
IFT 6113
APPLICATIONS OF 

CURVATURE
http://tiny.cc/6113

Mikhail Bessmeltsev



MESH SIMPLIFICATION

Warning: Stone Age Tools
(but still useful)

Image from Wikipedia



Image from CGAL tutorial



Why simplify meshes?

• Faster rendering
• Faster collision detection
• Storage/transmission/etc.



Why simplify meshes?

Faster rendering: Level of Detail

Rough, if the mesh is far Fine, if the mesh is close



Requirements

• Reduce # of polygons
• Preserve the shape

– Geometry
• Features

– Topology
– Other constraints?

Image from https://gafferongames.com/post/tessellating_the_go_stone/



Complexities
Holes!

Connected components!
Boundaries!

12,000 2,000 300



Approximation error

8
size

e
rro

r



Approach: Local operations

Removing edges or vertices
Keeping track of the geometry/topology

Keep score
how much will we lose if we remove a vertex?



Approach

• Each operation introduces error
• Quantify?



Decimation

• Vertex removal

Remove vertex → hole → triangulate

#𝑉 → #𝑉 − 1

#𝐹 → #𝐹 − 2



Decimation

• Vertex removal
#𝑉 → #𝑉 − 1

#𝐹 → #𝐹 − 2



Decimation

• Edge collapse
#𝑉 → #𝑉 − 1

#𝐹 → #𝐹 − 2



Measuring error

𝑑 , =?

How much did we distort the shape?



Measuring error

𝑑 , =?

How much did we distort the shape?

Option: Hausdorff distance

𝑑𝐻 𝑥,𝑦

= max{sup
𝑥∈X

inf
𝑦∈Y

𝑑(𝑥, 𝑦) , sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦)}



Measuring error

𝑑 , =?

How much did we distort the shape?

Option: Hausdorff distance

𝑑𝐻 𝑥,𝑦

= max{sup
𝑥∈X

inf
𝑦∈Y

𝑑(𝑥, 𝑦) , sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦)}

Hard to 
compute!



Local Error Control

2𝜋 −෍𝛼𝑖

Vertex-plane distance Curvature



Algorithm

while (nVertices > nTarget)

e = elementWithMinError()

process(e) # remove/contract

preserveStructure()

updateErrors() # local/global



Data Structures

• Easy access to neighbors
– Filling holes
– Computing cost

• Priority queue/heap
– Quick access to the cheapest element



Vertex Removal Algorithm



Vertex Removal Algorithm

Characterize local topology/geometry

Classify vertices as removable or not

while (nVertices > nTarget)

v = vertexWithMinDistance()

remove(v)

triangulateHole()

updateDistances() #to average plane



Characterizing structure

Simple

Boundary

Complex

Interior

Corner



Decimation Criterion
Simple vertex 𝑣:

𝑑 𝑣, 𝑓𝑎𝑐𝑒 𝑙𝑜𝑜𝑝 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑙𝑎𝑛𝑒 < 𝐸𝑀𝐴𝑋

Boundary vertex 𝑣𝑏:
𝑑 𝑣𝑏 , 𝑛𝑒𝑤 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑒𝑑𝑔𝑒 < 𝐸𝑀𝐴𝑋



triangulateHole()

Non-planar hole!
– Split loop recursively
– Split plane orthogonal to the average plane

• Control aspect ratio 
May fail
– Vertex is not removed



Example

25

Simplifier



Pros and Cons

• Pros:
– Efficient
– Simple to implement and use

• Few input parameters to control quality
– Reasonable approximation
– Works on very large meshes
– Preserves topology
– Vertices are a subset of the original mesh

• Cons:
– Error is not bounded

• Local error evaluation causes error to accumulate

26



Edge Collapse Algorithm



Edge Collapse Algorithm
while (nVertices > nTarget)

e = edgeWithMinError()

v = collapse(e) #returns a vertex

place(v)

updateErrors() # local/global



Edge Collapse Algorithm
while (nVertices > nTarget)

e = edgeWithMinError()

v = collapse(e) #returns a vertex

place(v)

updateErrors() # local/global

Where should we 
place the vertex?



Distance Metric: Quadrics

Find the closest point to 
the set of adjacent triangles planes

𝑣 = argmin
𝑝

𝑑(𝑝, 𝑝𝑙𝑎𝑛𝑒𝑠 𝑣 )



𝑣 = argmin
𝑝

𝑑(𝑝, 𝑝𝑙𝑎𝑛𝑒𝑠 𝑣 )



Plane equation
𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

Squared distance to a plane
𝑑 𝑝, 𝑝𝑙𝑎𝑛𝑒 = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 2

assuming
𝑛 2 = 𝐴2 + 𝐵2 + 𝐶2 = 1



Plane equation
𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

Squared distance to a plane
𝑑 𝑝, 𝑝𝑙𝑎𝑛𝑒 = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 2

assuming 
𝑛 2 = 𝐴2 + 𝐵2 + 𝐶2 = 1



Plane equation
𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

Squared distance to a plane
𝑑 𝒙, 𝑝𝑙𝑎𝑛𝑒 = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 2

= 𝒙𝑇𝒑 2 = 𝒙𝑇𝒑𝒑𝑇𝒙

assuming 
𝑛 2 = 𝐴2 + 𝐵2 + 𝐶2 = 1 𝒑 =

𝐴
𝐵
𝐶
𝐷



Plane equation
𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

Squared distance to a plane
𝑑 𝒙, 𝑝𝑙𝑎𝑛𝑒 = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 2

= 𝒙𝑇𝒑 2 = 𝒙𝑇𝒑𝒑𝑇𝒙 = 𝒙𝑇𝐾𝒙

assuming 
𝑛 2 = 𝐴2 + 𝐵2 + 𝐶2 = 1𝐾 = 𝒑𝒑𝑇 =

𝐴2 𝐴𝐵 𝐴𝐶 𝐴𝐷
𝐴𝐵 𝐵2 𝐵𝐶 𝐵𝐷
𝐴𝐶
𝐴𝐷

𝐵𝐶
𝐵𝐷

𝐶2 𝐶𝐷
𝐶𝐷 𝐷2

≥ 0



Squared distance to a set of planes

𝑑 𝑥, 𝑝𝑙𝑎𝑛𝑒𝑠 𝑣 =෍

𝑖

𝑑 𝑥, 𝑝𝑙𝑎𝑛𝑒𝑖 =

=෍

𝑖

𝒙𝑇𝐾𝑖𝒙 = 𝒙𝑇(෍

𝑖

𝐾𝑖) 𝒙 =

= 𝒙𝑇 𝑄𝑣𝒙
assuming 

𝑛 2 = 𝐴2 + 𝐵2 + 𝐶2 = 1



place(v)

𝑣 = argmin
𝑥

𝒙𝑇𝑄𝑣𝒙

𝑄𝑣 = 𝑄𝑣1 + 𝑄𝑣2#assuming we 

collapsed edge between 𝑣1 and 𝑣2



𝑣 = argmin
𝑥

𝒙𝑇𝑄𝑣𝒙

s. t. 𝑥 = 𝑥, 𝑦, 𝑧, 1 𝑇

⇒
𝑞11 𝑞12 𝑞13 𝑞14
𝑞12 𝑞22 𝑞23 𝑞24
𝑞13
0

𝑞23
0

𝑞33 𝑞34
0 1

𝑥 =

0
0
0
1



Algorithm

Compute 𝑄𝑣 for all the mesh vertices 

for each valid pair

Compute optimal vertex position

Compute its error

Store all valid pairs in a priority queue 
(sorted by 𝑑)

while reduction goal not met

Take an edge from the queue, contract

Update the priority queue with new valid pairs

39



Examples

40

Dolphin (Flipper)

Original - 12,337 faces

2,000 faces
300 faces (142 vertices)



Pros and Cons

• Pros
– Error is bounded
– Allows topology simplification
– High quality result
– Quite efficient

• Cons
– Difficulties along boundaries
– Difficulties with coplanar planes
– Introduces new vertices not present in the 

original mesh

41



MESH SALIENCY



How to choose a viewpoint to 
show a mesh?



Saliency

• Gaussian curvature
• Mean curvature
• Silhouette complexity (?)



Curvature alone is not enough!



Idea

• 𝑘𝜎=Average mean curvature over 
neighborhood of radius σ

• Compute |𝑘𝜎 − 𝑘2𝜎|





MEAN CURVATURE FLOW



What will happen to the curve?



Smoothing!

• aka Curve Shortening Flow
• (eventually) Produces convex curves!



Formalization

𝜕𝛾

𝜕𝑇
=
𝜕2𝛾

𝜕𝑠2



Formalization

𝜕𝛾

𝜕𝑇
=
𝜕2𝛾

𝜕𝑠2
= 𝑘𝑛



3D



Laplacian smoothing



Laplacian Smoothing




