IFT 6112
18 - CLUSTERING AND SEGMENTATION

http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/

Semi-supervised Mesh Segmentation and Labeling by Lv et al., 2012

Mikhail Bessmeltsev



Task:

Break a shape into meaningful pieces.

https://doc.cgal.org /latest /Surface_mesh_segmentation/index.html



Many Applications

Different cluster analysis results on "mouse" data set:
Original Data k-Means Clustering EM Clustering
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Task: 207

Break a shape into meaningful pieces.

https://doc.cgal.org /latest /Surface_mesh_segmentation/index.html



What's meaningful?

» Semantically?
» Flat/Developable?
 Convex?

« Voronoi-like?

http: / /www.cs.rug.nl /svcg /Shapes /PDE



What's meaningful?

» Semantically?
» Flat/Developable?

 Convex?
* Voronoi-like?
Original Mesh Exact Convex Approximate Convex
Decomposition Decomposition

(7611 parts) (20 parts)




Pocalll
Related: zippables

Shape Representation by Zippables

CHRISTIAN SCHULLER, ROI PORANNE, and OLGA SORKINE-HORNUNG, ETH Zurich, Switzerland

segmentation

single spiraling _
curve LSS - zippable bunny

3D model

Fig. 1. The pipeline of our approach. Starting from a 3D model, the user decomposes the shape into topological cylinders. Our algorithm automatically
produces a single continuous curve on the shape that spirals along the cylinders. It proceeds to cut the shape along the curve and creates a developable surface
that can be trivially unfolded into a single 2D shape - the so called zippable. Based on the flattening, plans for laser cutting it from fabric are generated.
Finally, we attach a zipper with a single slider to the boundary of the zippable. Zipping it up reproduces a faithful approximation of the input model.



Semantic

Modeling new chairs using parts from old ones

B back
B middle

M seat (b) () (b) (c) (c)
F ﬂ [ leg @ ﬁ F H
Training meshes (@) (d) (e) (@) ] (d) (e) (a) (d) (e)

Learning 3D Mesh Segmentation and Labeling by Evangelos Kalogerakis et al., ACM TOG 2010

(b)




K-means clustering

k
min y ) |z — pil?

1=1 x€S;

https:/ /upload.wikimedia.org /wikipedia/commons/d /d2 /K_Means_Example_Step_4.svg



K-means clustering

https:/ /upload.wikimedia.org /wikipedia/commons/d /d2 /K_Means_Example_Step_4

k
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1=1 x€S;

NP-hard for variable k
s a even on a plane

0(]S;|4 -+ if k is fixed



Lloyd iterations
the' k-means algorithms

e Initialization?

 Assignment step (S)
Si e llx — il < ||x — || V3

» Update step (u)

=
Wi ¢ X
C S

XES;




Bocall!
Voronol Diagrams

ﬁ

Georgy Voronoi
['eopruit ®eonocveBud BopoHoi
1868-1908




Example

Flanclm o L skl —a




V/k
Koo Lloyd Iterations

for segmentation

[nitialization: select random triangles = seeds
1. Grow charts around seeds greedily

2. Find new seed for each chart
— E.g. centroid

3. Repeat




Application to Color Space

K=2 K=10

Original

4% 17%

http://cs.nyu.edu/~dsontag/courses /mll2 /slides /lecturel4.pdf



Dependence on Initial Guess

* Initialize K segment seeds, iterate:
* Assign faces to closest seed
* Move seed to cluster center
- Randomization: random initial seeds

“““Randomized Cuts for 3D Mesh Analysis"” > - =
Golovinskiy and Funkhouser; SIGGRAPH Asia 2008

Bug ... or feature?



Dependence on Initial Guess
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“Randomized Cuts for 3D Mesh Analysis.”
Golovinskiy and Funkhouser; SIGGRAPH Asia 2008

Bug ... or feature?



Agide:
Issue: Choice of k

J. R. Statist. Soc. B (2001)
63, Part 2, pp.411-423

Estimating the number of clusters in a data set via
the gap statistic

Robert Tibshirani, Guenther Walther and Trevor Hastie
Stanford University, USA

[Received February 2000. Final revision November 2000]

Summary. We propose a method (the ‘gap statistic”) for estimating the number of clusters (groups)
in a set of data. The technique uses the output of any clustering algorithm (e.g. K-means or
hierarchical), comparing the change in within-cluster dispersion with that expected under an
appropriate reference null distribution. Some theory is developed for the proposal and a simulation
study shows that the gap statistic usually outperforms other methods that have been proposed in the
literature.

Keywords: Clustering; Groups; Hierarchy: K-means; Uniform distribution

1. Introduction

Cluster analysis is an important tool for ‘unsupervised’ lcarning — the problem of finding
groups in data without the help of a response variable. A major challenge in cluster analysis is
the estimation of the optimal number of ‘clusters’. Fig. 1(b) shows a typical plot of an error
measure Wy (the within-cluster dispersion defined below) for a clustering procedure versus the
number of clusters k employed: the error measure W decreases monotonically as the number
of clusters k increases, but from some k& onwards the decrease flattens markedly. Statistical
folklore has it that the location ol such an ‘elbow’ indicates the appropriate number ol
clusters. The goal ol this paper is to provide a statistical procedure to formalize that heuristic.

For recent studies ol the elbow phenomenon, see Sugar (1998) and Sugar er al. (1999). A
comprehensive survey of methods for estimating the number of clusters is given in Milligan
and Cooper (1985), whereas Gordon (1999) discusses the best performers. Some of these
methods are described in Scctions 5 and 6, where they arc compared with our method.

In this paper we proposc the ‘gap’ method for estimating the number of clusters. It is
designed to be applicable to virtually any clustering method. For simplicity, the theorctical
part of our analysis will focus on the widely used K-means clustering procedure.

2. The gap statistic

Our data {x;}, i=1,2,...,n,j=1,2,..., p, consist of p features measured on n inde-
pendent observations. Let d;; denote the distance between observations i and i'. The most

i
[ T S - SR TS T S CINMT T SR U~ R .



On a surface??

k
min y ) |z — pil?

1=1 x€S;

https:/ /upload.wikimedia.org /wikipedia/commons/d /d2 /K_Means_Example_Step_4.svg



Can Apply to Features

Figure 1: The k-means clustering on the GPS coordinates
results in a pose invariant segmentation.

“Laplace-Beltrami Eigenfunctions for Deformation Invariant
Shape Representation.”
Rustamov; SGP 2007



Geometry of k-Means

» Assignment step

—Assign point to its closest cluster
center

» Update step
—Average all points in a cluster

Doesn’t have to be Euclidean



Geometry of k-Means

» Assignment step \/

—Assign point to its closest cluster
center

+ Update step ?
—Average all points in a cluster

In a metric space



Frechet Mean

“Fréchet variance”

On the board:
Generalizes Euclidean notation of “mean.”



-xtension to Regions on a Surface

Alternate between
1. Fitting primitive
parameters
2. Assign points to
patches

“Variational Shape Approximation.”
Cohen-Steiner, Alliez, and Desbrun; SIGGRAPH 2004



k-Medioids

» Assignment step

—Assign point to its closest cluster
center

» Update step

—Replace cluster center with most
central data point

When Frechet means won’t work



Related Technique

Reglion Growling Algorithm
Initialize a priority queue ( of elements
Loop until all elements are clustered
Choose a seed element and insert to (
Create a cluster C from seed
Loop until O is empty
Get the next element s from (
If s can be clustered into C
Cluster s into C
Insert s neighbors to (¢
Merge small clusters into neighboring ones

“Segmentation and Shape Extraction of 3D Boundary Meshes.”
Shamir; EG STAR 2006.

Region growing algorithm



Example Task

https:/ /ps.is.tuebingen.mpg.de /research_projects /3d-mesh-registration

Clustering shapes?



Gromov-Hausdorff Distance

Distance between metric spaces X, Y

deu(X,Y) := ) inf S dx (x,2") — dy (¢(x), p(x))]

t
_Best map_




Gromov-Hausdorff Clustering

Eurographics Symposium on Point-Based Graphies (2007)
M. Botsch, R. Pajarola (Editors)

On the use of Gromov-Hausdorff Distances for Shape
Comparison

Facundo Mémoli'’

lDepa.rtment of Mathematics, Stanford University, California, USA.

Abstract
It is the purpose of this paper to propose and discuss certain modificafions of the ideas cond
Hausdor[f distances in order fo tackle the problems of shape matching and comparison. Thes|
render these distances more amenable to practical computations without sacrificing theoretical
second goal of this paper 15 to establish links to several other practical methods proposed in
comparing/matching shapes in precise terms. Connections with the Quadratic Assignment Pr

also established, and computational examples are presented.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Compu

and Object Modelling.

1. Introduction

Given the great advances in recent years in the fields of shape
acquisition and modelling, and the resulting huge collections
of digital models that have been obtained it is of great impor-
tance to be able to define and compute meaningful notions
of similarity between shapes which exhibit invariance to dif-
ferent deformations and or poses of the objects represented

cat
elephant
face

head

_ ) horse
structure, that is, shapes are viewed

notion of distance compares the full
tained in the shapes, as opposed to
only compare simple (incomplete) in]
shapes will be declared equal if and
ric. This means that the invariance

coded by the metrics one chooses to

b o P [ -t ST R R [T N AT B [

lion



Agglomerative Clustering

@ @ o @ ¢ (O
T

y —

https:/ /upload.wikimedia.org /wikipedia/commons/a/ad /Hierarchical _clustering_simple_diagram.svg

Merge from the bottom up




Agglomerative Clustering In
Geometry

“Hierarchical mesh segmentation based on fitting primitives.”
Attene, Falcidieno, and Spagnuolo; The Visual Computer 2006

Fit a primitive and measure



Typical Features

Figure 4: Example of mesh attributes used for partitioning. Left: minimum curvature, middel: average geodesic distance, right
shape diameter function.

“Segmentation and Shape Extraction of 3D Boundary Meshes.”
Shamir; EG STAR 2006.



Additional Desirable Properties

e Cardinality

— Not too small and not too large or a given number (of segment
or elements)

— Overall balanced partition

* Geometry
— Size: area, diameter, radius
— Convexity, Roundness
— Boundary smoothness

* Topology

— Connectivity (single component)

— Disk topology
— a given number (of segment or elements)

“Segmentation and Shape Extraction of 3D Boundary Meshes.”

Shamir; EG STAR 2006.
via Q. Huang, Stanford CS 468, 2012



lssue So Far

No notion of optimality.

No use of
local relationships.



Spectral Clustering

http:/ /cs.nyu.edu /~dsontag /courses /mll3 /slides /lecturel6.pdf

K-means Spectral clustering
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two circles, 2 clusters (K-means) '
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* Rough notion of optimality
« Assembles local relationships



Normalized Cuts for Two Cuts

Symmetric similarity matrix W

Cut score C'(A, B) := ) ica wj;
JEDL

Volume V(A) := Zz’EA Zj Wij

Normalized cut score

N(A,B) :=C(A,B)(V(A)~t'+V(B)™1)
“Normalized Cuts and Image Segmentation.”
Shi and Malik; PAMI 2000



Normalized Cuts

o VA~ ifieA
YT —v(B)! ifieB

On the board:
' Lx = Z wi;(V(A) ™+ V(B)™1)?
1€A
1€EB
z! Dy = V(A)_1 + V(B)_1
r' Lx
N(4,B) = ' Dx

z' D1 =0



Eigenvalue Problem

A
min

r x! Dx
s.t.z' D1 =0

On the board:
 Relaxation of normalized cuts

» Eigenvalue problem



Example on KNN Graph

6 T T T T 6 T T T
5t o . 5t g
I”:
e 0] v
| | | I‘ I
4 5 o o © 4 ,fr\q;\’(r‘_‘ !
" I
3r ° ° ° o ° : 3+ fr{“\‘(/)ff'w
(o] o - \llt \\l
o ° o v X--3
2_ N 2_ f“l ‘:\ "
o] o ¥
o -
o o ° «-""" N *
1 1 - ’
o ©°° _ o N X S o
o] i (WS A
o o %o a1 e*t
0 ° 0 } / ,
° 1! |"
1
o 1,0, 1
1t o o° 1 At ~w. A
o e
_2 L 1 1 1 _2 L 1 ]
-3 -2 -1 0 1 2 3 4 5 —4 -2 0 2 4

http:/ /cs.nyu.edu/~dsontag /courses /mll3 /slides /lecturel6.pdf



For > 2 Clusters

+ Recursive bi-partitioning (Hagen et al.
1991)

— Analogy: Agglomerative clustering
— Potentially slow /unstable

 Cluster multiple eigenvectors
— Analogy: k-means after dimension reduction
— More popular appraoch

http:/ /cs.nyu.edu/~dsontag /courses /mll3 /slides /lecturel6.pdf



Pocall,

Second-Smallest Eigenvector
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TN

N

YN RN

Fiedler vector (“algebraic connectivity”)



Back to the Laplacian

Computers & Graphics 33 (2009) 381-390

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag —

Technical Section
Discrete Laplace-Beltrami operators for shape analysis and segmentation

Martin Reuter*", Silvia Biasotti ©*, Daniela Giorgi %, Giuseppe Patané®, Michela Spagnuolo®

* Mossachusetis Institute of Technology, Combridge, MA, LI5A
®AA. Martinos Center for Blomedical Imaging, Massachusetts General Hospital. Harvard Medical School, Boston, MA, USA
v Istituto di Matematica Applicata e Tecnologie Informatiche - Consiglio Nozionale delle Ricerche, Cenowa, Iraly

ARTICLE INFO ABSTRACT
Article history: Shape analysis plays a pivotal role in a large number of applications, ranging from traditional geometry
Received 12 December 2008 processing to more recent 3D content management. In this scenario, spectral methods are extremely

Received in revised form

Figure 12: Derived segmentations.

promising as they provide a natural library of tools for shape analysis, intrinsically defined by the shape

2 March 2009

Aceepted 3 March 2009 itself. In particular, the eigenfunctions of the Laplace-Beltrami operator yield a set of real-valued

functions that provide interesting insights in the structure and morphology of the shape. In this paper.
we first analyze different discretizations of the Laplace-Beltrami operator {geometric Laplacians, linear

Keywords: _ and cubn: FEM opeu'atursj in terms of the can'ectness of lheur eigenﬁjm:nuns with respecr o the
Laplace- Beltrami operator - -

Eigenfunctions
Nodal sets

Nodal domains
Shape analysis

Shape segmentati
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Figure 7: Segmentations induced by the nodal domains of some eigenfunctions selected among the first 15 eigenfunctions (in order of increasing eigenvalues). Blue

regions couespond to regions where the elgeutunctlous have negative values, while red regions conespond to positive values.
objects, in ordS=— . N L P—— _ — — E———
content in Mmany emerging web—bascd apphcanons A semantic analyﬂs -!nd Egmentatmn :Ihle tﬂ Eapl'ure a vaned set of




Nodal domain

A connected region
where a Laplacian
eigenfunction has
constant sign



Courant’'s Theorem

The k-th Laplacian eigenfunction has
at most k nodal domains.

iyt
‘

https:/ /i.stack.imgur.com /JJIFP.png




Image courtesy Q. Huang

Inconsistent!



What's meaningful?

» Semantically?
» Flat/Developable?
 Convex?

« Voronoi-like?

http: / /www.cs.rug.nl /svcg /Shapes /PDE



Obvious Counterexample

http:/ /www.erflow.eu/brain-segmentation-science-case

Shape provides only a clue




Supervised Learning
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“Learning 3D Mesh Segmentation and Labeling.”
Kalogerakis, Hertzmann, and Singh; SIGGRAPH 2010

Use example data to help
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Conditional Random Field
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Before Someone Asks

3D Shape Segmentation with Projective Convolutional Networks

Evangelos Kalogerakis' Melinos Averkiou?

"University of Massachusetts Amherst

Abstract

This paper introduces a deep architecture for segmenting
3D objects into their labeled semantic parts. Our architec-
ture combines image-based Fully Conveolutional Networks
(FCNs) and surface-based Conditional Random Fields
(CRFs) to vield coherent segmentations of 3D shapes. The
image-based FCNs are used for efficient view-based rea-
soning about 3D object parts. Through a special projec-
tion layer, FCN outputs are effectively aggregated across
multiple views and scales, then are projected onto the
3D object surfaces. Finally, a surface-based CRF com-
bines the projected outputs with geometric consistency
cues to yield coherent segmemtations. The whole archi-
tecture (multi-view FCNs and CRF) is trained end-to-end.
Our approach significantly outperforms the existing state-
of-the-art methods in the currently largest segmentation
benchmark (ShapeNet). Finally, we demonstrate promis-
ing segmentation results on noisy 3D shapes acquired from
consumer-grade depth cameras.

1. Introduction

In recent years there has been an explosion of 3D shape
data on the web. In addition to the increasing number of
community-curated CAD models, depth sensors deployed
on a wide range of platforms are able to acquire 3D ge-

Ammatris ranroecaniatiane af abdante 1 tha Foarmm A sl onrmas

Subhransu Maji' Siddhartha Chaudhuri®

2University of Cyprus  *TIT Bombay

The shape segmentation task, while fundamental, is chal-
lenging because of the variety and ambiguity of shape parts
that must be assigned the same semantic label; because ac-
curately detecting boundaries between parts can involve ex-
tremely subtle cues; because local and global features must
be jointly examined; and because the analysis must be ro-
bust to noise and undersampling.

We propose a deep architecture for segmenting and label-
ing 3D shapes that simply and effectively addresses these
challenges, and significantly outperforms prior methods.
The key insights of our technique are to repurpose image-
based deep networks for view-based reasoning, and aggre-
gate their outputs onto the surface representation of the
shape in a geometrically consistent manner. We make no
geometric or topological assumptions about the shape, nor
exploit any hand-tuned geometric descriptors.

Our view-based approach is motivated by the success of
deep networks on image segmentation tasks. Using ren-
dered shapes lets us initialize our network with layers that
have been trained on large image datasets, allowing better
generalization. Since images depict shapes of pholographe

objects (along with texture), we expect such pre-tr:
ers to already encode some information about part
relationships. Recent work on view-based 3D sh
sification [13, 35] and RGB-D recognition [13, 42] have

P I N S s U L S AL N [ [ SN T
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