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MESH SIMPLIFICATION

Warning: Stone Age Tools
(but still useful)

Image from Wikipedia



Image from CGAL tutorial



Why simplify meshes?

• Faster rendering
• Faster collision detection
• Storage/transmission/etc.



Why simplify meshes?

Faster rendering: Level of Detail

Rough, if the mesh is far Fine, if the mesh is close



Requirements

• Reduce # of polygons
• Preserve the shape

– Geometry
• Features

– Topology
– Other constraints?

Image from https://gafferongames.com/post/tessellating_the_go_stone/



Complexities
Holes!

Connected components!
Boundaries!
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Approximation error
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Approach: Local operations

Removing edges or vertices
Keeping track of the geometry/topology

Keep score
how much will we lose if we remove a vertex?



Approach

• Each operation introduces error
• Quantify?



Decimation

• Vertex removal

Remove vertex → hole → triangulate

#𝑉 → #𝑉 − 1

#𝐹 → #𝐹 − 2



Decimation

• Vertex removal
#𝑉 → #𝑉 − 1

#𝐹 → #𝐹 − 2



Decimation

• Edge collapse
#𝑉 → #𝑉 − 1

#𝐹 → #𝐹 − 2



Measuring error

𝑑 , =?

How much did we distort the shape?



Measuring error

𝑑 , =?

How much did we distort the shape?

Option: Hausdorff distance

𝑑𝐻 𝑥,𝑦

= max{sup
𝑥∈X

inf
𝑦∈Y

𝑑(𝑥, 𝑦) , sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦)}



Measuring error

𝑑 , =?

How much did we distort the shape?

Option: Hausdorff distance

𝑑𝐻 𝑥,𝑦

= max{sup
𝑥∈X

inf
𝑦∈Y

𝑑(𝑥, 𝑦) , sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦)}

Hard to 
compute!



Local Error Control

2𝜋 −෍𝛼𝑖

Vertex-plane distance Curvature



Algorithm

while (nVertices > nTarget)

e = elementWithMinError()

process(e) # remove/contract

preserveStructure()

updateErrors() # local/global



Data Structures

• Easy access to neighbors
– Filling holes
– Computing cost

• Priority queue/heap
– Quick access to the cheapest element



Vertex Removal Algorithm



Vertex Removal Algorithm

Characterize local topology/geometry

Classify vertices as removable or not

while (nVertices > nTarget)

v = vertexWithMinDistance()

remove(v)

triangulateHole()

updateDistances() #to average plane



Characterizing structure

Simple

Boundary

Complex

Interior

Corner



Decimation Criterion
Simple vertex 𝑣:

𝑑 𝑣, 𝑓𝑎𝑐𝑒 𝑙𝑜𝑜𝑝 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑙𝑎𝑛𝑒 < 𝐸𝑀𝐴𝑋

Boundary vertex 𝑣𝑏:
𝑑 𝑣𝑏 , 𝑛𝑒𝑤 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑒𝑑𝑔𝑒 < 𝐸𝑀𝐴𝑋



triangulateHole()

Non-planar hole!
– Split loop recursively
– Split plane orthogonal to the average plane

• Control aspect ratio 
May fail
– Vertex is not removed



Example
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Simplifier



Pros and Cons

• Pros:
– Efficient
– Simple to implement and use

• Few input parameters to control quality
– Reasonable approximation
– Works on very large meshes
– Preserves topology
– Vertices are a subset of the original mesh

• Cons:
– Error is not bounded

• Local error evaluation causes error to accumulate
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Edge Collapse Algorithm



Edge Collapse Algorithm
while (nVertices > nTarget)

e = edgeWithMinError()

v = collapse(e) #returns a vertex

place(v)

updateErrors() # local/global



Edge Collapse Algorithm
while (nVertices > nTarget)

e = edgeWithMinError()

v = collapse(e) #returns a vertex

place(v)

updateErrors() # local/global

Where should we 
place the vertex?



Distance Metric: Quadrics

Find the closest point to 
the set of adjacent triangles planes

𝑣 = argmin
𝑝

𝑑(𝑝, 𝑝𝑙𝑎𝑛𝑒𝑠 𝑣 )



𝑣 = argmin
𝑝

𝑑(𝑝, 𝑝𝑙𝑎𝑛𝑒𝑠 𝑣 )



Plane equation
𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

Squared distance to a plane
𝑑 𝑝, 𝑝𝑙𝑎𝑛𝑒 = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 2

assuming
𝑛 2 = 𝐴2 + 𝐵2 + 𝐶2 = 1



Plane equation
𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

Squared distance to a plane
𝑑 𝑝, 𝑝𝑙𝑎𝑛𝑒 = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 2

assuming 
𝑛 2 = 𝐴2 + 𝐵2 + 𝐶2 = 1



Plane equation
𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

Squared distance to a plane
𝑑 𝒙, 𝑝𝑙𝑎𝑛𝑒 = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 2

= 𝒙𝑇𝒑 2 = 𝒙𝑇𝒑𝒑𝑇𝒙

assuming 
𝑛 2 = 𝐴2 + 𝐵2 + 𝐶2 = 1 𝒑 =

𝐴
𝐵
𝐶
𝐷



Plane equation
𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

Squared distance to a plane
𝑑 𝒙, 𝑝𝑙𝑎𝑛𝑒 = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 2

= 𝒙𝑇𝒑 2 = 𝒙𝑇𝒑𝒑𝑇𝒙 = 𝒙𝑇𝐾𝒙

assuming 
𝑛 2 = 𝐴2 + 𝐵2 + 𝐶2 = 1𝐾 = 𝒑𝒑𝑇 =

𝐴2 𝐴𝐵 𝐴𝐶 𝐴𝐷
𝐴𝐵 𝐵2 𝐵𝐶 𝐵𝐷
𝐴𝐶
𝐴𝐷

𝐵𝐶
𝐵𝐷

𝐶2 𝐶𝐷
𝐶𝐷 𝐷2

≥ 0



Squared distance to a set of planes

𝑑 𝑥, 𝑝𝑙𝑎𝑛𝑒𝑠 𝑣 =෍

𝑖

𝑑 𝑥, 𝑝𝑙𝑎𝑛𝑒𝑖 =

=෍

𝑖

𝒙𝑇𝐾𝑖𝒙 = 𝒙𝑇(෍

𝑖

𝐾𝑖) 𝒙 =

= 𝒙𝑇 𝑄𝑣𝒙
assuming 

𝑛 2 = 𝐴2 + 𝐵2 + 𝐶2 = 1



place(v)

𝑣 = argmin
𝑥

𝒙𝑇𝑄𝑣𝒙

𝑄𝑣 = 𝑄𝑣1 + 𝑄𝑣2#assuming we 

collapsed edge between 𝑣1 and 𝑣2



𝑣 = argmin
𝑥

𝒙𝑇𝑄𝑣𝒙

s. t. 𝑥 = 𝑥, 𝑦, 𝑧, 1 𝑇

⇒
𝑞11 𝑞12 𝑞13 𝑞14
𝑞12 𝑞22 𝑞23 𝑞24
𝑞13
0

𝑞23
0

𝑞33 𝑞34
0 1

𝑥 =

0
0
0
1



Algorithm

Compute 𝑄𝑣 for all the mesh vertices 

for each valid pair

Compute optimal vertex position

Compute its error

Store all valid pairs in a priority queue 
(sorted by 𝑑)

while reduction goal not met

Take an edge from the queue, contract

Update the priority queue with new valid pairs
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Examples
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Dolphin (Flipper)

Original - 12,337 faces

2,000 faces
300 faces (142 vertices)



Pros and Cons

• Pros
– Error is bounded
– Allows topology simplification
– High quality result
– Quite efficient

• Cons
– Difficulties along boundaries
– Difficulties with coplanar planes
– Introduces new vertices not present in the 

original mesh
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MESH SALIENCY



How to choose a viewpoint to 
show a mesh?



Saliency

• Gaussian curvature
• Mean curvature
• Silhouette complexity (?)



Curvature alone is not enough!



Idea

• 𝑘𝜎=Average mean curvature over 
neighborhood of radius σ

• Compute |𝑘𝜎 − 𝑘2𝜎|





MEAN CURVATURE FLOW



What will happen to the curve?



Smoothing!

• aka Curve Shortening Flow
• (eventually) Produces convex curves!



Formalization

𝜕𝛾

𝜕𝑇
=
𝜕2𝛾

𝜕𝑠2



Formalization

𝜕𝛾

𝜕𝑇
=
𝜕2𝛾

𝜕𝑠2
= 𝑘𝑛



3D



Laplacian smoothing



Laplacian Smoothing




