IFT 6113 CONTINUOUS LAPLACIAN

 http://tiny.cc/6113

Mikhail Bessmeltsev

Famous Motivation

CAN ONE HEAR THE SHAPE OF A DRUIM?
MARK KAC, The Rockefeller University, New York
To George Eugene Uhlenbeck on the occasion of his sixty-fifth birthday

"La Physique ne nous donne pas seulement l'occasion de résoudre des problèmes . . . , elle nous fait presentir la solution." H. Poincaré.
Before I explain the title and introduce the theme of the lecture I should like to state that my presentation will be more in the nature of a leisurely excursion than of an organized tour. It will not be my purpose to reach a specified destination at a scheduled time. Rather I should like to allow myself on many occasions the luxury of stopping and looking around. So much effort is being spent on streamlining mathematics and in rendering it more efficient, that a solitary transgression against the trend could perhaps be forgiven.

Fig. 1

1. And now to the theme and the title.

It has been known for well over a century that if a membrane Ω, held fixed along its boundary Γ (see Fig. 1), is set in motion its displacement (in the direction perpendicular to its original plane)

$$
F(x, y ; t) \equiv F(\vec{\rho} ; t)
$$

obeys the wave equation

An Experiment

Unreasonable to Ask?

1D: length of a string $\uparrow u(x, t)$

$u(x, t)$ - string height

Boundary conditions: $u(0, t)=0=u(l, t)$

PDE: $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$

Standing waves?

(on the board)

Can you hear the length of an interval?

$$
\lambda_{k}=\left(\frac{\pi k}{\ell}\right)^{2}
$$

Spoiler Alert

- Has to be a weird drum
- Spectrum tells you a lot!

Rough Intuition

http://pngimg.com/upload/hammer_PNG3886.png

Spectral Geometry

What can you learn about its shape from
vibration frequencies and oscillation patterns?

$$
\Delta f=\lambda f
$$

Objectives

- Make "vibration modes" more precise
- Progressively more complicated domains
- Line segments
- Regions in \mathbb{R}^{2}
- Graphs
- Surfaces/manifolds
- Next time: Discretization, applications

Review:

Vector Spaces and Linear Operators

$$
\begin{aligned}
\mathcal{L}[\vec{x}+\vec{y}] & =\mathcal{L}[\vec{x}]+\mathcal{L}[\vec{y}] \\
\mathcal{L}[c \vec{x}] & =c \mathcal{L}[\vec{x}]
\end{aligned}
$$

Review:

In Finite Dimensions

$\underbrace{\vec{x} \mapsto A \vec{x}}$
linear operator

Recall: Spectral Theorems in $\mathbb{C}^{\boldsymbol{n}}$

Theorem. Suppose $A \in \mathbb{C}^{n \times n}$ is Hermitian. Then, A has an orthogonal basis of n eigenvectors. If A is positive semidefinite, the corresponding eigenvalues are nonnegative.

Our Progression

- Line segments
- Regions in \mathbb{R}^{2}
- Graphs
- Surfaces/manifolds

Minus Second Derivative Operator

"Dirichlet boundary conditions"

$$
\begin{aligned}
& \left\{f(\cdot) \in C^{\infty}([a, b]): f(0)=f(\ell)=0\right\} \\
& \mathcal{L}[f(\cdot)]:=-f^{\prime \prime}(\cdot)
\end{aligned}
$$

Eigenfunctions:

$$
f_{k}(x)=\sin \left(\frac{\pi k x}{\ell}\right), \quad \lambda_{k}=\left(\frac{\pi k}{\ell}\right)^{2}
$$

Physical Intuition: Wave Equation

Minus second derivative operator!

Observation

$$
\begin{aligned}
\{f(\cdot) & \left.\in C^{\infty}([a, b]): f(0)=f(\ell)=0\right\} \\
\langle f, \mathcal{L}[f]\rangle & =-\int_{0}^{\ell} f(x) f^{\prime \prime}(x) d x \\
& =-\left[f(x) f^{\prime}(x)\right]_{0}^{\ell}+\underbrace{\int_{0}^{\ell} f^{\prime}(x)^{2} d x} \\
& \geq 0
\end{aligned}
$$

Hilbert-Schmidt Theorem

Theorem. Let $H \neq 0$ be an infinite-dimensional, separable Hilbert space and let $K \in L(H)$ be compact and self-adjoint. Then, there exists a countable orthonormal basis of H consisting of eigenvectors of K.

Hillbert space: Space with inner product Separable: Admits countable, dense subset Compact operator: Bounded sets to relatively compact sets
Self-adjoint: $\langle K v, w\rangle=\langle v, K w\rangle$

Our Progression

- Line segments
- Regions in \mathbb{R}^{2}
- Graphs
- Surfaces/manifolds

Planar Region

Wave equation:
$\frac{\partial^{2} u}{\partial t^{2}}=\Delta u$

$$
\Delta:=\sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

Typical Notation

Positivity, Self-Adjointness

$$
\left\{f(\cdot) \in C^{\infty}(\Omega):\left.f\right|_{\substack{\partial D_{i}, c i l e t e t ~ h o u n d ~}} \equiv 0\right\}
$$

"Dirichlet boundary conditions"

$$
\begin{aligned}
\mathcal{L}[f] & :=-\Delta f \\
\langle f, g\rangle & :=\int_{\Omega} f(x) g(x) d x
\end{aligned}
$$

On board:

1. Positive: $\langle f, \mathcal{L}[f]\rangle \geq 0$
2. Self-adjoint $\langle f, \mathcal{L}[g]\rangle=\langle\mathcal{L}[f], g\rangle$

Dirichlet Energy

$$
E[f]:=\int_{\Omega}\langle\nabla f, \nabla f\rangle d A
$$

Harmonic Functions

$\Delta f \equiv 0$

Mean value property:

Intrinsic Operator

Images made by E. Vouga

Coordinate-independent

Another Interpretation of Eigenfunctions

Find critical points of $E[f]$

$$
\text { s.t. } \int_{\Omega} f^{2}=1
$$

http://www.math.udel.edu/~driscoll/research/gww1-4.gif

Small eigenvalue: smooth function

Our Progression

- Line segments
- Regions in \mathbb{R}^{2}
- Graphs
- Surfaces/manifolds

Basic Setup

- Function:

One value per vertex

Dirichlet energy of a function on a graph?

Differencing Operator

Dirichlet Energy on a Graph

$$
E[f]:=\|D f\|_{2}^{2}=\sum_{(v, w) \in E}\left(f_{v}-f_{w}\right)^{2}
$$

(Unweighted) Graph Laplacian

$$
\begin{gathered}
E[f]=\|D f\|_{2}^{2}=f^{\top}\left(D^{\top} D\right) f:=f^{\top} L f \\
L_{v w}=A-D= \begin{cases}1 & \text { if } v \sim w \\
-\operatorname{degree}(v) & \text { if } v=w \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Labeled graph	Degree matrix	Adjacency matrix	Laplacian matrix
	$\left(\begin{array}{llllll}2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$	$\left(\begin{array}{rrrrrr}2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1\end{array}\right)$

- Symmetric

Positive definite

Second-Smallest Eigenvector

$$
L x=\lambda x
$$

Fiedler vector ("algebraic connectivity")

Mean Value Property

$$
L_{v w}=A-D= \begin{cases}1 & \text { if } v \sim w \\ -\operatorname{degree}(v) & \text { if } v=w \\ 0 & \text { otherwise }\end{cases}
$$

$$
(L x)_{v}=0
$$

Value at v is average of neighboring values

For More Information...

Conference Board of the Mathematical Sciences

Regional Conference Series in Mathematics Number 92

Spectral Graph Theory Fan R. K. Chung

Graph Laplacian encodes lots of information!

Example: Kirchoff's Theorem Number of spanning trees equals

$$
\frac{1}{n} \lambda_{2} \lambda_{3} \cdots \lambda_{n}
$$

Hear the Shape of a Graph?

"Enneahedra"

Our Progression

- Line segments
- Regions in \mathbb{R}^{2}
- Graphs
- Surfaces/manifolds

Recall:

Scalar Functions

http://www.ieeta.pt/polymeco/Screenshots/PolyMeCo_OneView.jpg
Map points to real numbers

Differential of a Map

Suppose $f: S \rightarrow \mathbb{R}$ and take $p \in S$. For $v \in T_{p} S$, choose a curve $\alpha:(-\varepsilon, \varepsilon) \rightarrow S$ with $\alpha(0)=p$ and $\alpha^{\prime}(0)=v$. Then the differential of f is $d f: T_{p} S \rightarrow \mathbb{R}$ with

$$
(d f)_{p}(v):=\left.\frac{d}{d t}\right|_{t=0}(f \circ \alpha)(t)=(f \circ \alpha)^{\prime}(0)
$$

On the board (time-permitting):

- Does not depend on choice of α
- Linear map

Gradient Vector Field

$$
\begin{aligned}
& \nabla f: S \rightarrow \mathbb{R}^{3} \text { with } \\
& \langle(\nabla f)(p), v\rangle=(d f)_{p}(v), v \in T_{p} S \\
& \langle(\nabla f)(p), N(p)\rangle=0
\end{aligned}
$$

Dirichlet Energy

$$
E[f]:=\int_{S}\|\nabla f\|_{2}^{2} d A
$$

From Inner Product to Operator

$$
\begin{aligned}
\langle f, g\rangle_{\Delta} & :=\int_{S} \nabla f(x) \cdot \nabla g(x) d A \\
& :=\langle f, \Delta g\rangle \quad \text { Implies } \\
& \langle\boldsymbol{f}, \boldsymbol{f}\rangle \geq \mathbf{0}
\end{aligned}
$$

On the board:
"Motivation" from finite-dimensional linear algebra.

Laplace-Beltrami operator

What is Divergence?

$$
\begin{gathered}
V: S \rightarrow \mathbb{R}^{3} \text { where } V(p) \in T_{p} S \\
d V_{p}: T_{p} S \rightarrow \mathbb{R}^{3} \\
\left\{e_{1}, e_{2}\right\} \subset T_{p} S \text { orthonormal basis }
\end{gathered}
$$

Things we should check (but probably won't):

- Independent of choice of basis
- $\Delta=\nabla \cdot \nabla$

Eigenfunctions

$\Delta \psi_{i}=\lambda_{i} \psi_{i}$
Vibration modes of surface (not volume!)

Chladni Plates

https://www.youtube.com/watch?v=CGiiSlMFFlI

Performance Art?

https://www.youtube.com/watch?v=Fyzqd2_T09Q

Practical Application

https://www.youtube.com/watch?v=3uMZzVvnSiU

Additional Connection to Physics

http://graphics.stanford.edu/courses/cs468-10-
fall/LectureSlides/11_shape_matching.pdf

Heat equation

Spherical Harmonics

Weyl's Law

$N(\lambda):=\#$ eigenfunctions $\leq \lambda$

$\omega_{d}:=$ volume of unit ball in \mathbb{R}^{d}
$\lim _{\lambda \rightarrow \infty} \frac{N(\lambda)}{\lambda^{d / 2}}=(2 \pi)^{-d} \omega_{d} \operatorname{vol}(\Omega)$
Corollary: $\operatorname{vol}(\Omega)=(2 \pi)^{d} \lim _{R \rightarrow \infty} \frac{N(R)}{R^{d / 2}}$
For surfaces: $\lambda_{n} \sim \frac{4 \pi}{\operatorname{vol}(\Omega)} n$

Laplacian of $x y z$ function

