IFT 6113 DISCRETE LAPLACIAN

http://tiny.cc/6113

Mikhail Bessmeltsev

IFT 6113 DISCRETE LAPLACIAN

http://tiny.cc/6113

Mikhail Bessmeltsev

Recall:

Planar Region

Wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\Delta u
$$

$$
\Delta:=\sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

Recall:

Planar Region

Discretizing the Laplacian

Today's Approach

First-order Galerkin Finite element method (FEM)

Integration by Parts to the Rescue

$\int_{\Omega} f \Delta g d A=$ boundary terms $-\int_{\Omega} \nabla f \cdot \nabla g d A$

A GUIDE To

INTEGRATION BY PARTS:
GIVEN A PROBLEM OF THE FORM:
$\int f(x) g(x) d x=?$
CHOOSE VARIABLES U AND V SUCH THAT:

$$
\begin{aligned}
& u=f(x) \\
& d v=g(x) d x
\end{aligned}
$$

NOW THE ORIGINAL EXPRESSION BECONES:

$$
\int u d v=?
$$

WHICH DEFINITELY LOOKS EASIER. ANYWAY, I GOTTA RUN. BUT GOOD LUCK!
https://xkcd.com/1201/

Slightly Easier?

$\int_{\Omega} f \Delta g d A=$ boundary terms $-\int_{\Omega} \nabla f \cdot \nabla g d A$
Laplacian
(second derivative)
Gradient
(first derivative)

Ouerview:

Galerkin FEM Approach

$$
g=\Delta f
$$

Overview:

Galerkin FEM Approach

$$
g=\Delta f \quad \Rightarrow\langle g, \psi\rangle=\langle\Delta f, \psi\rangle
$$

For any test function ψ

Overview:

Galerkin FEM Approach

$$
\begin{gathered}
g=\Delta f \\
\Longrightarrow \int \psi g d A=\int \psi \Delta f d A \\
\quad \begin{array}{c}
\text { For any test } \\
\text { function } \psi
\end{array}
\end{gathered}
$$

Overuiew:

Galerkin FEM Approach

$$
\begin{aligned}
& \quad g=\Delta f \\
& \Longrightarrow \int \psi g d A=\int \psi \Delta f d A=-\int(\nabla \psi \cdot \nabla f) d A \\
& \quad \begin{array}{c}
\text { For any test } \\
\text { function } \psi
\end{array}
\end{aligned}
$$

Overview:

Galerkin FEM Approach

$$
\begin{aligned}
& g=\Delta f \\
\Longrightarrow & \int \psi g d A=\int \psi \Delta f d A=-\int(\nabla \psi \cdot \nabla f) d A
\end{aligned}
$$

Approximate $f \approx \sum_{i} a_{i} \psi_{i}$ and $g \approx \sum_{i} b_{i} \psi_{i}$
\Longrightarrow Linear system $\sum_{i} b_{i}\left\langle\psi_{i}, \psi_{j}\right\rangle=-\sum_{i} a_{i}\left\langle\nabla \psi_{i}, \nabla \psi_{j}\right\rangle$

Overview:

Galerkin FEM Approach

$$
\begin{aligned}
& g=\Delta f \\
\Longrightarrow & \int \psi g d A=\int \psi \Delta f d A=-\int(\nabla \psi \cdot \nabla f) d A
\end{aligned}
$$

Approximate $f \approx \sum_{i} a_{i} \psi_{i}$ and $g \approx \sum_{i} b_{i} \psi_{i}$
\Longrightarrow Linear system $\sum_{i} b_{i}\left\langle\psi_{i}, \psi_{j}\right\rangle=-\sum_{i} a_{i}\left\langle\nabla \psi_{i}, \nabla \psi_{j}\right\rangle$
Mass matrix: $M_{i j}:=\left\langle\psi_{i}, \psi_{j}\right\rangle$
Stiffness matrix: $L_{i j}:=\left\langle\nabla \psi_{i}, \nabla \psi_{j}\right\rangle$
Which basis?

$$
\Longrightarrow M b=L a
$$

Important to Note

Not the only way

to approximate the Laplacian operator.

- Divided differences
- Higher-order elements
- Boundary element methods
- Discrete exterior calculus
- ...

L^{2} Dual of a Function

Function $\quad f: M \rightarrow \mathbb{R}$

$$
\downarrow
$$

Operator $\mathcal{L}_{f}: L^{2}(M) \rightarrow \mathbb{R}$

$$
\mathcal{L}_{f}[g]:=\int_{M} f(x) g(x) d A
$$

Observation

Can recover function from dual

Dual of Laplacian

$$
\begin{aligned}
\begin{aligned}
&\left\{\begin{array}{l}
\text { Space of teses functions (no boundary): } \\
\left\{g \in L^{\infty}(M): g \mid \partial M \equiv 0\right\}
\end{array}\right. \\
& \mathcal{L}_{\Delta f}[g]=\int_{M} g \Delta f d A \\
&=-\int_{M} \nabla g \cdot \nabla f d A
\end{aligned}
\end{aligned}
$$

Use Laplacian without evaluating it!

Galerkin's Approach

Choose one of each:

$$
\begin{aligned}
& \text { - Function space } \\
& \text { •Test functions } \\
& \text { often the same! }
\end{aligned}
$$

One Derivative is Enough

$$
\mathcal{L}_{\Delta f}[g]=-\int_{M} \nabla g \cdot \nabla f d A
$$

First Order Finite Elements

Image courtesy K. Crane, CMU

One "hat function" per vertex

Representing Functions

What Do We Need

$$
\mathcal{L}_{\Delta f}[g]=-\int_{M} \nabla g \cdot \nabla f d A
$$

What Do We Need

$$
\mathcal{L}_{\Delta f}[g]=-\int_{M} \nabla g \cdot \nabla f d A
$$

What Do We Need

$$
\mathcal{L}_{\Delta f}[g]=-\int_{M} \nabla g{ }_{\uparrow} \nabla f d A
$$

What Do We Need

$$
\mathcal{L}_{\Delta f}[g]=-\int_{M} \nabla g \cdot \nabla f d A
$$

Sum scalars per face multiplied by face areas

Gradient of a Hat Function

$$
\begin{gathered}
\|\nabla f\|=\frac{1}{\ell_{3} \sin \theta_{3}}=\frac{1}{h} \\
\nabla f=\frac{e_{23}^{\perp}}{2 A} \\
\text { Length of } e_{23} \text { cancels } \\
\text { "base" in } \mathrm{A}
\end{gathered}
$$

Recall:

Single Triangle: Complete

$$
\begin{aligned}
\vec{p} & =p_{n} \vec{n}+p_{e} \vec{e}+p_{\perp} \vec{e}_{\perp} \\
A & =\frac{1}{2} b \sqrt{p_{n}^{2}+p_{\perp}^{2}} \\
\nabla_{\vec{p}} A & =\frac{1}{2} b \vec{e}_{\perp}
\end{aligned}
$$

Similar expression

Recall:

Single Triangle: Complete

$$
\begin{aligned}
\vec{p} & =p_{n} \vec{n}+p_{e} \vec{e}+p_{\perp} \vec{e}_{\perp} \\
A & =\frac{1}{2} b \sqrt{p_{n}^{2}+p_{\perp}^{2}} \\
\nabla_{\vec{p}} A & =\frac{1}{2} b \vec{e}_{\perp} \\
\nabla f & =\frac{e_{23}^{\perp}}{2 A}=\frac{\vec{e}_{\perp}}{h}=\frac{\nabla_{\vec{p}} A}{A}
\end{aligned}
$$

Similar expression

What We Actually Need

$$
\mathcal{L}_{\Delta f}[g]=-\int_{M} \nabla g \cdot \nabla f d A
$$

What We Actually Need

$$
\mathcal{L}_{\Delta f}[g]=-\int_{M} \nabla g \cdot \nabla f d A
$$

Case 1: Same vertex

$$
\begin{aligned}
\int_{T}\langle\nabla f, \nabla f\rangle d A & =A\|\nabla f\| 2 \\
& =\frac{A}{h^{2}}=\frac{b}{2 h} \\
& =\frac{1}{2}(\cot \alpha+\cot \beta)
\end{aligned}
$$

What We Actually Need

$\mathcal{L}_{\Delta f}[g]=-\int_{M} \nabla g \cdot \nabla f d A$

Case 2: Different vertices

$$
\begin{aligned}
\int_{T}\left\langle\nabla f_{\alpha}, \nabla f_{\beta}\right\rangle d A & =A\left\langle\nabla f_{\alpha}, \nabla f_{\beta}\right\rangle \\
& =\frac{1}{4 A}\left\langle e_{31}^{\perp}, e_{12}^{\perp}\right\rangle=-\frac{\ell_{1} \ell_{2} \cos \theta}{4 A} \\
& =\frac{-h^{2} \cos \theta}{4 A \sin \alpha \sin \beta}=\frac{-h \cos \theta}{2 b \sin \alpha \sin \beta} \\
& =-\frac{\cos \theta}{2 \sin (\alpha+\beta)}=-\frac{1}{2} \cot \theta
\end{aligned}
$$

Summing Around a Vertex

$$
\left\langle\nabla h_{p}, \nabla h_{p}\right\rangle=\frac{1}{2} \sum_{i}\left(\cot \alpha_{i}+\cot \beta_{i}\right)
$$

$\left\langle\nabla h_{p}, \nabla h_{q}\right\rangle=-\frac{1}{2}\left(\cot \theta_{1}+\cot \theta_{2}\right)$

Recall:
Summing Around a Vertex

$$
\nabla_{\vec{p}} A=\frac{1}{2} \sum_{j}\left(\cot \alpha_{j}+\cot \beta_{j}\right)\left(\vec{p}-\vec{q}_{j}\right)
$$

$$
\nabla_{\vec{p}} A=\frac{1}{2}((\vec{p}-\vec{r}) \cot \alpha+(\vec{p}-\vec{q}) \cot \beta)
$$

Same weights up to sign!

The Cotangent

LAPLACIAN

$$
L_{i j}= \begin{cases}\frac{1}{2} \sum_{i \sim k}\left(\cot \alpha_{i k}+\cot \beta_{i k}\right) & \text { if } i=j \\ -\frac{1}{2}\left(\cot \alpha_{i j}+\cot \beta_{i j}\right) & \text { if } i \sim j \\ 0 & \text { otherwise }\end{cases}
$$

Poisson Equation

$\Delta f=g$

Weak Solutions

$$
\int_{M} \phi \Delta f d A=\int_{M} \phi g d A \forall \text { test functions } \phi
$$

FEM Hat Weak Solutions

$h_{i} \Delta f d A=\int_{M} h_{i} g d A \forall$ hat functions h_{i}

$$
\begin{aligned}
\int_{M} h_{i} \Delta f d A & =-\int_{M} \nabla h_{i} \cdot \nabla f d A \\
& =-\int_{M} \nabla h_{i} \cdot \nabla \sum_{j} a_{j} h_{j} d A \\
& =-\sum_{j} a_{j} \int_{M} \nabla h_{i} \cdot \nabla h_{j} d A \\
& =\sum_{j} L_{i j} a_{j}
\end{aligned}
$$

Stacking Integrated Products

$$
\left(\begin{array}{c}
\int_{M} h_{1} \Delta f d A \\
\int_{M} h_{2} \Delta f d A \\
\vdots \\
\int_{M} h_{|V|} \Delta f d A
\end{array}\right)=\left(\begin{array}{c}
\sum_{j} L_{1 j} a_{j} \\
\sum_{j} L_{2 j} a_{j} \\
\vdots \\
\sum_{j} L_{|V| j} a_{j}
\end{array}\right)=L \vec{a}
$$

Problematic Right Hand Side

$$
\int_{M} h_{i} \Delta f d A=\int_{M} h_{i} g d A \forall \text { hat functions } h_{i}
$$

Product of hats is quadratic

A Few Ways Out

- Just do the integral "Consistent" approach
- Approximate some more
- Redefine \mathbf{g}

A Few Ways Out

- Just do the integral "Consistent" approach
- Approximate some more
- Redefine g

The Mass Matrix

$$
A_{i j}:=\int_{M} h_{i} h_{j} d A
$$

- Diagonal elements: Norm of $\boldsymbol{h}_{\boldsymbol{i}}$
- Off-diagonal elements: Overlap between $\boldsymbol{h}_{\boldsymbol{i}}$ and \boldsymbol{h}_{j}

Consistent Mass Matrix

Non-Diagonal Mass Matrix

Properties of Mass Matrix

- Rows sum to one ring area / 3
- Involves only vertex and its neighbors
- Partitions surface area

Issue: Not trivial to invert!

Use for Integration

$$
\begin{aligned}
\int_{M} f & =\int_{M} \sum_{j} a_{j} h_{j}(\cdot 1) \\
& =\int_{M} \sum_{j} a_{j} h_{j} \sum_{i} h_{i} \\
& =\sum_{i j} A_{i j} a_{j} \\
& =\mathbf{1}^{\top} A \vec{a}
\end{aligned}
$$

Lumped Mass Matrix

$$
\tilde{a}_{i i}:=\text { Area }(\text { cell } i)
$$

Won't make big difference for smooth functions

Simplest: Barycentric Lumped Mass

Area/3 to each vertex

Ingredients

- Cotangent Laplacian L Per-vertex function to integral of its Laplacian against each hat
- Area weights A

Integrals of pairwise products of hats (or approximation thereof)

Solving the Poisson Equation

Must integrate to zero

Determined up to constant

Helmholtz Equation

$$
\Delta f=\lambda f
$$

$$
\int \Delta f \cdot \psi=-\int \nabla f \cdot \nabla \psi=\int \lambda f \cdot \psi
$$

$$
\Rightarrow L a=\lambda M a \quad \begin{gathered}
\text { Generalized } \\
\text { Eigenvalue Problem } \\
\hline
\end{gathered}
$$

Important Detail: Boundary Conditions

$$
\begin{gathered}
\Delta f(x)=g(x) \forall x \in \Omega \\
\left.f(x)=u(x) \forall x \in \Gamma_{D} \quad \begin{array}{l}
\text { Strong } \\
\text { form } \\
\nabla f \cdot n
\end{array}\right)=v(x) \forall x \in \Gamma_{N} \\
\int_{\Omega} \nabla f \cdot \nabla \phi=\int_{\Gamma_{N}} v(x) \phi(x) d \Gamma-\int_{\Omega} f(x) \phi(x) d \Omega \\
f(x)=u(x) \forall x \in \Gamma_{D} \\
\text { Weak form }
\end{gathered}
$$

Eigenhomers

Higher-Order Elements

https://www.femtable.org/

Point Cloud Laplace: Easiest Option

$W_{i j}=\exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{t}\right)$ $D_{i i}=\sum_{j} W_{j i}$

$$
L=D-W
$$

$$
L f=\lambda D f
$$

"Laplacian Eigenmaps for Dimensionality Reduction and Data Representation" Belkin \& Niyogi 2003

