IFT 6113
LEARNING (ON) 3D GEOMETRY
http://tiny.cc/6113/

Image from “Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs” by Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox, 2017

Mikhail Bessmeltsev
Background

• Neural networks
• CNNs
• Autoencoders
Background: standard CNNs

https://www.cc.gatech.edu/~hays/compvision/proj6/
Semi-Supervised Learning

“Semi-supervised learning using Gaussian fields and harmonic functions”
Zhu, Ghahramani, & Lafferty 2003
Semi-Supervised Technique

Given: \(\ell \) labeled points \((x_1, y_1), \ldots, (x_\ell, y_\ell); y_i \in \{0, 1\}\)
\(u\) unlabeled points \(x_{\ell+1}, \ldots, x_{\ell+u}; \ell \ll u\)

\[
\min \frac{1}{2} \sum_{ij} w_{ij} (f(i) - f(j))^2
\]

s.t. \(f(k)\) fixed \(\forall k \leq \ell\)

Dirichlet energy \(\rightarrow\) Linear system of equations (Poisson)
Related Method

• **Step 1:**
 Build k-NN graph

• **Step 2:**
 Compute p smallest Laplacian eigenvectors

• **Step 3:**
 Solve semi-supervised problem in subspace

“Using Manifold Structure for Partially Labelled Classification”
Belkin and Niyogi; NIPS 2002
Manifold Regularization

Regularized learning:
\[
\arg\min_{f \in \mathcal{H}} \frac{1}{\ell} \sum_{i=1}^{\ell} V(f(x_i), y_i) + \gamma \|f\|^2
\]

\[
\|f\|_{\mathcal{L}}^2 := \int \|\nabla f(x)\|^2 \, dx \approx f^\top L f
\]

“Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples”
Belkin, Niyogi, and Sindhwani; JMLR 2006
Examples of Manifold Regularization

- Laplacian-regularized least squares (**LapRLS**)
 \[\arg \min_{f \in \mathcal{H}} \frac{1}{\ell} \sum_{i=1}^{\ell} (f(x_i) - y_i)^2 + \gamma \| f \|_I^2 + \text{Other}[f] \]

- Laplacian support vector machine (**LapSVM**)
 \[\arg \min_{f \in \mathcal{H}} \frac{1}{\ell} \sum_{i=1}^{\ell} \max(0, 1 - y_i f(x_i)) + \gamma \| f \|_I^2 + \text{Other}[f] \]

“On Manifold Regularization”
Belkin, Niyogi, Sindhwani; AISTATS 2005
Tasks

• 3D reconstruction
• Shape retrieval
• Shape completion
• Shape interpolation
• Shape segmentation
ShapeNet is an ongoing effort to establish a richly-annotated, large-scale dataset of 3D shapes. We provide researchers around the world with this data to enable research in computer graphics, computer vision, robotics, and other related disciplines. ShapeNet is a collaborative effort between researchers at Princeton, Stanford and TTIC.

Overview
ShapeNet consists of several subsets:

ShapeNetCore
ShapeNetCore is a subset of the full ShapeNet dataset with single clean 3D models and manually verified category and alignment annotations. It covers 55 common object categories with about 51,300 unique 3D models. The 12 object categories of PASCAL 3D+, a popular computer vision 3D benchmark dataset, are all covered by ShapeNetCore.

ShapeNetSem
ShapeNetSem is a smaller, more densely annotated subset consisting of 12,000 models spread over a broader set of 270 categories. In addition to manually verified category labels and consistent alignments, these models are annotated with real-world dimensions, estimates of their material composition at the category level, and estimates of their total volume and weight.

News
March, 2019 We are happy to announce the prelease of PartNet v0. PartNet provides fine-grained, hierarchical part annotations from ShapeNet.

Feb, 2017 We are organizing a large-scale 3D shape retrieval contest as part of the Eurographics 2017 3D Object Retrieval Workshop. More information available www.shapenet.org/shrec17.
Shapes versus Images

#3D Warehouse models (in millions)

2011.1: 1.3
2013.1: 1.95
2015.1: 2.6

#Internet images (in trillions)

2011.1: 0.65
2013.1: 1.3
2015.1: 3.8

Image credit: Q. Huang, V. Koltun
Example task: 3D reconstruction

Input
Image | Point Cloud | Mesh | ...

Neural Network

3D output

Fixed size vector

Fixed size vector
3D reconstruction

Input
Image | Point Cloud | Mesh | ...

Neural Network

3D output

Fixed size vector

How to represent 3D geometry?
Fig. 2. The architecture of our network. The encoder (blue) turns an input image into an abstract 3D representation. The decoder (green) processes the angle, modifies the encoded hidden representation accordingly, and renders the final image together with the depth map.

3-D Depth Reconstruction from a Single Still Image

Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng

Computer Science Department
Stanford University, Stanford, CA 94305
{asaxena, codedeft, ang}@cs.stanford.edu

Abstract

We consider the task of 3-d depth estimation from a single still image. We take a supervised learning approach to this problem, in which we begin by collecting a training set of monocular images (of unstructured indoor and outdoor environments which include forests, sidewalks, trees, buildings, etc.) and their corresponding ground-truth depthmaps. Then, we apply supervised learning to predict the value of the depthmap as a function of the image. Depth estimation is a challenging problem, since local features alone are insufficient to estimate depth at a point, and one needs to consider the global context of the image. Our model uses a hierarchical, multiscale Markov Random Field (MRF) that incorporates multiscale local- and global-image features, and models the depths and the relation between depths at different points in the image. We show that, even on unstructured scenes, our algorithm is frequently able to recover fairly accurate depthmaps. We further propose a model that incorporates both monocular cues and stereo (triangulation) cues.

Figure 1: (a) A single still image, and (b) the corresponding (ground-truth) depthmap. Colors in the depthmap indicate estimated distances from the camera.

stereo and monocular cues, most work on depth estimation has focused on stereovision.

Depth estimation from a single still image is a difficult task, since depth typically remains ambiguous given only local image features. Thus, our algorithms must take into account the global structure of the image, as well as
Figure 2: The convolutional filters used for texture energies and gradients. The first nine are 3x3 Laws’ masks. The last six are the oriented edge detectors spaced at 30° intervals. The nine Laws’ masks are used to perform local averaging, edge detection and spot detection.
Multi-scale

Figure 4: The multiscale MRF model for modeling relation between features and depths, relation between depths at same scale, and relation between depths at different scales. (Only 2 out of 3 scales, and a subset of the edges, are shown.)
Gaussian Markov Random Field

Want: depth \approx linear function(features)
$$d_i(1) \approx x_i^T \theta$$

My depth \approx depth of my neighbors
$$d_i(s) \approx d_j(s)$$
Gaussian Markov Random Field

\[P_G(d|X; \theta, \sigma) = \frac{1}{Z_G} \exp \left(- \sum_{i=1}^{M} \frac{(d_i(1) - x_i^T \theta_r)^2}{2\sigma_{1r}^2} - \sum_{s=1}^{3} \sum_{i=1}^{M} \sum_{j \in N_s(i)} \frac{(d_i(s) - d_j(s))^2}{2\sigma_{2rs}^2} \right) \]
Gaussian Markov Random Field

\[P_G(d|X; \theta, \sigma) = \frac{1}{Z_G} \exp \left(- \sum_{i=1}^{M} \frac{(d_i(1) - x_i^T \theta_r)^2}{2\sigma_{1r}^2} - \sum_{s=1}^{3} \sum_{i=1}^{M} \sum_{j \in N_s(i)} \frac{(d_i(s) - d_j(s))^2}{2\sigma_{2rs}^2} \right) \]

Find by minimizing negative log-likelihood of data:

\[\min_{\theta, \sigma} -\log P_G(d|X; \theta, \sigma) \]
Where to get depth maps?

Much easier: stereo images!

https://www.flickr.com/photos/ntenny/46048092055
Fig. 1. We propose a stereopsis based auto-encoder setup: the encoder (Part 1) is a traditional convolutional neural network with stacked convolutions and pooling layers (See Figure 2) and maps the left image (I_1) of the rectified stereo pair into its depth map. Our decoder (Part 2) explicitly forces the encoder output to be disparities (scaled inverse depth) by synthesizing a backward warp image (I_w) by moving pixels from right image I_2 along the scan-line. We use the reconstructed output I_w to be matched with the encoder input (Part 3) via a simple loss. For end-to-end training, we minimize the reconstruction loss with a simple smoothness prior on disparities which deals with the
What if there’s a patch of constant color?
What if there’s a patch of constant color?

Solution: add Dirichlet energy as a regularizer

$$\|\nabla D(x)\|^2$$
Fig. 2. Coarse-to-fine stereo with CNN with results on a sample validation instance: We adapt the convolution based upsampling architecture proposed in [26] to mimic the coarse-to-fine stereo estimations. Our upsampling filter is initialized with simple bilinear interpolation kernel and we initialize the corresponding pooling layer contribution by setting both bias and 1x1 convolution filter to be zero. The figure shows how features coming from previous layers of the CNN (L3) combined with finer resolution loss function generate better depthmaps at 44×172 from our bilinear upsampled initial estimate of coarser prediction at 22×76.
Hi-res Depth Maps

Figure 1. Our method takes line drawings as input and converts them into multi-view surface depth and normals maps from several output viewpoints via an encoder-multi-view-decoder architecture. The maps are fused into a coherent 3D point cloud, which is then converted into a surface mesh. Finally, the mesh can be further fine-tuned to match the input drawings more precisely through geometric deformations.

Predict: depth + normal map → point cloud → mesh

“3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks” by Liu et al., 2017
Voxelization

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction

Christopher B. Choy Danfei Xu* JunYoung Gwak*
Kevin Chen Silvio Savarese
Stanford University
{chrischoy, danfei, jgwak, kchen92, ssilvio}@stanford.edu
Unpooling

Deconvolution
Accumulate information from all views

Idea: use a recurrent neural network (RNN)

Hidden state allows to memorize info
Accumulate information from all views

Idea: use a (RNN) LSTM

Hidden state allows to memorize info

https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0
Accumulate information from all views

Idea: use a (RNN) LSTM

New view → shows parts that were occluded → prediction mismatch

Update the LSTM states for the previously occluded sections
Retain the states of the other parts

Hidden state allows to memorize info
Voxelization: issue

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>10.41%</td>
</tr>
<tr>
<td>64</td>
<td>5.09%</td>
</tr>
<tr>
<td>128</td>
<td>2.41%</td>
</tr>
</tbody>
</table>

#occupied grid / #total grid
Fig. 1: Given an annotated image collection of an object category, we learn a predictor f that can map a novel image I to its 3D shape, camera pose, and texture.
Mesh as deformed template

Fig. 2: **Overview of the proposed framework.** An image I is passed through a convolutional encoder to a latent representation that is shared by modules that estimate the camera pose, deformation and texture parameters. Deformation is an offset to the learned mean shape, which when added yield instance specific shapes in a canonical coordinate frame. We also learn correspondences between the mesh vertices and the semantic keypoints. Texture is parameterized as an UV image, which we predict through texture flow (see Section 2.3). The objective is to minimize the distance between the rendered mask, keypoints and textured rendering with the corresponding ground truth annotations. We do not require ground truth 3D shapes or multi-view cues for training.
Differentiable renderers

Soft Rasterizer: Differentiable Rendering for Unsupervised Single-View Mesh Reconstruction

Shichen Liu1,2, Weikai Chen1, Tianye Li1,2, and Hao Li1,2,3

1USC Institute for Creative Technologies
2University of Southern California
3Pinscreen

{lshichen, wechen, tli}@ict.usc.edu hao@hao-li.com

Abstract

Rendering is the process of generating 2D images from 3D assets, simulated in a virtual environment, typically with a graphics pipeline. By inverting such renderer, one can think of a learning approach to predict a 3D shape from an input image. However, standard rendering pipelines involve a fundamental discretization step called rasterization, which prevents the rendering process to be differentiable, hence able to be learned. We present the first non-parametric and truly differentiable rasterizer based on silhouettes. Our method enables unsupervised learning for high-quality 3D mesh reconstruction from a single image.
Differentiable renderers

Soft Rasterizer: Differentiable Rendering for Unsupervised Single-View Mesh Reconstruction

Shichen Liu1,2, Weikai Chen1, Tianye Li1,2, and Hao Li1,2,3

1USC Institute for Creative Technologies

Enables \textbf{unsupervised} learning!

Rendering is the process of generating 2D images from 3D assets, simulated in a virtual environment, typically with a graphics pipeline. By inverting such renderer, one can think of a learning approach to predict a 3D shape from an input image. However, standard rendering pipelines involve a fundamental discretization step called rasterization, which prevents the rendering process to be differentiable, hence able to be learned. We present the first non-parametric and truly differentiable rasterizer based on silhouettes. Our method enables unsupervised learning for high-quality 3D mesh reconstruction from a single image.
Rendering

= projection + rasterization
Projection
Linear operation

\[P(x, y, z, 1) = \begin{pmatrix} 1 & 0 & 0 & 0 & x \\ 0 & 1 & 0 & 0 & y \\ 0 & 0 & 1 & 0 & z \\ 0 & 0 & 1/d & 0 & 1 \\ 0 & 0 & 1/d & 0 & 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ z/d \end{pmatrix} \]
Rasterization

screen is discrete
Rasterization

Discrete/non-differentiable operation
Soft rasterizer

Relax/blur the discretization
~ distance between pixel and triangle?

\[D_j^i = \text{sigmoid} \left(\delta_{ij} \cdot \frac{d^2(i,j)}{\sigma} \right) \]

+1, if \(i^{\text{th}} \) pixel is inside \(j^{\text{th}} \) triangle
Soft rasterizer

Relax/blur the discretization
~ distance between pixel and triangle?

Figure 3: Example probability maps of a single triangle. (a): definition of pixel-to-triangle distance; (b) and (c): probability maps generated with different σ.
Reality check: colors et al.

- Vertices and attributes
 - Vertex Shader: Modelview transform, Per-vertex attributes
 - Rasterization: Scanconversion, Interpolation
 - Per-Sample Operations: Depth test, Blending
 - Framebuffer

- Vertex Post-Processing: Viewport transform, Clipping
 - Fragment Shader: Texturing/..., Lighting/shading

Diagram outlines the pipeline from vertices and attributes to the framebuffer, showing key stages in the rendering process.
Sample pipeline
Reconstructing a point cloud

A Point Set Generation Network for 3D Object Reconstruction from a Single Image by Fan, Su, Guibas, CVPR 2017
Sample pipeline
Reconstructing a point cloud

Deep neural network

(x₁, y₁, z₁)
(x₂, y₂, z₂)
...
(xₙ, yₙ, zₙ)

Ground Truth Point Cloud

(x'_₁, y'_₁, z'_₁)
(x'_₂, y'_₂, z'_₂)
...
(x'_ₙ, y'_ₙ, z'_ₙ)

A Point Set Generation Network for 3D Object Reconstruction from a Single Image by Fan, Su, Guibas, CVPR 2017
Sample pipeline
Reconstructing a point cloud

A Point Set Generation Network for 3D Object Reconstruction from a Single Image by Fan, Su, Guibas, CVPR 2017
A Point Set Generation Network for 3D Object Reconstruction from a Single Image by Fan, Su, Guibas, CVPR 2017

How to choose error function/loss?
Measuring error

\[d(\text{cow}, \text{polyhedron}) =? \]

How much did we distort the shape?

Option: Hausdorff distance

\[d_H(x,y) = \max\{\sup_{x \in X} \inf_{y \in Y} d(x, y), \sup_{y \in Y} \inf_{x \in X} d(x, y)\} \]
Loss: Chamfer

Given two surfaces X, Y:

$$d_{Chamfer}(X, Y) = \sum_{x \in X} \min_{y \in Y} \|x - y\|_2^2 + \sum_{y \in Y} \min_{x \in X} \|x - y\|_2^2$$
Loss: Wasserstein
aka Earth Mover’s Distance (EMD)

\[d_{EMD}(X, Y) = \min_{\phi: X \rightarrow Y} \sum_{x \in X} \| x - \phi(x) \| \]

\(\phi \) is a bijection

Find optimal strategy of transporting blue sand into green hole
Loss: Wasserstein
aka Earth Mover’s Distance (EMD)

\[d_{EMD}(X, Y) = \min_{\phi:X\rightarrow Y} \sum_{x \in X} ||x - \phi(x)|| \]

\(\phi \) is a bijection

Doesn’t have to be Euclidean

Find optimal strategy of transporting blue sand into green hole
Deformable Meshes

AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

Thibault Groueix1*, Matthew Fisher2, Vladimir G. Kim2, Bryan C. Russell2, Mathieu Aubry1
1LIGM (UMR 8049). École des Ponts, UPE, 2Adobe Research
http://imagine.enpc.fr/~groueixt/atlasnet/

Figure 1. Given input as either a 2D image or a 3D point cloud (a), we automatically generate a corresponding 3D mesh (b) and its atlas parameterization (c). We can use the recovered mesh and atlas to apply texture to the output shape (d) as well as 3D print the results (e).
AtlasNet

Learn $\varphi_\theta : (0,1)^2 \rightarrow S_\theta \subset \mathbb{R}^3$

$$\min_{\theta} \mathcal{L}(S_\theta, S_{target}) + \lambda \mathcal{R}(\theta)$$

Chamfer or Earth-Mover distance

Regularization

How to represent functions φ_θ?
AtlasNet

Learn $\varphi_\theta : (0, 1)^2 \rightarrow S_\theta \subset \mathbb{R}^3$

$$\min_\theta \mathcal{L}(S_\theta, S_{target}) + \lambda \mathcal{R}(\theta)$$

ReLU nonlinearities \rightarrow Locally affine transformation $\rightarrow S_\theta$ is a (locally) 2-manifold
AtlasNet: applications

(a) Shape interpolation.

(b) Shape correspondences.
AtlasNet: limitations

Intersections are hard to detect
More exotic 3D representations

- Signed Distance Function (SDF)

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Jeong Joon Park1,3, Peter Florence2,3, Julian Straub3, Richard Newcombe3, Steven Lovegrove3

1University of Washington 2Massachusetts Institute of Technology 3Facebook Reality Labs

Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.
More exotic 3D representations

• Signed Distance Function (SDF)

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Figure 2: Our DeepSDF representation applied to the Stanford Bunny: (a) depiction of the underlying implicit surface $SDF = 0$ trained on sampled points inside $SDF < 0$ and outside $SDF > 0$ the surface, (b) 2D cross-section of the signed distance field, (c) rendered 3D surface recovered from $SDF = 0$. Note that (b) and (c) are recovered via DeepSDF.
More exotic 3D representations

• Signed Distance Function (SDF)

Gradient of SDF at the surface = normals!

Figure 2: Our DeepSDF representation applied to the Stanford Bunny: (a) depiction of the underlying implicit surface $SDF = 0$ trained on sampled points inside $SDF < 0$ and outside $SDF > 0$ the surface, (b) 2D cross-section of the signed distance field, (c) rendered 3D surface recovered from $SDF = 0$. Note that (b) and (c) are recovered via DeepSDF.
More exotic 3D representations

- Signed Distance Function (SDF)
- Occupancy

\[p \in \mathbb{R}^3 \rightarrow \text{Deep Neural Network} \rightarrow \{0,1\} \]

Is \(p \) inside or outside 3D shape

“Occupancy Networks: Learning 3D Reconstruction in Function Space” by Mescheder et al., 2018
More exotic 3D representations

• Signed Distance Function (SDF)
• Occupancy
 – Classifier!

Figure 1: **Overview:** Existing 3D representations discretize the output space differently: (a) spatially in voxel representations, (b) in terms of predicted points, and (c) in terms of vertices for mesh representations. In contrast, (d) we propose to consider the continuous decision boundary of a classifier \(f_\theta \) (e.g., a deep neural network) as a 3D surface which allows to extract 3D meshes at any resolution.

“Occupancy Networks: Learning 3D Reconstruction in Function Space” by Mescheder et al., 2018
More exotic 3D representations

• Signed Distance Function (SDF)
• Occupancy
• Boxes?

Learning Shape Abstractions by Assembling Volumetric Primitives

Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, Jitendra Malik
1University of California, Berkeley 2Stanford University
1{shubhtuls, efros, malik}@eecs.berkeley.edu, 2{haosu, guibas}@cs.stanford.edu
3D shape representations

- Multiple Images
- Voxelization
- Deformation
- Depth
- Point Cloud
- Component-based
- SDF
Deformable Meshes

Multi-chart Generative Surface Modeling

Heli Ben-Hamu Haggai Maron Itay Kezurer Gal Avineri Yaron Lipman
Weizmann Institute of Science

Figure 1: Our method is able to learn shape distribution and generate unseen shapes. This figure shows 1024 human models randomly generated by our method.

Abstract

This paper introduces a 3D shape generative model based on deep neural networks. A new image-like (i.e., tensor) data representation for genus-zero 3D shapes is devised. It is based on the observation that complicated the method is demonstrated for the task of anatomic shape generation including human body and bone (teeth) shape generation.

1 Introduction
Convolution for manifolds?
Learning on 3D geometry

Fig. 5. Illustration of the difference between classical CNN (left) applied to a 3D shape (checkered surface) considered as a Euclidean object, and a geometric CNN (right) applied intrinsically on the surface. In the latter case, the convolutional filters (visualized as a colored window) are deformation-invariant by construction.

From ‘Geometric Deep Learning: going beyond Euclidean data’ by Bronstein et al. 2017
Convolution Theorem

“Fourier transform of a convolution of two signals is the pointwise product of their Fourier transforms”

\[\mathcal{F}\{f \ast g\} = \mathcal{F}\{f\} \cdot \mathcal{F}\{g\} \]
Convolution Theorem

“Fourier transform of a convolution of two signals is the pointwise product of their Fourier transforms”

\[\mathcal{F}\{f \ast g\} = \mathcal{F}\{f\} \cdot \mathcal{F}\{g\} \]

Convolution

\[(f \ast g)(z) = \int_{\mathbb{R}} f(x)g(z-x)dx \]
Convolution Theorem

“Fourier transform of a convolution of two signals is the pointwise product of their Fourier transforms”

\[\mathcal{F}\{f \ast g\} = \mathcal{F}\{f\} \cdot \mathcal{F}\{g\} \]

\[\mathcal{F}\{f\}(\omega) = \int_{\mathbb{R}} f(x)e^{-2\pi ix\omega} \, dx = \langle f(x), e^{-2\pi ix\omega} \rangle = \langle f, \phi(\omega) \rangle \]
Convolution Theorem

“Fourier transform of a convolution of two signals is the pointwise product of their Fourier transforms”

\[(f * g)(x) = \sum_{i \geq 0} \langle f, \phi_i \rangle \langle g, \phi_i \rangle \phi_i(x)\]

Fourier basis

Fourier Series
Spectral convolution

Take this theorem as definition

\[(f \ast g)(x) = \sum_{i \geq 0} \langle f, \phi_i \rangle \langle g, \phi_i \rangle \phi_i(x)\]
Spectral convolution

Take this theorem as definition

\[(f \ast g)(x) = \sum_{i \geq 0} \langle f, \phi_i \rangle \langle g, \phi_i \rangle \phi_i(x) \]

\[f \ast g = \Phi (\Phi^T f)(\Phi^T g) \]

\[\Delta = \Phi \Lambda \Phi^T \]

Laplacian Eigenbasis
Spectral CNN

Spectral convolutional layer:

\[f_{\text{output}} = \text{ReLU}(\sum_{l'} \Phi G_{l,l'} \Phi^T f_{\text{input}}) \]

(diagonal)
learnable
parameters

Spectral networks and locally connected networks on graphs,
Spectral CNN

Spectral convolutional layer:

\[f_{\text{output}} = \text{ReLU}(\Phi_{l'} G_l, \Phi_{l'} T f_{\text{input}}) \]

Spectral networks and locally connected networks on graphs,

Only makes sense within a category of isometric shapes!
Geodesic Convolution

Figure 1: Construction of local geodesic polar coordinates on a manifold. Left: examples of local geodesic patches, center and right: example of angular and radial weights v_θ, v_ρ, respectively (red denotes larger weights).

Angular (geodesic given a direction) and radial bins
(isocurve of geodesic distance \rightarrow use Fast Marching)
Geodesic Convolution

Filters in polar coordinates $a(\theta, r)$

Convolution:

$$(f \ast a)(x) = \sum_{\theta, r} a(\theta + \Delta\theta, r)(D(x)f)(r, \theta).$$

Maps to geodesic polar coordinates
Geodesic Convolution

Ambiguity how to rotate the filter → Try convolutions with all $\Delta \theta$ + angular max pooling
Application:
Intrinsic Descriptors

Apply to each vertex
input = all eigenvectors of the Laplacian

Figure 3: The simple GCNN1 architecture containing one convolutional layer applied to $M = 150$-dimensional geometry vectors (input layer) of a human shape, to produce a $Q = 16$-dimensional feature descriptor (output layer).
Figure 4: Normalized Euclidean distance between the descriptor at a reference point on the shoulder (white sphere) and the descriptors computed at the rest of the points for different transformations (shown left-to-right: near isometric deformations, non-isometric deformations, topological noise, geometric noise, uniform/non-uniform subsampling, missing parts). Cold and hot colors represent small and large distances, respectively; distances are saturated at the median value. Ideal descriptors would...
PointNet

Input = point cloud (fixed # of pts)

Figure 1. **Applications of PointNet.** We propose a novel deep net architecture that consumes raw point cloud (set of points) without voxelization or rendering. It is a unified architecture that learns both global and local point features, providing a simple, efficient and effective approach for a number of 3D recognition tasks.
Point clouds are...

- Unordered
 - Nothing should change in the output if we change points order
- Sampled from a surface
 - Neighborhood matters
- Invariant under isometries
PointNet
permutation invariance

Symmetric functions:

\[f(x_1, \ldots, x_n) = f(x_{\pi_1}, \ldots, x_{\pi_n}) \]

e.g.

\[f(x_1, \ldots, x_n) = \sum_i x_i \]

\[f(x_1, \ldots, x_n) = \max_i x_i \]
PointNet
permutation invariance

\[f(x_1, x_2, \ldots, x_n) = \gamma \circ g(h(x_1), \ldots, h(x_n)) \] is symmetric if \(g \) is symmetric.
PointNet
permutation invariance

Empirically, we use multi-layer perceptron (MLP) and max pooling:

\[
\begin{align*}
 h & \quad \rightarrow \quad h \\
 (1,2,3) & \rightarrow \quad \text{MLP} \\
 (1,1,1) & \rightarrow \quad \text{MLP} \\
 (2,3,2) & \rightarrow \quad \text{MLP} \\
 \vdots & \\
 (2,3,4) & \rightarrow \quad \text{MLP} \\
\end{align*}
\]

PointNet (vanilla)
PointNet
invariance under rigid transforms

Another tiny net predicting canonical rotation