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Administrative

• Project proposal due tonight!
• A2 due next Tuesday



What for?

• Animation!
• Mesh editing
• Image warping (2D)

This, and many other images in this presentation are from ‘Polygon Mesh Processing’ textbook by Botsch et al. 
or their website 



Warning:

TMI
This topic is immense

We’ll only see a few samples



Deformation: user interface

• Handles
• Cages
• Skeletons
• …

Ju et al., SIGGRAPH 2007

More on 
those later



Deformation models

Direct Variational

𝑣′ = ∑𝑤𝑗𝑇𝑗 𝑣 𝑣′ = argmin
𝑥

𝐸(𝑥)

• Linear Blend Skinning
• Dual Quaternion Skinning
• …

• Multiresolution editing
• As-Rigid-As-Possible 
• Laplacian Mesh Editing
• …
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Deformation: user interface

• Handles
• Cages
• Skeletons
• …



Modeling

Paint three surface areas:
• Constrained
• Smooth falloff
• Fixed



Formulation

Find displacement vector field 𝑑
• Smooth
• Satisfies constraints

𝑆

𝑑 known

𝑆 ′ = {𝑝 + 𝑑(𝑝)|𝑝 ∈ 𝑆 }

𝑑 = 0

𝑑 =?



Simplest idea

• 𝑑 = 𝑠 𝑝 ⋅ 𝐷

• 𝑠(𝑝) is a smooth function:
– 1 on green vertices
– 0 on grey ones 𝑑 known = 𝑫

𝑑 = 0

𝑑 =?



How to find 𝑠(𝑝)?

• Something inversely proportional to 
geodesic distance

• Or our favorite:



Solved?

Reality     vs     Expectation



Physically-Based

Find a deformation that preserves both 
fundamental forms

Express the fundamental forms of 𝑆′ via vector field 𝑑
Expensive 

to optimize!

F F



Shell-Based Deformation

Find a deformation that preserves both 
fundamental forms

Linearize Express the fundamental forms of 𝑆′ via vector 
field 𝑑



Physically-Based

Gateuax derivative =>

−𝑘𝑠Δ𝑑 + 𝑘𝑏Δ
2𝑑 = 0



Physically-Based

Gateuax derivative =>

−𝑘𝑠Δ𝑑 + 𝑘𝑏Δ
2𝑑 = 0

Bi-Laplacian
𝑥
𝑦
𝑧



Deformation Energies

Initial state ∆ 2𝑑 = 0

∆ 2𝑝 = 0∆ 𝑝 = 0

∆ 𝑑 = 0
(Bilaplacian)(Membrane)



Deformation Energies

Initial state ∆ 2𝑑 = 0

∆ 2𝑝 = 0∆ 𝑝 = 0

∆ 𝑑 = 0
(Bilaplacian)(Membrane)

Higher order => 
more boundary 

conditions



• Very fast
• One linear solve!

• Physically-based
• Linearization => lose details

Solved?

Original Non-linear
deformation

Linear
deformation



• We need to rotate details
• Local rotation is nonlinear!

• Can we still survive with linear solves?

Issue

Original Non-linear
deformation

Linear
deformation



Multiresolution Editing

Frequency decomposition

Change low  
frequencies

Add high frequency details,  
stored in local frames



Multiresolution Editing

Multiresolution

Modeling
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How to represent details?

• For example, normal displacements



Result

Global deformation
with intuitive detail

preservation



Limitations

Neighboring displacements are not coupled
– Surface bending changes their angle

– Leads to volume changes or self-intersections

Original Normal Displ. Nonlinear



Limitations

Neighboring displacements are not coupled
– Surface bending changes their angle

– Leads to volume changes or self-intersections

Original Normal Displ. Nonlinear



New coordinates?

Express shape in differential coordinates

Transform those,
then reconstruct the new shape



Mean Value Property

Value at v is average of neighboring values

Long time ago:



Laplacian Mesh Editing
Graph Laplacian:

𝛅𝑖 = 𝐯𝑖 −
1

𝑑𝑖
෍

𝑗∈𝑁(𝑖)

𝐯𝑗

𝛿 = 𝐿𝑣
Local 

coordinates!



Laplacian Mesh Editing

• Represent mesh using only 𝛿
• Find a surface whose Laplacian coordinates 

are as close as possible to 𝛿

s.t. 𝑝𝑖
′ = 𝑝𝑖 , 𝑖 ∈ {𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠}



Laplacian Mesh Editing

Find a surface whose Laplacian coordinates are 
as close as possible to 𝛿

min ∑ 𝛿𝑖 − 𝐿(𝑝′𝑖)
2 + ∑𝑖∈𝑐 𝑝′𝑖 − 𝑝𝑖

2



Laplacian Mesh Editing

Find a surface whose Laplacian coordinates are 
as close as possible to 𝛿

s.t. 𝑝𝑖
′ = 𝑝𝑖 , 𝑖 ∈ {𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠}

Gateaux derivative => 



Physically-Based

Gateuax derivative =>

−𝑘𝑠Δ𝑑 + 𝑘𝑏Δ
2𝑑 = 0

Bi-Laplacian
𝑥
𝑦
𝑧

Before:

(almost) the same 
equation?



Issue
Reconstructing from differential coordinates 

makes sense only if they are 
rotation and translation invariant

Otherwise, you get this

Translating a handle induces local rotations!



Laplacian Coordinates

• Translation invariant
• Not rotation/scale invariant

δi

𝛿𝑖 = 𝐿(𝐯𝑖) = 𝐿(𝐯𝑖 + 𝐭); ∀𝐭 ∈ ℝ3

δi
δi



Solutions
1. Transform, ignoring rotations or details
2. while (not converged)

– Estimate rotations (from normals)
– Rotate differential coordinates and solve

𝐸(𝐕′) = ෍

𝑖=1

𝑛

𝑅𝑖𝛿𝑖 − 𝐿(𝑝′𝑖)
2 +෍

𝑖∈𝑐

𝑝𝑖
′ − 𝑝𝑖

2

[Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossi and H. P. Seidel,
"Differential coordinates for interactive mesh editing," Proceedings Shape Modeling
Applications, 2004]
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Rotations + scaling – invariant?
Add local transformations 𝑇𝑖 as variables

𝐸(𝐕′) = ෍

𝑖=1

𝑛

𝑇𝑖𝛿𝑖 − 𝐿(𝑝′𝑖)
2 +෍

𝑖∈𝑐

𝑝𝑖
′ − 𝑝𝑖

2

[O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, H.-P. Seidel,
Laplacian Surface Editing, EUROGRAPHICS/Symposium on Geometry
Processing, 2004]
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Rotations + scaling – invariant?
Add local transformations 𝑇𝑖 as variables

[O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, H.-P. Seidel,
Laplacian Surface Editing, EUROGRAPHICS/Symposium on Geometry
Processing, 2004]

𝑇𝑖 = translation + rotation + scaling

=> 𝑇𝑖 is a linear function of 𝑉′



Rotations + scaling – invariant?
Add local transformations 𝑇𝑖 as variables

𝐸(𝐕′) = ෍

𝑖=1

𝑛

𝑇𝑖𝛿𝑖 − 𝐿(𝑝′𝑖)
2 +෍

𝑖∈𝑐

𝑝𝑖
′ − 𝑝𝑖

2

[O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rossl, H.-P. Seidel,
Laplacian Surface Editing, EUROGRAPHICS/Symposium on Geometry
Processing, 2004]

Quadratic 
optimization

-> Linear solve!





As-Rigid-As-Possible Surface 
Modelling

44



As-rigid-as-possible (ARAP)

45



As-rigid-as-possible (ARAP)
• “Intuitive” deformations 
◦ Smooth deformations at large scale

•Preserve local features
•Fast, for interactive mesh editing

46



ARAP in a nutshell…
1. Break mesh into overlapping pieces
2. Try to move each piece rigidly
3. Combine all local transformations into a 

smooth one

47



Pieces
Vertex Umbrella

–Covers entire surface
–One cell per vertex
–All triangles exist in 3 cells

48



Rigid motion
If cell i moved rigidly:

pi

pj
p'i

p'j

𝑅𝑖

𝑝𝑗
′ − 𝑝𝑖

′ = 𝑅𝑖(𝑝𝑗 − 𝑝𝑖)

∀𝑗 ∈ 𝑁(𝑖)



Deviation from rigid motion
If cell i moved rigidly:

𝑝𝑗
′ − 𝑝𝑖

′ = 𝑅𝑖(𝑝𝑗 − 𝑝𝑖)

∀𝑗 ∈ 𝑁(𝑖)

𝐸 = ෍

𝑗∈𝑁(𝑖)

𝑝𝑗
′ − 𝑝𝑖

′ − 𝑅𝑖(𝑝𝑗 − 𝑝𝑖)
2



For the whole mesh

𝐸 = ෍

𝑖

෍

𝑗∈𝑁(𝑖)

𝑝𝑗
′ − 𝑝𝑖

′ − 𝑅𝑖(𝑝𝑗 − 𝑝𝑖)
2



For the whole mesh

𝐸 = ෍

𝑖

෍

𝑗∈𝑁(𝑖)

𝒘𝒊𝒋 𝑝𝑗
′ − 𝑝𝑖

′ − 𝑅𝑖(𝑝𝑗 − 𝑝𝑖)
2



Orthogonal Procrustes 
problem

How to find the best rotation matrix 
aligning 𝑉 with 𝑉′?

vi vj1

vj2 v׳
i v׳

j1

v׳
j2

Ri



Orthogonal Procrustes 
problem

How to find the best rotation matrix 
aligning 𝑉 with 𝑉′?

vi vj1

vj2 v׳
i v׳

j1

v׳
j2

Ri

argmin
𝑅

𝑅𝐴 − 𝐵 𝐹

s. t. 𝑅𝑇𝑅 = 𝐼
???



Procrustes problem

1. Build covariance matrix S = VV׳T

2. SVD: S = UWT

3. Ri = UWT

vi vj1

vj2 v׳
i v׳

j1

v׳
j2

RiClosed-form 
solution!



Mesh Deformation

point constraints

Caveats:

• {𝒑′
𝑖
} and {𝑅𝑖} are unknown

•Non-linear optimization problem

56

min∑𝑖 ∑𝑗∈𝑁(𝑖)𝒘𝒊𝒋 𝑝𝑗
′ − 𝑝𝑖

′ − 𝑅𝑖(𝑝𝑗 − 𝑝𝑖)
2

s.t. 𝑝𝑖
′ = ෥𝑝𝑖



Mesh Deformation

1. Start with initial guess of {𝒑′
𝑖
}, find {𝑅𝑖}

2. Given {𝑅𝑖}, minimize energy to find {𝒑′
𝑖
}

3. Repeat

෍

𝑗∈𝑁(𝑖)

𝑤𝑖𝑗 𝒑′
𝑖
− 𝒑′

𝑗
= ෍

𝑗∈𝑁(𝑖)

𝑤𝑖𝑗

2
𝑅𝑖 + 𝑅𝑗 𝒑𝑖 − 𝒑𝑗

𝐿𝒑′ = 𝒃

57



Advantages
Laplacian 

– Depends only on original mesh
– Only needs to be factored once!

Rotations can be computed in parallel
• Each iteration reduces energy
◦ Updating rotations guaranteed to reduce cell-error
◦ Updating positions guaranteed to reduce global error

Guaranteed Convergence
12



Results (vs Poisson)

Poisson:

ARAP:

59
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𝑥

𝐸(𝑥)

• Linear Blend Skinning
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• As-Rigid-As-Possible 
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1) Rest pose

𝐯

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



2) Skinning transformations

𝐓1

𝐓2

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



3) Skinning weights

0

1

𝑤𝑖 ,1

64

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



3) Skinning
weights

0

1

𝑤𝑖 ,2

65

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



66

Linear blend skinning (LBS)

𝑣′ = ∑𝑤𝑗𝑇𝑗 𝑣



LBS is used widely in the
industry

Halo 3 Bolt

67

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



LBS: candy-wrapper
artifact

68

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



LBS: candy-wrapper artifact

69



What went wrong?

𝑣′ = ∑𝑤𝑗𝑇𝑗 𝑣



What went wrong?

𝑣′ = ∑𝑤𝑗𝑇𝑗 𝑣

𝑹1 = 0
1 0 0

1 0
0 0 1

𝑹2 =
−1 0 0
0 −1 0
0 0 1



What went wrong?

𝑣′ = ∑𝑤𝑗𝑇𝑗 𝑣

𝑹1 = 0
1 0 0

1 0
0 0 1

𝑹2 =
−1 0 0
0 −1 0
0 0 1

Why can’t we just sum up rotation matrices?



Geometry of linear blending

SE(3)

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



𝐓1

74

𝐓2

SE(3)

Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



𝐓1

75

𝐓2
𝐓blend

SE(3)

Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



𝐓1

76
𝐓2

𝐓blend

SE(3)

Geometry of linear blending

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



Intrinsic blending

77

𝐓blend
𝐓1

𝐓2

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan
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𝐓blend
𝐓1

𝐓2

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



𝐓blend

79

𝐓1

𝐓2

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



Intrinsic blending using Lie algebras
[Buss and Fillmore 2001, Alexa 2002, Govindu 2004, Rossignac and Vinacua 2011]

argmin
𝑋

෍

𝑋

𝑤𝑗𝑑 𝑋, 𝑇𝑗

𝑑 𝐗,𝐘 = log(𝐘𝐗−1)

80

2

Karcher / Frechet mean

Slides from Skinning: Real-time Shape Deformation Course, Direct 
Skinning Methods and  Deformation Primitives by Ladislav Kavan



Dual Quaternion Skinning



Where do the weights come from?

0

1

𝑤𝑖 ,1

82



Manual?



Automatic skinning 
weight computation



Weights should obtain a few basic 
qualities 

85Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



[Shepard 1968],

[Schaefer et al. 2006], etc.

Inverse Euclidean distance weights are too crude,
show obvious artifacts

86

weights optimized inside shape

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



[Shepard 1968],

[Schaefer et al. 2006], etc.

Inverse Euclidean distance weights are too 
crude,

show obvious artifacts

87

weights optimized inside shape

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Discontinuous projection onto surface 
can be smoothed out

[Baran & Popović 2007]

Closest visible

bone

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Discontinuous projection onto surface 
can be smoothed out

[Baran & Popović 2007] 89

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



smoothness

Discontinuous projection onto surface 
can be smoothed out

[Baran & Popović 2007] 90

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Discontinuous projection onto surface 
can be smoothed out

[Baran & Popović 2007]

“data”

91

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Discontinuous projection onto surface 
can be smoothed out

[Baran & Popović 2007] 92

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Gradient energy weights not smooth at 
handles

93

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Gradient energy weights not smooth at 
handles

94

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Gradient energy weights not smooth at 
handles

95

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Point constraints for
Laplace equation

https://www.facebook.com/521399544544480/photos/a.523048724379562/80096825992093
9/?type=1&theater , Facebook group “Circus tents and circus equipment”

https://www.facebook.com/521399544544480/photos/a.523048724379562/800968259920939/?type=1&theater


Non-negative, local weights are mandatory

97

[Botsch & Kobbelt 2004]

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



98

Spurious extrema cause distracting artifacts

local max

local min

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



99

Must explicitly prohibit spurious 
extrema

local max

local min

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson
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Previous methods fail in one way or another

Euclidean ∆wj ∆2wj

smooth ✓ − ✓

non-negative ✓ ✓ -

shape-aware − ✓ ✓

local -/✓ − -

monotonic - ✓ -

arbitrary handles - ✓ ✓

[Shepard 1968,

Sibson 1980,

Schaefer et al. 2006]

[Baran & Popovic 2007, 

Joshi et al. 2007]

[Botsch & Kobbelt 2004, 

Sorkine et al. 2004, 

Finch et al. 2011]

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Constrained optimization ensures 
satisfaction of all properties

101

+ shape-aware

+ smoothness

[Botsch & Kobbelt 2004, Sorkine et al. 2004, Joshi & Carr 2008, Jacobson et al. 2010, Finch et al. 2011, Andrews et al. 2011]

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Constrained optimization ensures 
satisfaction of all properties

102

+ shape-aware

+ smoothness

+ arbitrary handles

[Botsch & Kobbelt 2004, Sorkine et al. 2004, Joshi & Carr 2008, Jacobson et al. 2010, Finch et al. 2011, Andrews et al. 2011]

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Constrained optimization ensures 
satisfaction of all properties

103

+ shape-aware

+ smoothness

+ arbitrary handles

+ non-negativity

[Jacobson et al. 2011]

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Constrained optimization ensures 
satisfaction of all properties

104

+ shape-aware

+ smoothness

+ arbitrary handles

+ non-negativity

+ locality

[Jacobson et al. 2011]

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



[Rustamov 2011]

Constrained optimization ensures 
satisfaction of all properties

105

+ shape-aware

+ smoothness

+ arbitrary handles

+ non-negativity

+ locality

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



[Rustamov 2011]

Constrained optimization ensures 
satisfaction of all properties

106

+ shape-aware

+ smoothness

+ arbitrary handles

+ non-negativity

+ locality

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



[Rustamov 2011]

Constrained optimization ensures 
satisfaction of all properties

107

+ shape-aware

+ smoothness

+ arbitrary handles

+ non-negativity

+ locality

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



Constrained optimization ensures 
satisfaction of all properties

108

+ shape-aware

+ smoothness

+ arbitrary handles

+ non-negativity

+ locality

+ monotonicity

[Weinkauf et al. 2011, Jacobson et al. 2012, Günther et al. 2014]

Slides from Skinning: Real-time Shape Deformation Course, Direct
Skinning Methods and Deformation Primitives by Alec Jacobson



109

Previous methods fail in one way or 
another

Euclidean ∆wj = u ∆2wj

smooth ✓ − ✓

non-negative ✓ ✓ -

shape-aware − ✓ ✓

local -/✓ − -

monotonic - ✓ -

arbitrary handles - ✓ ✓

[Shepard 1968,

Sibson 1980,

Schaefer et al. 2006]

[Baran & Popovic 2007, 

Joshi et al. 2007]

[Botsch & Kobbelt 2004, 

Sorkine et al. 2004, 

Finch et al. 2011]
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Constrained optimization ensures 
satisfaction of all properties
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+ shape-aware

+ smoothness

+ arbitrary handles

+ non-negativity

+ locality

+ monotonicity

[Weinkauf et al. 2011, Jacobson et al. 2012, Günther et al. 2014]
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Weights retain nice properties in 3D
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