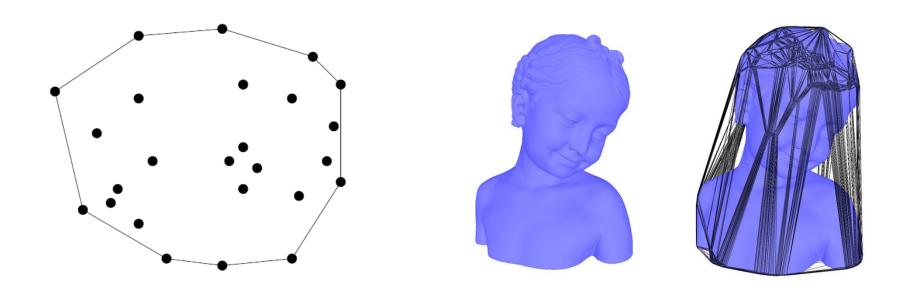
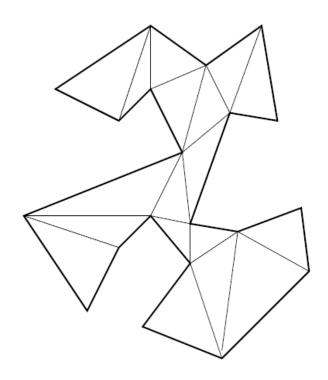


Image from CGAL manual

Triangulations



Line arrangements

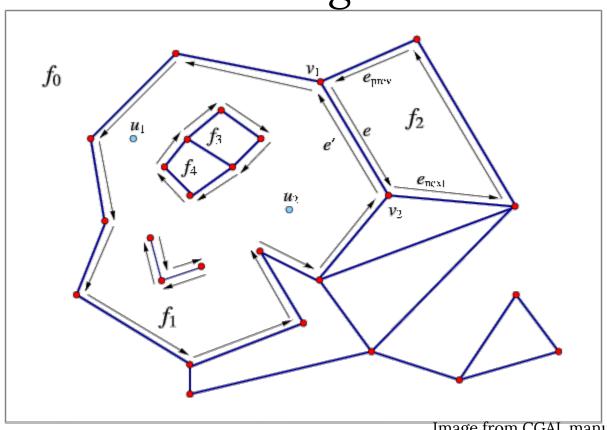
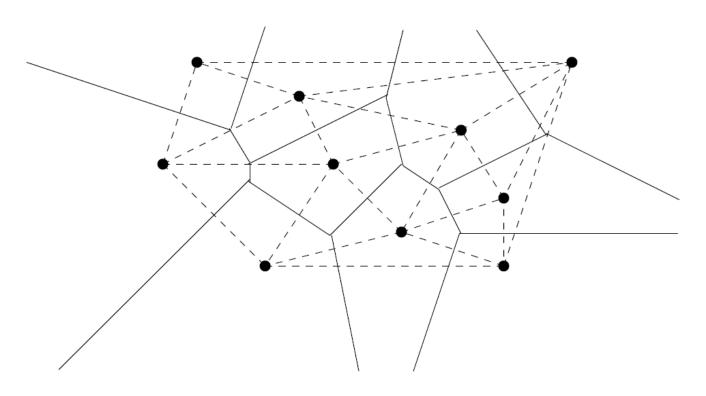


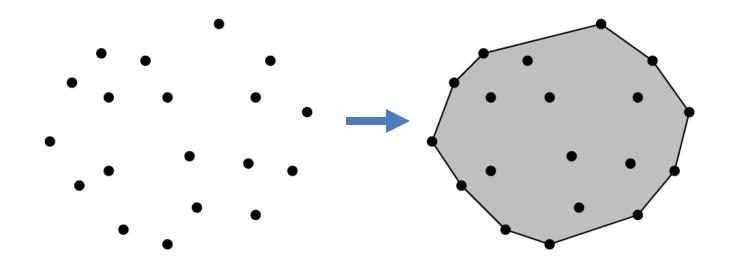
Image from CGAL manual

Delaunay triangulations and Voronoi diagrams



Queries:

- Nearest neighbors?
- Range searches?

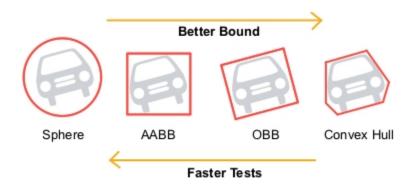


CONVEX HULLS

Why do we need convex hulls?

Collision detecton

Bounding Volumes

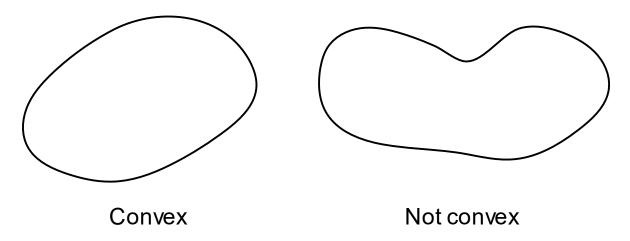


copyright haroldserrano.com

- Reconstructing convex objects from point clouds
- Farthest distance computation

Convex hulls

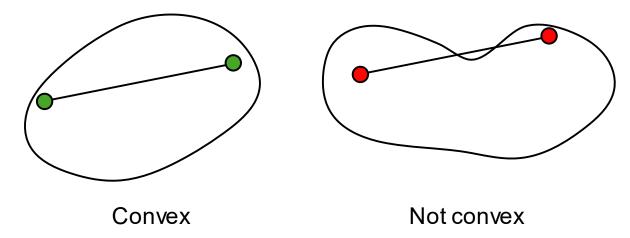
- A set S is convex, if
 - for any two points $p, q \in S$, the line segment $\overline{pq} \in S$



 Convex hull of a set of points S = the smallest convex set that contains S

Convex hulls

- A set S is convex, if
 - for any two points $p, q \in S$, the line segment $\overline{pq} \in S$



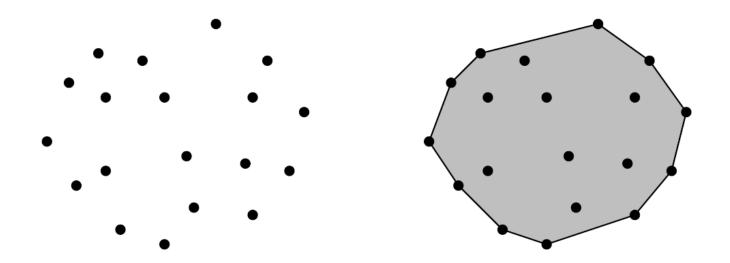
 Convex hull of a set of points S = the smallest convex set that contains S

CH: Representation

A sequence of points!

Simplest algorithm

• Ideas?



Simplest algorithm

• Ideas?

• Try every possible $\overline{pq} \in S$, test if all the other points lie on one side

Complexity?

Better: Gift Wrapping

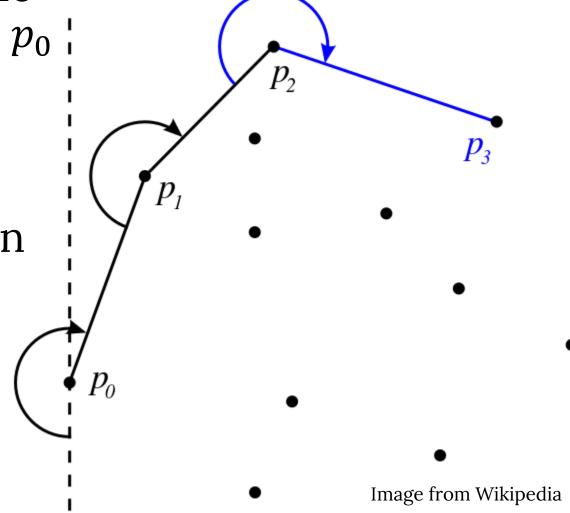
- Start with some extreme point p_0
 - (e.g. leftmost)
 - It belongs to CH
- Choose the next point so that $p_{i+1}p_i$ has all other points on the right
 - Sort by angle, choose minimum
 - -O(n)
- Repeat

Gift Wrapping

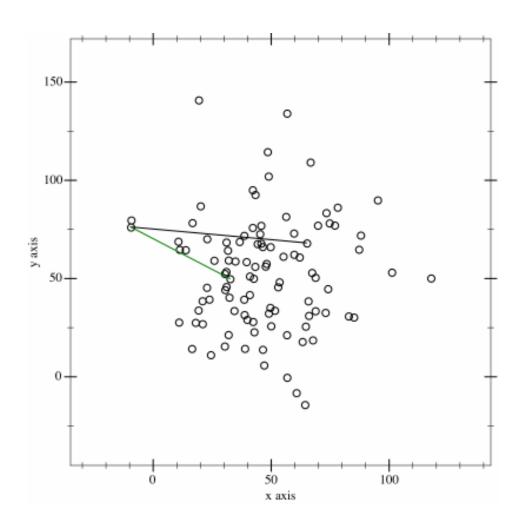
• Start with some extreme point p_0 ;

• Choose p_i , s.t. $p_{i+1}p_i$ has all other points on the right

Repeat



Gift Wrapping



Output-sensitive complexity

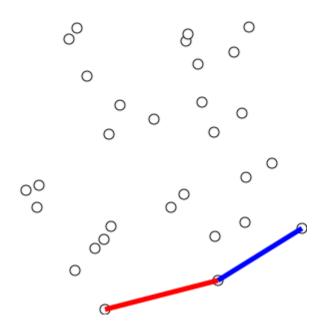
O(nh)

h - number of vertices on the CH

Graham's Scan

- Lower hull:
- Store CH vertices in a stack: $(..., H_2, H_1)$
- Sort points left-to-right
- Take new point p, check if the (p, H_1, H_2) is counterclockwise
 - -Yes => push!
 - -No => pop!

Graham's Scan



Graham's Scan

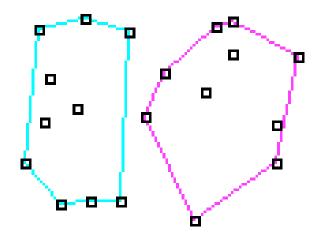
Complexity?

Divide-and-Conquer CH

- Sort by x
- Split by the median point
- Recursively find CH for left and right parts
- Merge

Divide-and-Conquer CH

- Sort by x
- Split by the median point
- Recursively find CH for left and right parts
- Merge



Divide-and-Conquer CH

- Sort by x
- Split by the median point
- Recursively find CH for left and right parts
- Merge
 - Find common tangent line, $O(n \log n)$
 - Can be done in $O(\log(\log n))$

Today

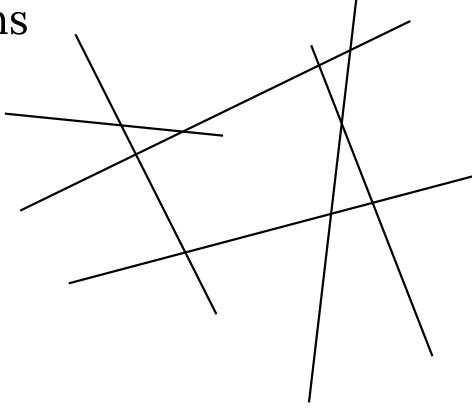
- ✓ Intro
- ✓ Orientation and convex hulls
- Line segment intersection
- Polygons and triangulations
- Halfplane intersection and LP
- Voronoi diagrams
- Delaunay triangulations
- Point location

Line Segment Intersection

• Max # of intersections: $O(n^2)$

Need an output sensitive algorithm!

• *I* - # of intersections



Plane Sweep

- Sweep virtual line
- Stop at events
 - segment started/finished
 - intersection)

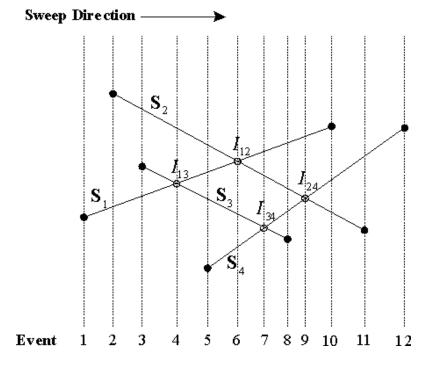
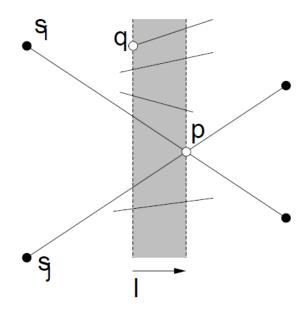


Image from geomalgorithms.com

Plane Sweep

- Presort the endpoints
- How to detect next intersection?
 - If two segments are adjacent along the sweep line,
 - Check if they intersect to the right of the sweep line

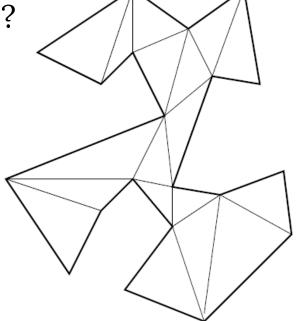


Today

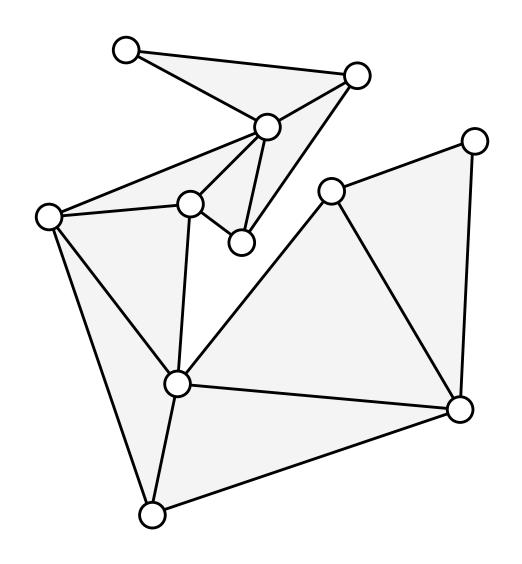
- ✓ Intro
- ✓ Orientation and convex hulls
- ✓ Line segment intersection
- Polygons and triangulations
- Voronoi diagrams
- Delaunay triangulations

Polygons and triangulations

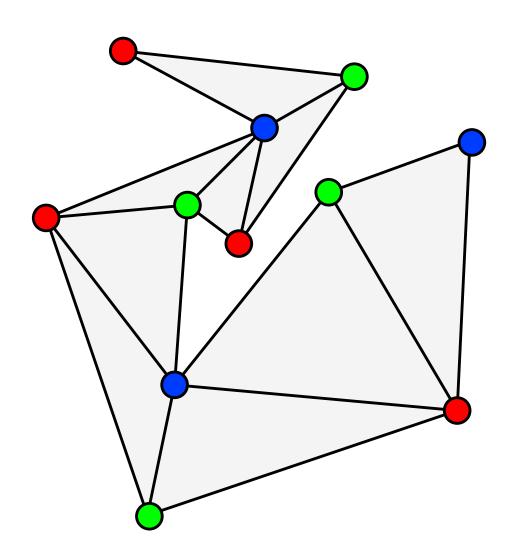
- Why?
 - Decomposition of complex shapes
 - How to compute area of a polygon?
 - Art gallery problem
 - How many cameras and where?



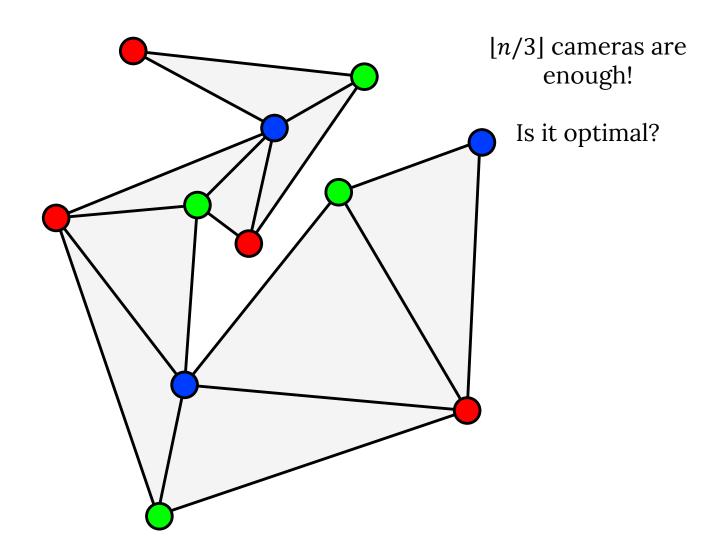
Art Gallery Problem



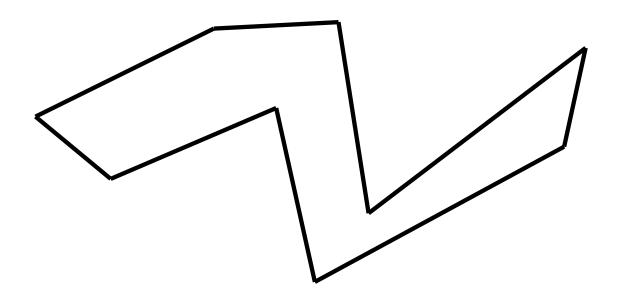
Art Gallery Problem



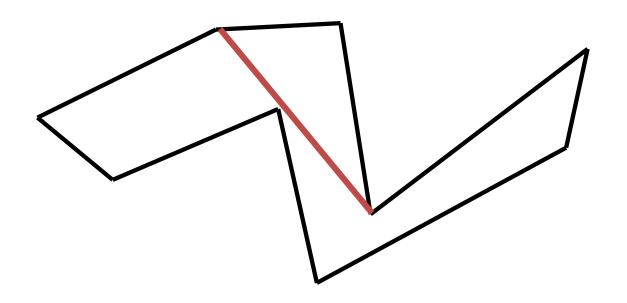
Art Gallery Problem



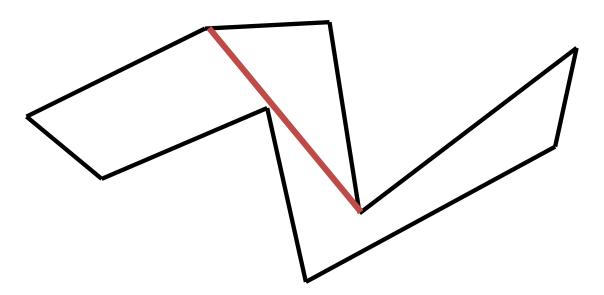
• How to find **a** triangulation?



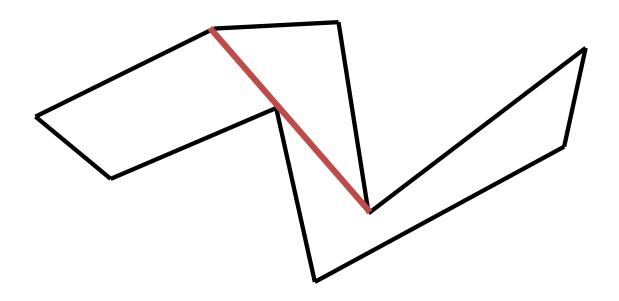
Diagonal: line segment connecting two vertices completely within the polygon

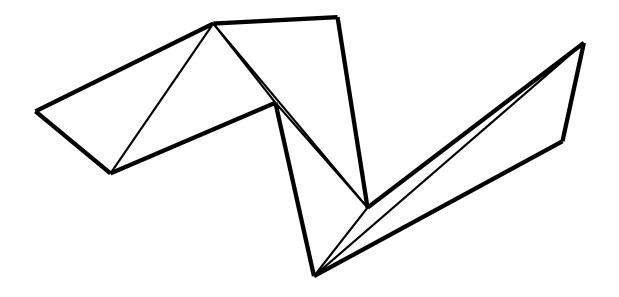


Diagonal: line segment connecting two vertices completely within the polygon

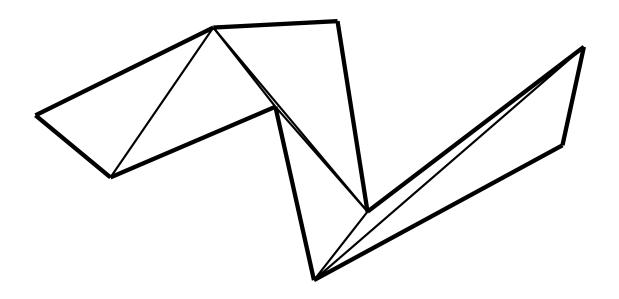


Every polygon has at least 1 diagonal!

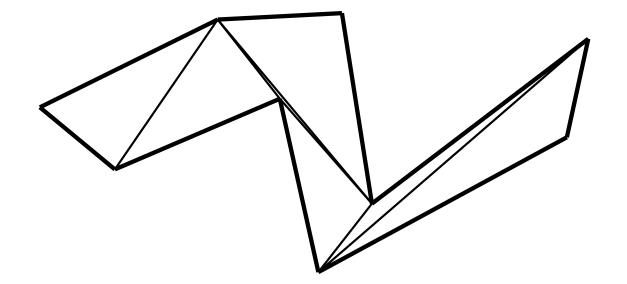




 Algorithm: add diagonal, repeat for the two new polygons



- Algorithm: add diagonal, repeat for the two new polygons
 - Bottleneck?
 - Complexity?



A better algorithm

- $O(n \log n)$
- Input: cyclic list of vertices
 - Presorted!

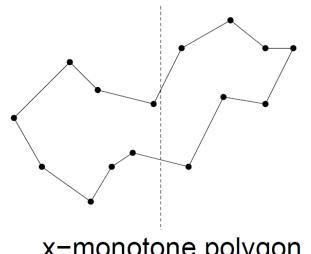
TODO list:

- 1. Learn how to triangulate monotone polygons
- 2. Subdivide arbitrary polygon into monotone ones
- 3. Profit!

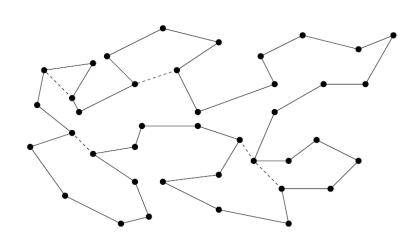
Monotone polygons

Polygonal chain is x-monotone \Leftrightarrow every vertical line intersects chain in at most 1 point

Polygon is x-monotone \Leftrightarrow can be split into two x-monotone chains



x-monotone polygon

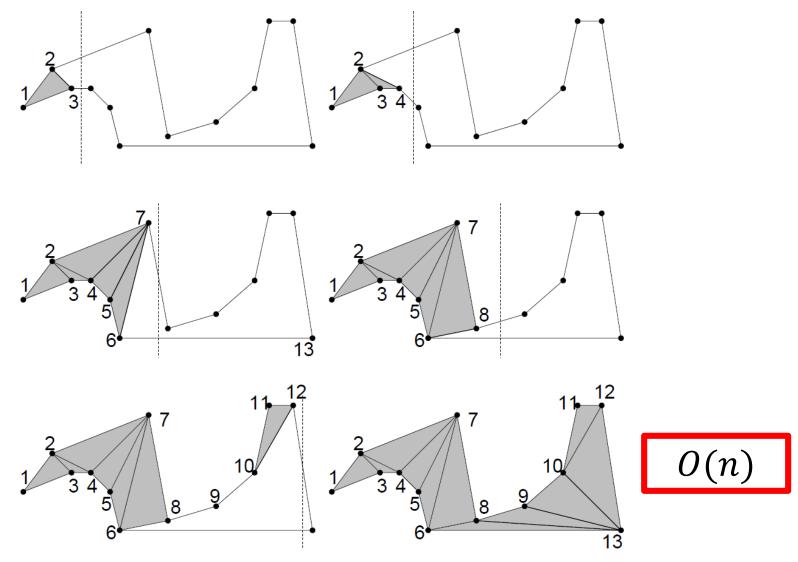


Monotone decomposition

Triangulating monotone polygons

- Sort vertices left to right
 - Doesn't require actual sorting (why?)
 - Requires O(n) time
- Line sweep
 - Triangulate everything to the left of the sweep line
 - Discard the triangulated part
 - Testing diagonals is now constant-time
 - Why?

Triangulating monotone polygons

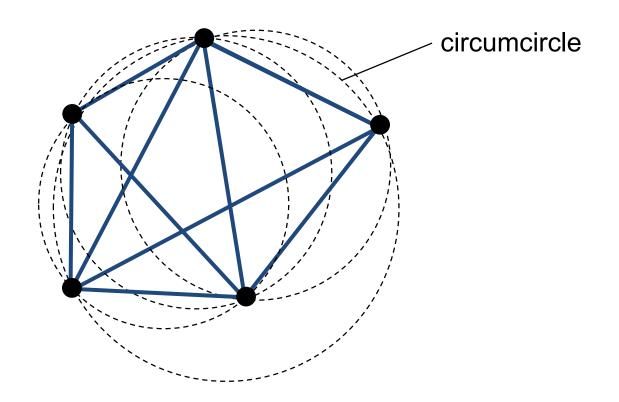


Triangulating monotone polygons Testing diagonals = keeping track of edge orientations 8 O(n)8

Today

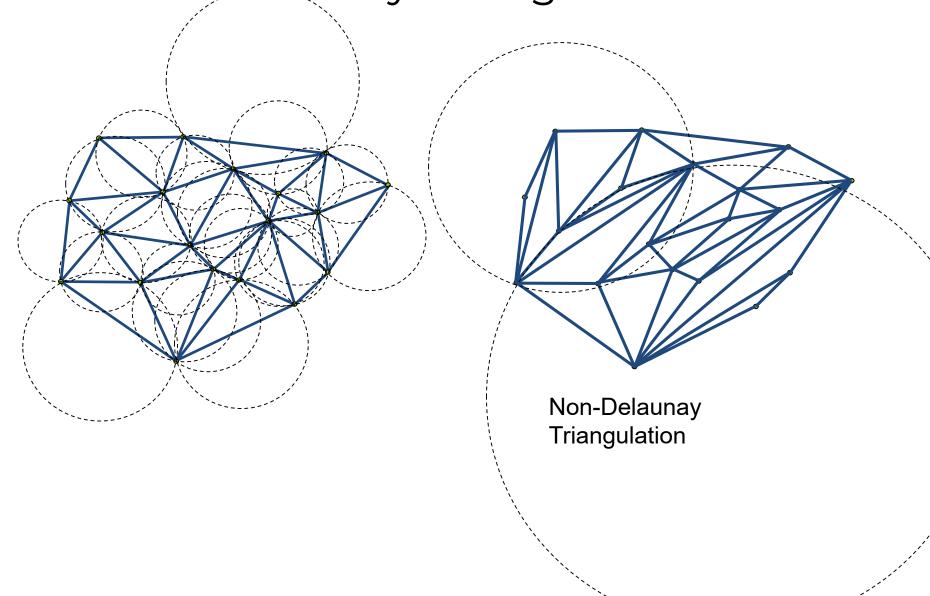
- ✓ Intro
- ✓ Orientation and convex hulls
- ✓ Line segment intersection
- ✓ Polygons and triangulations
- Voronoi diagrams
- Delaunay triangulations

Constructing Connectivity Delaunay Criterion



Empty Circle Property:
No other vertex is contained within the circumcircle of any triangle

Delaunay Triangulation



Delaunay Triangulation

- Obeys empty-circle property
- Exists for any set of vertices
- Is **unique** (up to degenerate cases)
- Proven to provide best triangles in terms of quality for given vertex positions
- To test enough to check pairs of triangles sharing common edge

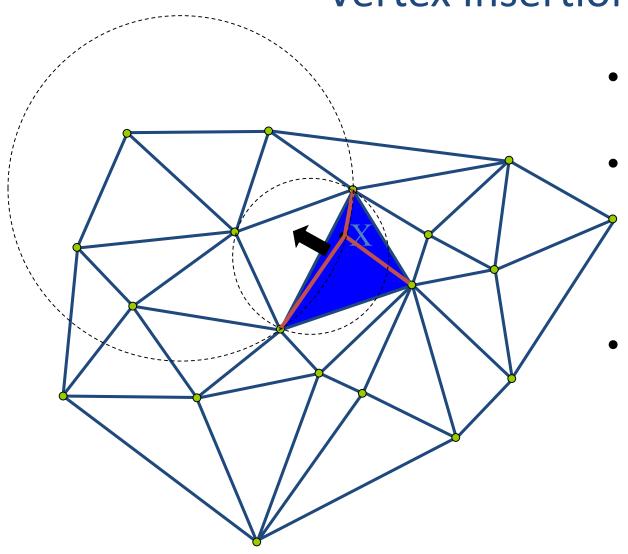
Delaunay Triangulation Methods

- Edge flipping
 - Start with any triangulation of the vertices
 - Test all edges if satisfy Delaunay criterion
 - If edge does not satisfy it, flip edge
 - Repeat until all edges satisfy criterion
- Proven to terminate & give Delaunay mesh
- Slow O(n²)

Delaunay Triangulation Methods

- Vertex Insertion
 - Start with Delaunay mesh covering domain
 - Typically 2 triangle bounding box
 - Insert one vertex at a time
 - Add vertex to mesh (locate triangle to split)
 - Flip edges (locally) to maintain Delaunay property
 - Boundary recovery
- Expected time O(nlog(n))

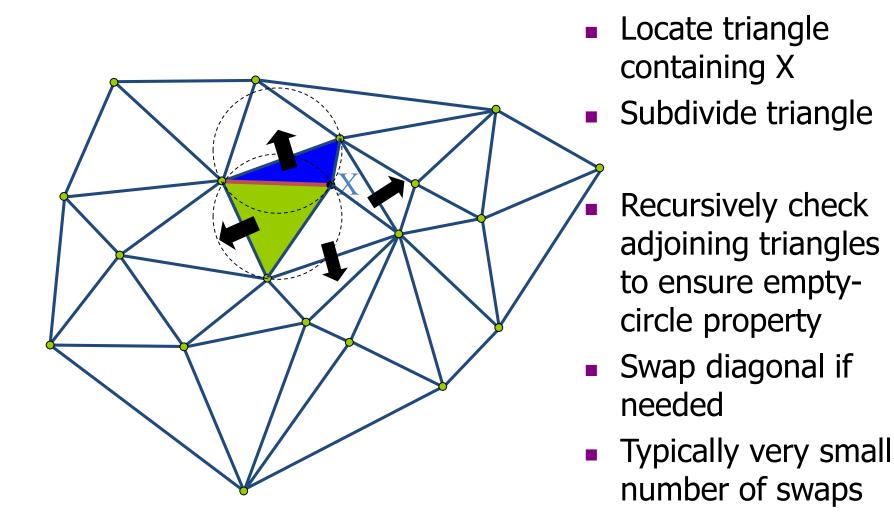
Vertex Insertion



- Locate triangle containing X
 - Subdivide triangle

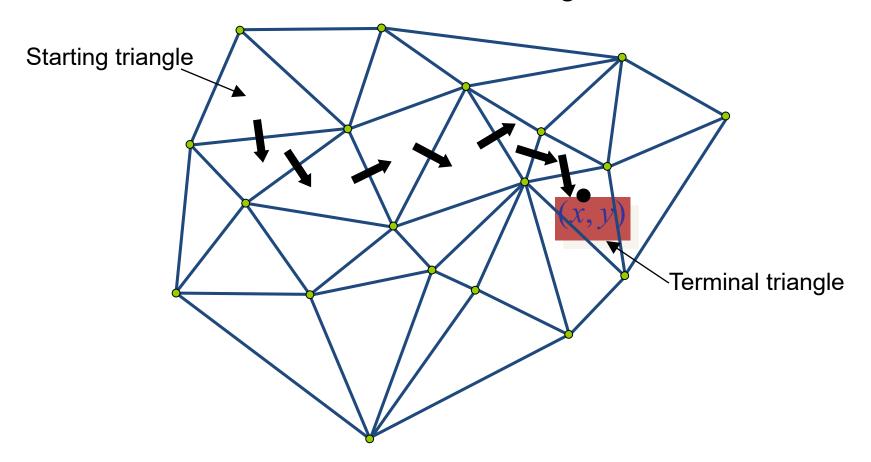
 Recursively check adjoining triangles to ensure emptycircle property

Vertex Insertion



Find Triangle - Efficiency

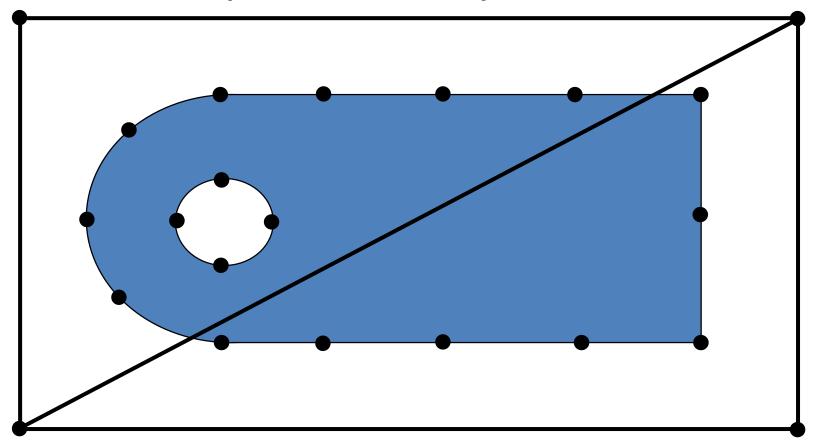
- Use Barycentric Coordinates
 - Test inside triangle
 - If outside outside which edge?



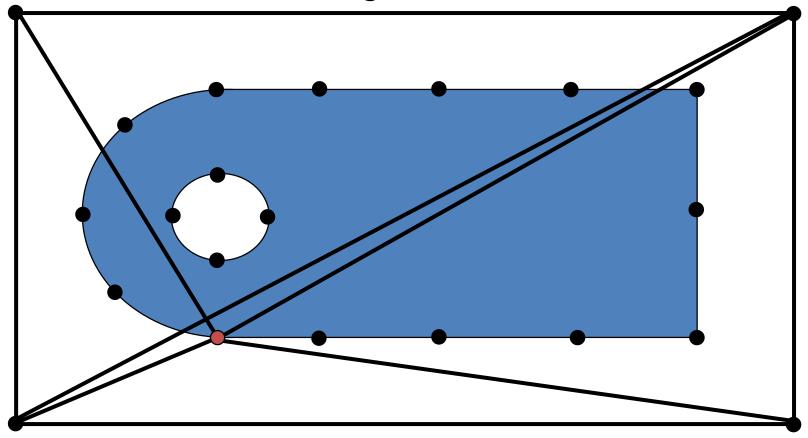
Delaunay Triangulation Methods

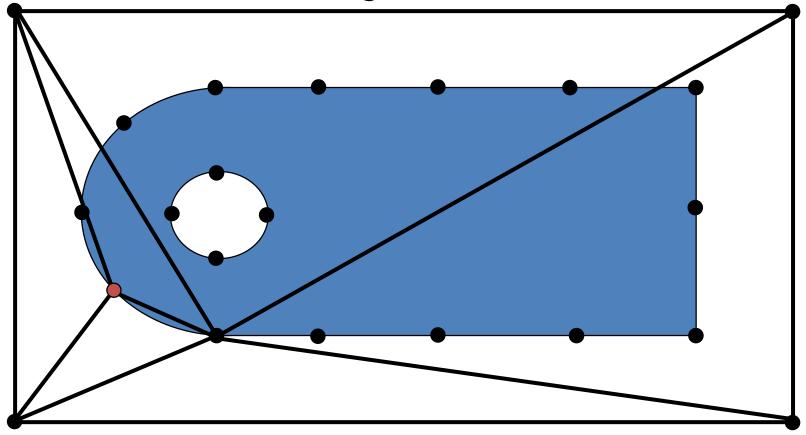
- Vertex Insertion
 - Start with Delaunay mesh covering domain
 - Typically 2 triangle bounding box
 - Insert one vertex at a time
 - Add vertex to mesh (locate triangle to split)
 - Flip edges (locally) to preserve Delaunay property
 - Boundary recovery
- Expected time O(nlog(n))

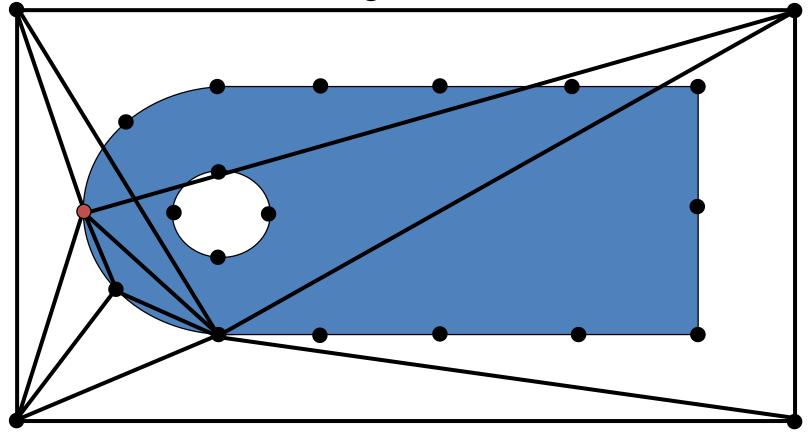
Example: Boundary Insertion

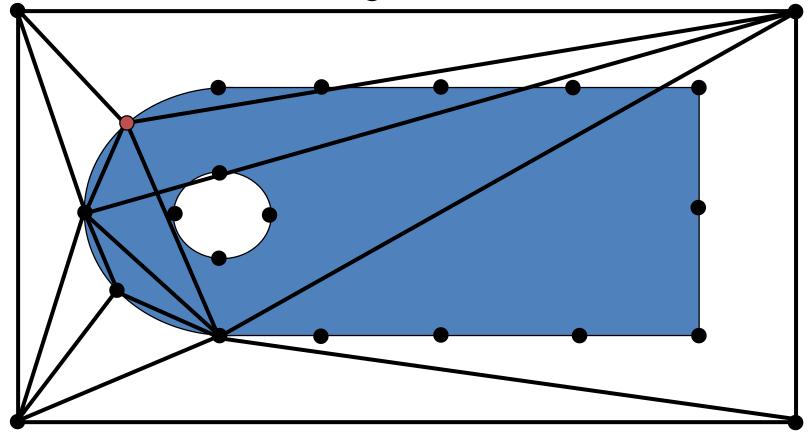


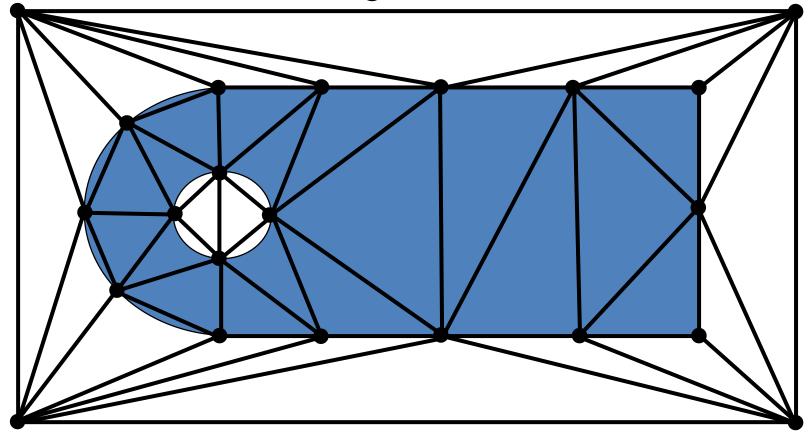
Create bounding triangles







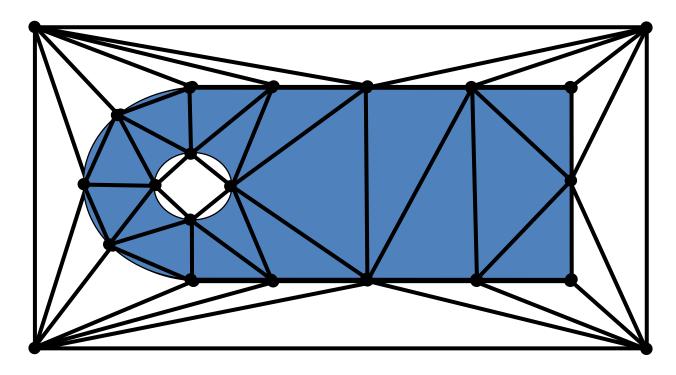




Delaunay Triangulation Methods

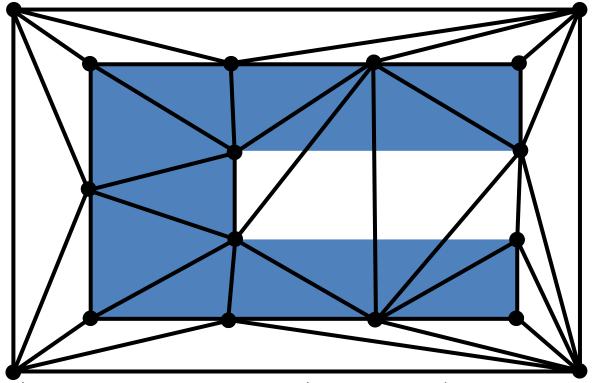
- Vertex Insertion
 - Start with Delaunay mesh covering domain
 - Typically 2 triangle bounding box
 - Insert one vertex at a time
 - Add vertex to mesh (locate triangle to split)
 - Flip edges (locally) to preserve Delaunay property
 - Boundary recovery
- Expected time O(nlog(n))

Boundary Recovery



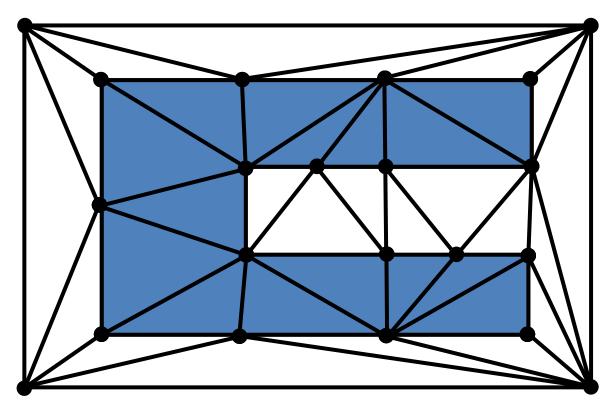
- Delete outside triangles (if can)
 - Delaunay triangulation does not have to obey polygon boundary

Boundary Recovery



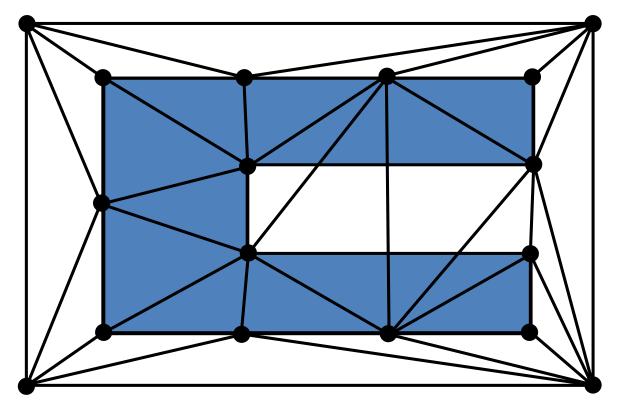
• Delaunay triangulation does not always obey polygon boundary

Boundary Recovery



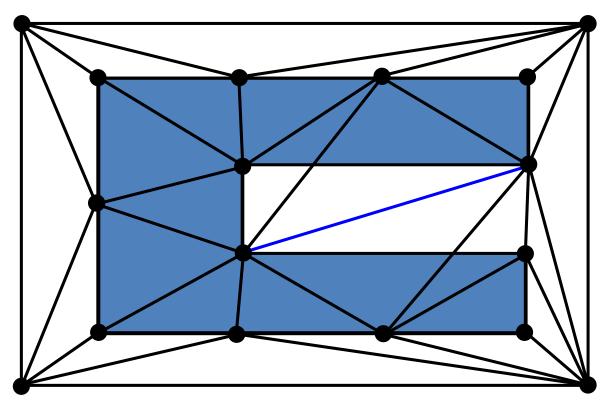
- Boundary Conforming Solution
 - Add vertices at intersections
 - Repeat if necessary

Boundary Recovery - Constrained



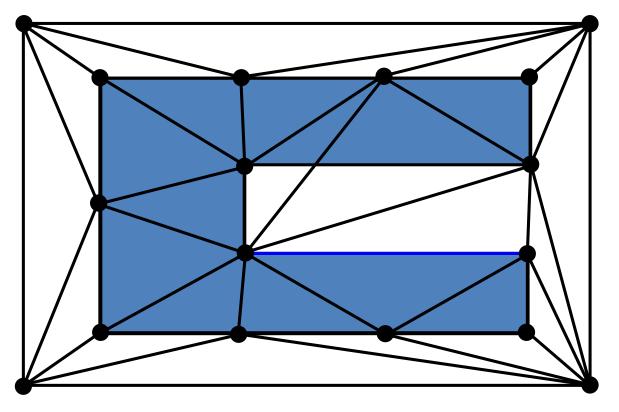
 Not always can add boundary vertices (shared edges)

Boundary Recovery - Constrained



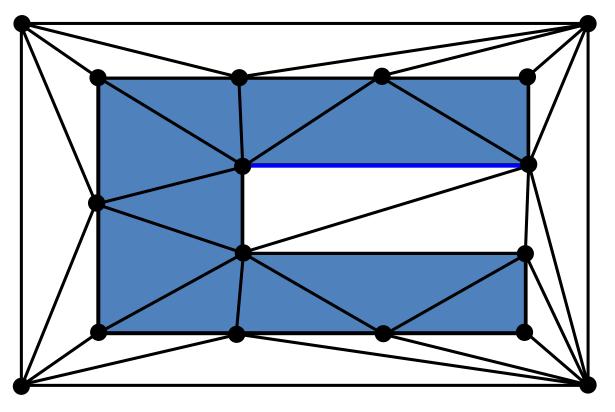
- Swap edges between adjacent pairs of triangles
- Repeat till recover the boundary

Boundary Recovery - Constrained



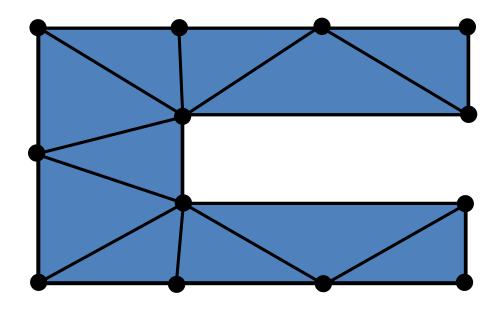
- Swap edges between adjacent pairs of triangles
- Repeat till recover the boundary

Boundary Recovery - Constrained



- Swap edges between adjacent pairs of triangles
- Repeat till recover the boundary

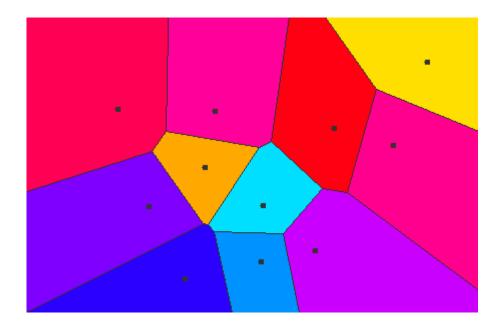
Boundary Recovery - Constrained



Does not maintain Delaunay criterion
 !!!

Voronoi Diagrams

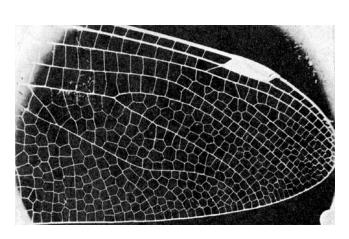
Georgy Voronoi 1868-1908



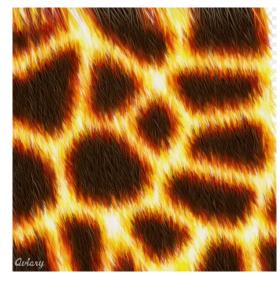
Slides from Prof. Joseph S.B. Mitchell's AMS 345 course materials

Historical Origins and Diagrams in Nature

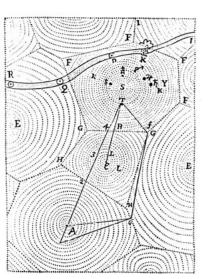
René Descartes 1596-1650 1644: Gravitational Influence of stars



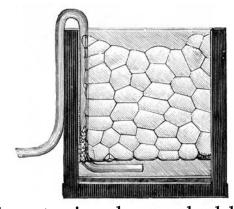
Dragonfly wing



Giraffe pigmentation



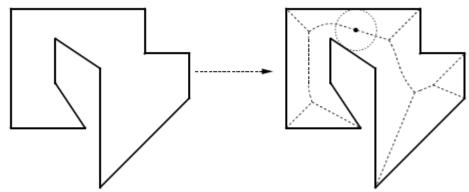
Honeycomb



Constrained soap bubbles Slides from Prof. Joseph S.B. Mitchell's AMS 345 course materials

Voronoi Applications

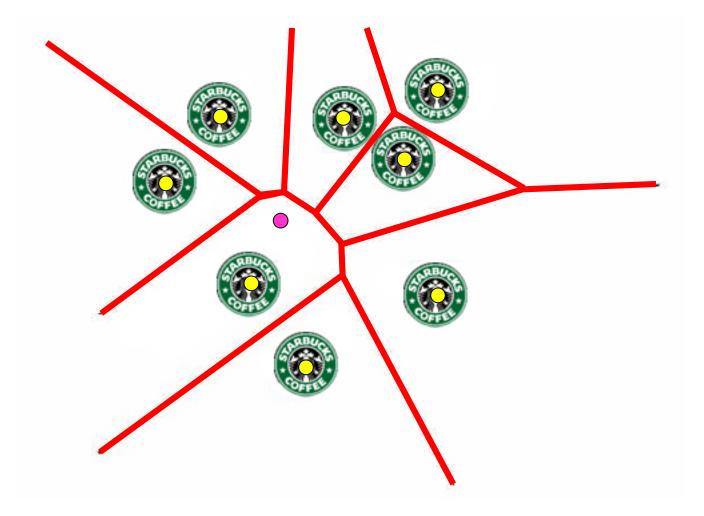
- Voronoi + point location search: nearest neighbor queries
- Facility location: Largest empty disk (centered at a Voronoi vertex)
- Shape description/approximation: medial axis



Slides from Prof. Joseph S.B. Mitchell's AMS 345 course materials

Starbucks Post Office Problem

Query pointPost offices

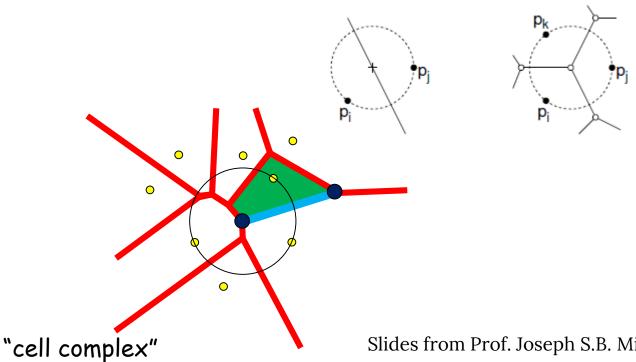


Voronoi Diagram

Partition the plane into cells:

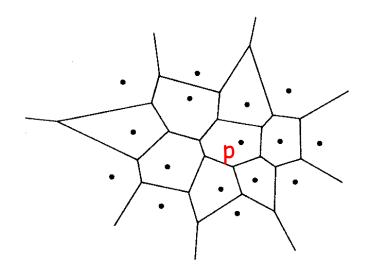
$$\mathcal{V}(p_i) = \{ q \mid ||p_i q|| < ||p_j q||, \forall j \neq i \}$$

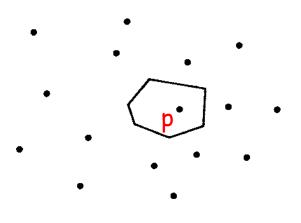
Voronoi cell of p_i is open, convex



Slides from Prof. Joseph S.B. Mitchell's AMS 345 course materials

Example

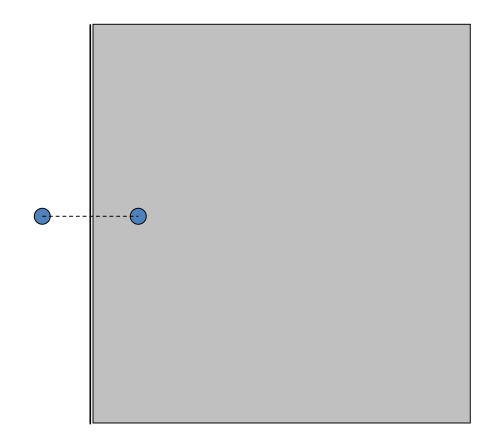




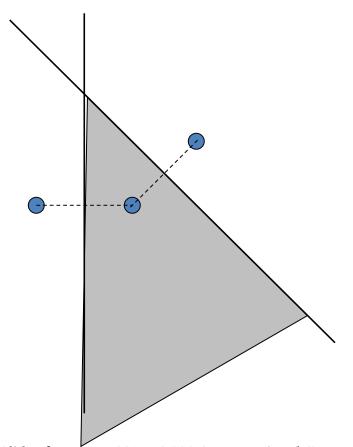
Voronoi cell of p

Given a half plane intersection algorithm...

Given a half plane intersection algorithm...

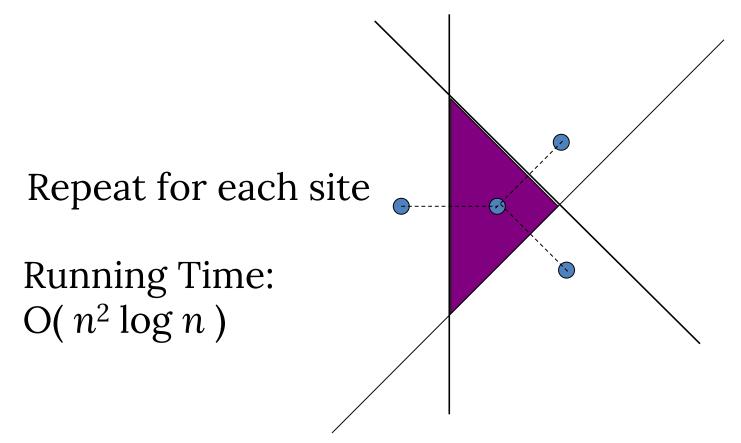


Given a half plane intersection algorithm...



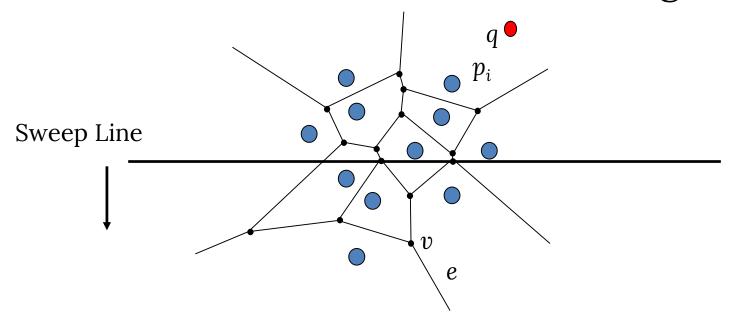
Slides from MIT CSAIL 6.838 Computational Geometry, 2001, taught by Allen Miu

Given a half plane intersection algorithm...



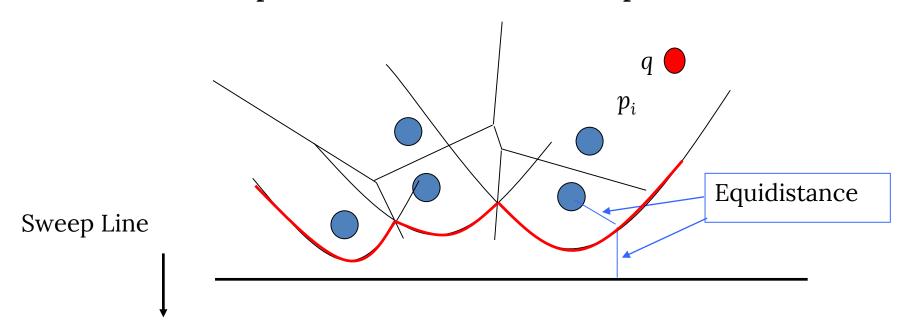
- Half plane intersection O($n^2 \log n$)
- Fortune's Algorithm
 - Sweep line algorithm
 - Voronoi diagram constructed as horizontal line sweeps the set of sites from top to bottom
 - Incremental construction → maintains portion of diagram which doesn't change as we sweep down

What is the invariant we are looking for?



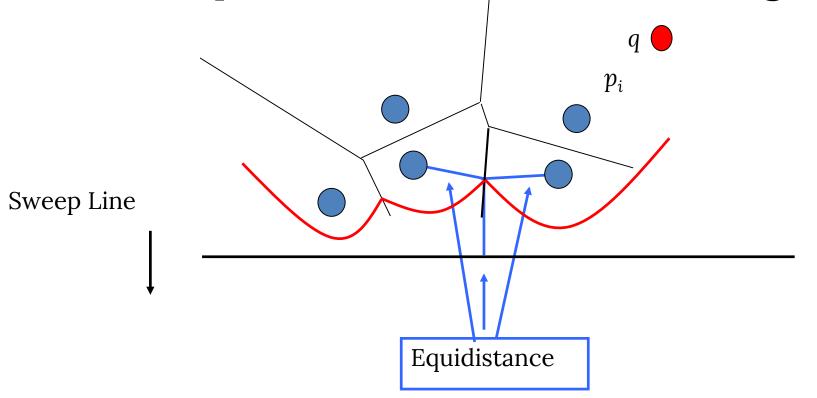
Maintain a representation of the locus of points q that are closer to some site p_i above the sweep line than to the line itself (and thus to any site below the line).

Which points are closer to a site above the sweep line than to the sweep line itself?

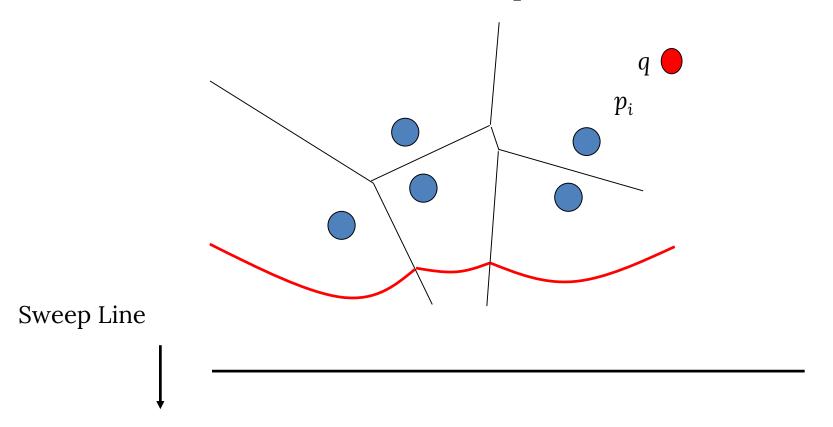


Beach line: lower envelope of all parabolas

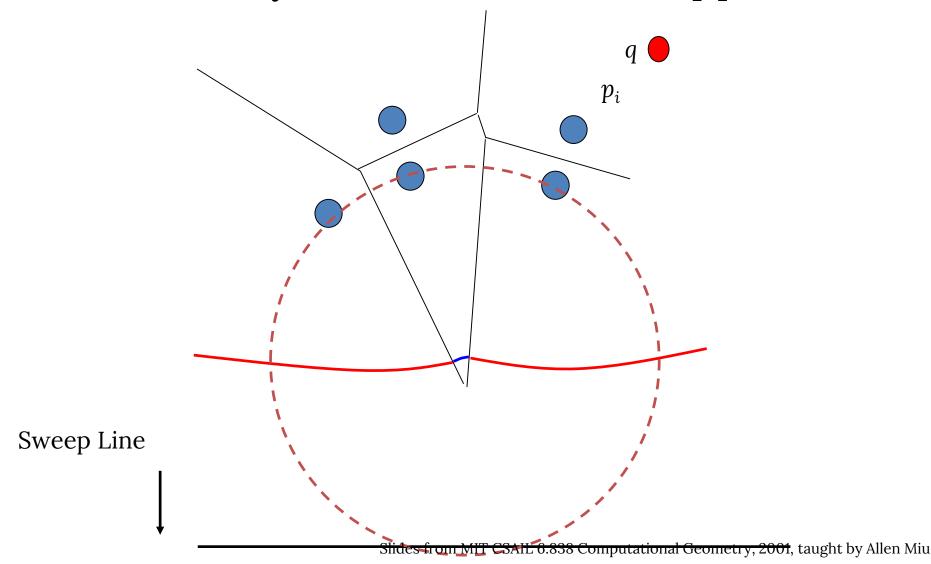
Constructing Voronoi Diagrams Break points trace out Voronoi edges.



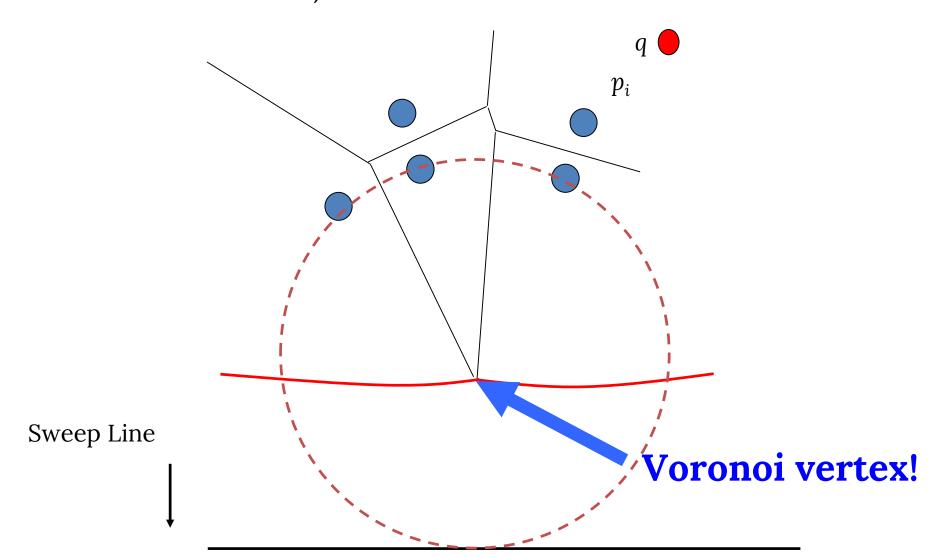
Constructing Voronoi Diagrams Arcs flatten out as sweep line moves down.



Constructing Voronoi Diagrams Eventually, the middle arc disappears.



We have detected a circle that is empty (contains no sites) and touches 3 or more sites.



Beach Line properties

Voronoi edges are traced by the break points

- Voronoi vertices are identified when two break points fuse
 - Decimation of an old arc identifies new vertex

Fortune's Algorithm

- Trace out the cells by line sweep
- Maintain and track the beach line
- No need to store parabolas, just store the participating vertex

• $O(n \log n)$ time

Voronoi Diagram and Medial Axis

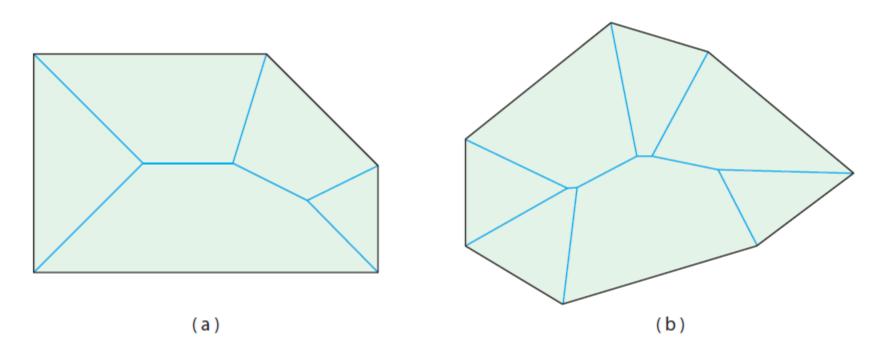


Figure 5.1: Convex polygons and their medial axes marked in blue.

Voronoi Diagram and Medial Axis

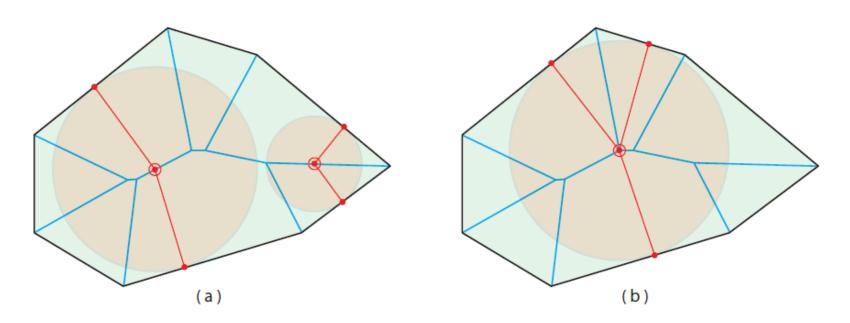
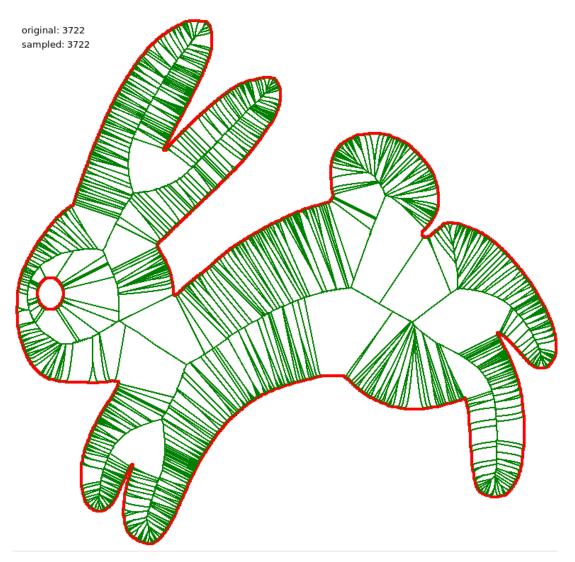
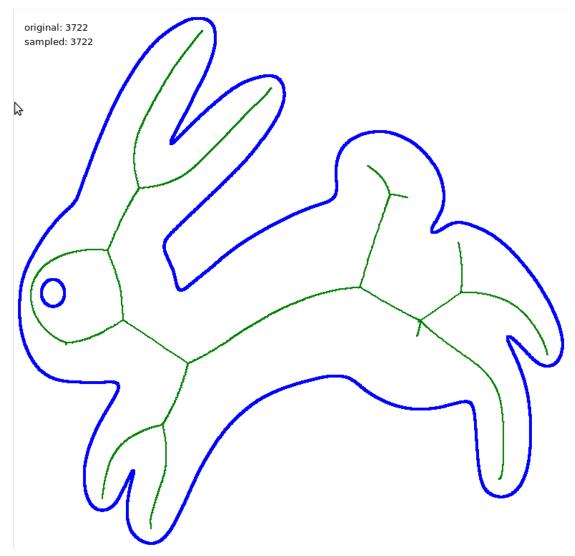


Figure 5.2: The maximal disks associated to (a) interior segments of M(P) and (b) a degree-3 vertex of M(P).

Medial axis vs Voronoi diagram



Medial axis vs Voronoi diagram



Looks familiar?

Skeleton Extraction by Mesh Contraction

Oscar Kin-Chung Au* Chiew-Lan Tai* Hung-Kuo Chu[†] Daniel Cohen-Or[‡] Tong-Yee Lee[†]
*The Hong Kong Univ. of Science and Technology [†]National Cheng Kung University [‡]Tel Aviv University

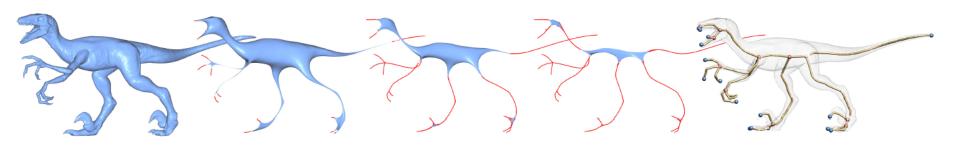


Figure 1: Our method extracts a 1D skeletal shape by performing geometry contraction using constrained Laplacian smoothing. Left to right are the original mesh and the results of the contraction after 1, 2 and 3 iterations. Faces with zero area are drawn in red. The rightmost ray-traced image shows the final skeleton after performing connectivity surgery and embedding refinement.