IFT 6113
 APPLICATIONS OF CURVATURE
 http://tiny.cc/6113

Mikhail Bessmeltsev

MESH SIMPLIFICATION

Warning: Stone Age Tools (but still useful)

SMKN

Why simplify meshes?

- Faster rendering
- Faster collision detection
- Storage/transmission/etc.

Why simplify meshes?

Faster rendering: Level of Detail

Rough, if the mesh is far
Fine, if the mesh is close

Requirements

- Reduce \# of polygons
- Preserve the shape
- Geometry
- Features
- Topology
- Other constraints?

Complexities

Holes!

Connected components!
Boundaries!

12,000

2,000

300

Approximation error

Approach: Local operations

Removing edges or vertices
Keeping track of the geometry/topology

Keep score
how much will we lose if we remove a vertex?

Approach

- Each operation introduces error
- Quantify?

Decimation

- Vertex removal

$$
\begin{aligned}
& \# V \rightarrow \# V-1 \\
& \# F \rightarrow \# F-2
\end{aligned}
$$

Remove vertex \rightarrow hole \rightarrow triangulate

Decimation

- Vertex removal

$$
\begin{aligned}
& \# V \rightarrow \# V-1 \\
& \# F \rightarrow \# F-2
\end{aligned}
$$

Decimation

- Edge collapse

$\# V \rightarrow \# V-1$
$\# F \rightarrow \# F-2$

Measuring error

How much did we distort the shape?

Measuring error

How much did we distort the shape?
Option: Hausdorff distance

$$
\begin{aligned}
& d_{H(x, y)} \\
& =\max \left\{\sup _{x \in \mathrm{X}} \inf _{y \in \mathrm{Y}} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}
\end{aligned}
$$

Measuring error

How Hard to Eatanex
Option: Hausdc

$$
\begin{aligned}
& a_{H(x, y)}=\max \left\{\sup _{x \in \mathrm{X}} \inf _{y \in \mathrm{Y}} d(x, y), \sup _{y \in Y} \inf _{x \in X} d(x, y)\right\}
\end{aligned}
$$

Local Error Control

Vertex-plane distance
Curvature

Algorithm

while (nVertices > nTarget) e = elementWithMinError() process(e) \# remove/contract preserveStructure() updateErrors() \# local/global

Data Structures

- Easy access to neighbors
- Filling holes
- Computing cost
- Priority queue/heap
- Quick access to the cheapest element

Vertex Removal Algorithm

1	owhile (nVertices > nTarget)
2	$e=$ elementWithMinError()
3	process(e) \# remove/contract
4	preserveStructure()
5	updateErrors() \# local/global

Vertex Removal Algorithm

Characterize local topology/geometry
Classify vertices as removable or not

```
while (nVertices > nTarget)
    v = vertexWithMinDistance()
    remove(v)
    triangulateHole()
    updateDistances() #to average plane
```


Characterizing structure

Decimation Criterion

Simple vertex v :

$$
d(v, \text { face loop average plane })<E_{M A X}
$$

Boundary vertex v_{b} :

$$
d\left(v_{b}, \text { new boundary edge }\right)<E_{M A X}
$$

triangulateHole()

* Non-planar hole!
- Split loop recursively
- Split plane orthogonal to the average plane
- Control aspect ratio
- May fail
- Vertex is not removed

Example

Simplifier

Pros and Cons

- Pros:
- Efficient
- Simple to implement and use
- Few input parameters to control quality
- Reasonable approximation
- Works on very large meshes
- Preserves topology
- Vertices are a subset of the original mesh
- Cons:
- Error is not bounded
- Local error evaluation causes error to accumulate

Edge Collapse Algorithm

1 ewhile (nVertices > nTarget) $e=$ elementWithMinError () process (e) \# remove/contract preserveStructure() updateErrors() \# local/global

Edge Collapse Algorithm

```
while (nVertices > nTarget)
    e = edgeWithMinError()
    v = collapse(e) #returns a vertex
    place(v)
    updateErrors() # local/global
```


Edge Collapse Algorithm

```
while (nVertices > nTarget)
    e = edgeWithMinError()
v = collapse(e) #returns a vertex
place(v)
updateErrors() # local/global
```


Distance Metric: Quadrics

Find the closest point to
the set of adjacent triangles planes

$$
v=\operatorname{argmin} d(p, p l a n e s(v))
$$

$v=\operatorname{argmin} d(p$, planes $(v))$ p

Plane equation
 $A x+B y+C z+D=0$

Squared distance to a plane $d(p$, plane $)=(A x+B y+C z+D)^{2}$

assuming

$$
\|\vec{n}\|^{2}=A^{2}+B^{2}+C^{2}=1
$$

Squared distance to a plane $d(p$, plane $)=(A x+B y+C z+D)^{2}$

Squared distance to a plane $d(\boldsymbol{x}$, plane $)=(A x+B y+C z+D)^{2}$
 $=\left(\boldsymbol{x}^{T} \boldsymbol{p}\right)^{2}=\boldsymbol{x}^{T} p \boldsymbol{p}^{T} \boldsymbol{x}$

$$
\boldsymbol{p}=\left(\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right)
$$

$$
\begin{aligned}
& \text { Squared distance to a plane } \\
& d(\boldsymbol{x}, \text { plane })=(A x+B y+C z+D)^{2} \\
& =\left(\boldsymbol{x}^{T} \boldsymbol{p}\right)^{2}=\boldsymbol{x}^{T} \boldsymbol{p} \boldsymbol{p}^{T} \boldsymbol{x}=\boldsymbol{x}^{T} K \boldsymbol{x} \\
& \quad K=\boldsymbol{p} \boldsymbol{p}^{T}=\left(\begin{array}{llll}
A^{2} & A B & A C & A D \\
A B & B^{2} & B C & B D \\
A C & B C & C^{2} & C D \\
A D & B D & C D & D^{2}
\end{array}\right) \geq 0
\end{aligned}
$$

Squared distance to a set of planes

 $d(x, \operatorname{planes}(v))=\sum_{i} d\left(x\right.$, plane $\left._{i}\right)=$$$
\begin{gathered}
=\sum_{i} \boldsymbol{x}^{T} K_{i} \boldsymbol{x}=\boldsymbol{x}^{T}\left(\sum_{i} K_{i}\right) \boldsymbol{x}= \\
=\boldsymbol{x}^{T} Q_{v} \boldsymbol{x}
\end{gathered}
$$

place (v)
$v=\operatorname{argmin} \boldsymbol{x}^{T} Q_{v} \boldsymbol{x}$
$Q_{v}=Q_{v_{1}}+Q_{v_{2}}$ \#assuming we
collapsed edge between v_{1} and v_{2}

$v=\underset{x}{\operatorname{argmin}} \boldsymbol{x}^{T} Q_{v} \boldsymbol{x}$
s.t. $x=(x, y, z, 1)^{T}$
\Rightarrow
$\left(\begin{array}{cccc}q_{11} & q_{12} & q_{13} & q_{14} \\ q_{12} & q_{22} & q_{23} & q_{24} \\ q_{13} & q_{23} & q_{33} & q_{34} \\ 0 & 0 & 0 & 1\end{array}\right) \times=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$

Algorithm

Compute Q_{v} for all the mesh vertices
for each valid pair
Compute optimal vertex position Compute its error

Store all valid pairs in a priority queue (sorted by d)
while reduction goal not met
Take an edge from the queue, contract Update the priority queue with new valid pairs

Examples

Dolphin (Flipper)

Original - 12,337 faces

2,000 faces

300 faces (142 vertices)

Pros and Cons

- Pros
- Error is bounded
- Allows topology simplification
- High quality result
- Quite efficient
- Cons
- Difficulties along boundaries
- Difficulties with coplanar planes
- Introduces new vertices not present in the original mesh

MESH SALIENCY

How to choose a viewpoint to show a mesh?

Saliency

- Gaussian curvature
- Mean curvature
- Silhouette complexity (?)

Curvature alone is not enough!

Idea

- $k_{\sigma}=$ Average mean curvature over neighborhood of radius σ
- Compute $\left|k_{\sigma}-k_{2 \sigma}\right|$

MEAN CURVATURE FLOW

What will happen to the curve?

Smoothing!

- aka Curve Shortening Flow
 - (eventually) Produces convex curves!

Figure 6. The (non-convex) dumbbell will have a "neck-pinch" before the entire surface shrinks away

Figure 7. At the time of the neck-pinch, most of the surface will remain nonsingular, but the diameter of the neck will have shrunk away

Figure 8. It is possible to "continue the flow through the singularity." It will become smooth immediately after, and then both component will shrink away.

Formalization

$\frac{\partial \gamma}{\partial T}=\frac{\partial^{2} \gamma}{\partial s^{2}}$

Formalization

$$
\frac{\partial \gamma}{\partial T}=\frac{\partial^{2} \gamma}{\partial s^{2}}=k \vec{n}
$$

Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow

Mathieu Desbrun
Mark Meyer
Peter Schröder
Alan H. Barr

Caltech*

Abstract

In this paper, we develop methods to rapidly remove rough features from irregularly triangulated data intended to portray a smooth surface. The main task is to remove undesirable noise and uneven edges while retaining desirable geometric features. The problem arises mainly when creating high-fidelity computer graphics objects using imperfectly-measured data from the real world.

Our approach contains three novel features: an implicit integration method to achieve efficiency, stability, and large time-steps; a scale-dependent Laplacian operator to improve the diffusion process; and finally, a robust curvature flow operator that achieves a smoothing of the shape itself, distinct from any parameterization. Additional features of the algorithm include automatic exact volume preservation, and hard and soft constraints on the positions of the points in the mesh.

We compare our method to previous operators and related algorithms, and prove that our curvature and Laplacian operators have several mathematically-desirable qualities that improve the appear-

(a)

(b)

Laplacian smoothing

$$
\begin{gathered}
\frac{\partial x_{i}}{\partial t}=-\bar{\kappa}_{i} \mathbf{n}_{i} \\
-\bar{\kappa} \mathbf{n}=\frac{1}{4 A} \sum_{j \in N_{1}(i)}\left(\cot \alpha_{j}+\cot \beta_{j}\right)\left(x_{j}-x_{i}\right)
\end{gathered}
$$

Laplacian Smoothing

