IFT 6113
LEARNING (ON) 3D GEOMETRY

http://tiny.cc/6113/

Image from “Octree Generating Networks: Efficient Convolutional Architectures
for High-resolution 3D Outputs” by Maxim Tatarchenko, Alexey Dosovitskiy,
Thomas Brox, 2017

Mikhail Bessmeltsev



Background

« Neural networks
e CNNs
 Autoencoders



Background: standard CNNs
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Conv 1: Edge+Blob

Conv 3: Texture

Conv 5: Object Parts

https:/ /www.cc.gatech.edu/~hays /compvision /proj6 /
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Semi-Supervised Learning

“Semi-supervised learning using Gaussian fields and harmonic functions”
Zhu, Ghahramani, & Lafferty 2003



Semi-Supervised Technigue

Given: ¢ labeled points (x1,y1),..., (2sye);y; € {0,1}
uw unlabeled points xprq1,..., 201430 < u

.1 . NCE
win 3 w10 ~100*
1) |
s.t. f(k) fixed Vk < ¢ qoo



Related Method

« Step 1:
Build k-NN graph

« Step 2:
Compute p smallest Laplacian eigenvectors

« Step 3:
Solve semi-supervised problem in
subspace

“Using Manifold Structure for Partially Labelled Classification”
Belkin and Niyogi; NIPS 2002



Manifold Regularization

¢
Regularized learning: arg m n - Z F(@),yi) + 7

17112 = / |Vf(@)|2de~ fTLf

“Manifold Regularization:

A Geometric Framework for Learning from Labeled and Unlabeled Examples”
Belkin, Niyogi, and Sindhwani; JMLR 2006



Examples of Manifold Regularization
. Laplacian—regularized least squares (LapRLS)

h
arg?g;{l . Z:: (zi) — yi)* + 7| fl|7 + Other|[f]

. Laplac:1an support vector machine (LapSVM)

arg min — max(0, 1 — y; f(x;)) + fy||fHI + Other| f]
/ Z

JEH
Transductive SVM ) Laplacian SV
“On Manifold Regularization” ' E?;%; S o ?;génfiﬁ I Eoac ™
. . . e . K A o | F & 8 Ca U At G
Belkin, Niyogi, Sindhwani; AISTATS 2005 o ., » 1 . “»—f@gtg s
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Tasks

D reconstruction
hape retrieval
hape completion
hape interpolation

hape segmentation



ShapeNet

ShapeNet is an ongoing effort to establish a richly-annotated, large-scale dataset of 3D shapes. We provide researchers
around the world with this data to enable research in computer graphics, computer vision, robotics, and other related
disciplines. ShapeNet is a collaborative effort between researchers at Princeton, Stanford and TTIC.

= e

Overview

ShapeNet consists of several subsets:

ShapeNetCore

ShapeNetCore is a subset of the full ShapeNet dataset with single clean 3D models and manually verified category and
alignment annotations. It covers 55 common object categories with about 51,300 unique 3D models. The 12 object
categories of PASCAL 3D+, a popular computer vision 3D benchmark dataset, are all covered by ShapeNetCore.

ShapeNetSem

ShapeNetSem is a smaller, more densely annotated subset consisting of 12,000 models spread over a broader set of
270 categories. In addition to manually verified category labels and consistent alignments, these models are annotated
with real-world dimensions, estimates of their material composition at the category level, and estimates of their total
volume and weight

News

March, 2019 We are happy to announce
the prelease of PartNet v0. PartNet
provides fine-grained, hierarchical part
annotations from ShapeNet..

Aug, 2017 We are organizing a ShapeNet
challenge at ICCV 2017. More information
available at
hitps://shapenet.cs.stanford.edu/iccv17/.

Feb, 2017 We are organizing a large-
scale 3D shape retrieval contest as part of
the Eurographics 2017 3D Object
Retrieval Workshop. More information
available www.shapenet.org/shrec17



Shapes versus Images

#3D Warehouse models #Internet images
(in millions) (in trillions)

2.6 5

1.95 3.8
1.3 2.5
0.65 I 1.3 I
0 . 0 J e

2011.1 2013.1  2015.1 2011.1 2013.1

mage credit: Q. Huang, V. Koltun




Example task:
3D reconstruction

Input
Image | Point Cloud | »  Neural Network > 3D output
Mesh | ...

Fixed size vector Fixed size vector




3D reconstruction

Input
Image | Point Cloud | »  Neural Network > 3D output
Mesh | ...

Fixed size vector Fixed size vector

How to represent 3D
geometry?



Latent representation

256

RGB

1024

fc2

1024

fc3

9T

256

128
64

RGB+D

Fig. 2. The architecture of our network. The encoder (blue) turns an input image into
an abstract 3D representation. The decoder (green) processes the angle, modifies the
encoded hidden representation accordingly, and renders the final image together with

the depth map.

“Multi-view 3D Models from Single Images with
a Convolutional Network” by Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox, 2016



Simplest: depth map

3-D Depth Reconstruction from a Single Still Image
Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng

Computer Science Department
Stanford University, Stanford, CA 94305
{asaxena,codedeft,ang}@cs.stanford.edu

Abstract

We consider the task of 3-d depth estimation
from a single still image. We take a supervised
learning approach to this problem, in which we
begin by collecting a training set of monocu-
lar images (of unstructured indoor and outdoor
environments which include forests, sidewalks,
trees, buildings, etc.) and their corresponding
ground-truth depthmaps. Then, we apply su-
pervised learning to predict the value of the
depthmap as a function of the image. Depth
estimation is a challenging problem, since lo-
cal features alone are insufficient to estimate
depth at a point, and one needs to consider the

gl.obal context of Fhe image. Our model uses a Figure 1: (a) A single still image, and (b) the correspond-
hierarchical, .lllllltlSCﬂle MarkO\f Random Field ing (ground-truth) depthmap. Colors in the depthmap
(MRF) that incorporates multiscale local- and indicate estimated distances from the camera.

global-image features, and models the depths
and the relation between depths at different
points in the image. We show that, even on un-
structured scenes, our algorithm is frequently
able to recover fairly accurate depthmaps. We
further propose a model that incorporates both
monocular cues and stereo (triangulation) cues,

stereo and monocular cues, most work on depth estima-
tion has focused on stereovision.

Depth estimation from a single still image is a difficult
task, since depth typically remains ambiguous given only
local image features. Thus, our algorithms must take




3-D Depth Reconstruction from a Single Still Image
Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng

Computer Science Department
Stanford University, Stanford, CA 94305
{asaxena,codedeft,ang}@cs.stanford.edu

Figure 2: The convolutional filters used for texture ener-
gies and gradients. The first nine are 3x3 Laws’ masks.
The last six are the oriented edge detectors spaced at
30° intervals. The nine Laws’ masks are used to perform
local averaging, edge detection and spot detection.




Multi-scale

Depth (Scale 2)

Depth (Scale 1)

l . e
N TR o
| — m————

Figure 4: The multiscale MRF model for modeling re-
lation between features and depths, relation between
depths at same scale, and relation between depths at
different scales. (Only 2 out of 3 scales, and a subset of
the edges, are shown.)



Gaussian Markov Random Field

Want: depth = linear function(features)

My depth = depth of my neighbors
d;(s) = dj (s)



Gaussian Markov Random Field

Features Depth @)
1 - (dﬂ/\ di(s))’
PeldlXs0h0) = Zgow | "2 o \77 ;( 5
= =l=1y

Normalizing
factor

Parameters




Gaussian Markov Random Field

|

2
20_2?"3

M 3 M 9
§ di(1 _33?97’2 di(s) —d;(s
PG(d|X§9:~0):—eXp — ( ( 5 \) _SJ‘S: S: ( () 3())
ZG 1=1 20_17’ \Sl i=1 jEN(7)

Parameters

Find by minimizing negative log-likelihood of data:

min —log P (d|X; 6, o)
6,0

|



Where to get depth maps?

Much easier: stereo images!

' K

b
S
-
-

J . ' %

st L URES A ds -

https: / /www.flickr.com /photos /ntenny /46048092055



https://www.flickr.com/photos/ntenny/46048092055

Unsupervised CNN for Single View Depth
Estimation: Geometry to the Rescue

Ravi Garg, Vijay Kumar B G, Gustavo Carneiro, Ian Reid

1 Left Image e Predicted Inverse Depth
L,(x) = D(x) = fB/d(x)

/m
3 - Il(x)u
Inverse Warping ;
Reconstruction Error <« I,(x) = L(x+D(x))

Warp Image Right Image I,(x)
[(x)

Fig.1. We propose a stereopsis based auto-encoder setup: the encoder (Part 1) is a
traditional convolutional neural network with stacked convolutions and pooling layers
(See Figure 2) and maps the left image (/1) of the rectified stereo pair into its depth
map. Our decoder (Part 2) explicitly forces the encoder output to be disparities (scaled
inverse depth) by synthesizing a backward warp image (I,,) by moving pixels from right
image [> along the scan-line. We use the reconstructed output 7,, to be matched with
the encoder input (Part 3) via a simple loss. For end-to-end training, we minimize the
reconstruction loss with a simple smoothness prior on disparities which deals with the




Unsupervised CNN for Single View Depth
Estimation: Geometry to the Rescue

Ravi Garg, Vijay Kumar B G, Gustavo Carneiro, Ian Reid

3 woao = What if there’s a patch of

-‘ constant color?

Reconstruction Error



Unsupervised CNN for Single View Depth
Estimation: Geometry to the Rescue

Ravi Garg, Vijay Kumar B G, Gustavo Carneiro, Ian Reid

3 nw-nel = What if there’s a patch of

-‘ constant color?

Reconstruction Error

Solution: add Dirichlet
energy as a regularizer

IVD ()l



Caveat: disparity Is low-res

But we need to calculate I,(x + D(x))

Coarse Disparity 4x4 Convolution Upsampled Disparity

P — e __,..ZNI
M

Bilinear filter)

-

\ ]

2M

- \
V|- -

b

Convolution . . .
— — Finer Disparity
v/ M (initialized to
Pooling Layer - .
Output 2M

Fig. 2. Coarse-to-fine stereo with CNN with results on a sample validation instance:
We adapt the convolution based upsampling architecture proposed in [26] to mimic
the coarse-to-fine stereo estimations. Our upsampling filter is initialized with simple
bilinear interpolation kernel and we initialize the corresponding pooling layer contri-
bution by setting both bias and 1x1 convolution filter to be zero. The figure shows how
features coming from previous layers of the CNN (L3) combined with finer resolution
loss function generate better depthmaps at 44 x 172 from our bilinear upsampled initial
estimate of coarser prediction at 22 x 76.



Hi-res Depth Maps

'/:_:‘]
2 __
/i
.
L\
Il -
front view s

| output view 12/
side view e T - o multi-view depth &  optimized 3D surface surface
T multi-view decoder normal maps point cloud  reconstruction fine-tuning
Our method takes line drawings as input and converts them into multi-view surface depth and normals maps from several output viewpoints

@
f

input sketches encoder
via an encoder-multi-view-decoder architecture. The maps are fused into a coherent 3D point cloud, which is then converted into a surface mesh. Finally

Figure 1.
the mesh can be further fine-tuned to match the input drawings more precisely through geometric deformations

Predict: depth + normal map
— point cloud — mesh

“3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks” by Liu et al., 2017



Voxelization

3D-R2N2: A Unified Approach for Single and
Multi-view 3D Object Reconstruction

Christopher B. Choy Danfei Xu* JunYoung Gwak*
Kevin Chen Silvio Savarese

Stanford University
{chrischoy, danfei, jgwak, kchen92, ssilvio}@stanford.edu

T 3D Convolutional LSTM T views



| max-pooling>
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unpooling |

Unpooling Deconvolution




Accumulate information
from all views

I[dea: use a recurrent neural network (RNN)

Y, v, s
Wy Wy Wy

S WA . WG WG
W, W, W,

X, X, X3

https:/ /towardsdatascience.com /recurrent-neural-networks-d4642c9bc7ce

Hidden state allows to memorize info



Accumulate information
from all views

[dea: use a RNN) LSTM

t t |
N\ ( N\ ( )
-+ ? g — A -+
A ~
)_’_”L?J s T Vad

) &)

https: / /towardsdatascience.com /the-fall-of-rnn-Istm-2d1594c74ce0

Hidden state allows tol memorize info



https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0

Accumulate information
from all views

[dea: use a RNN) LSTM

New view — shows parts that were occluded — prediction mismatch

Update the LSTM states for the previously occluded sections

Retain the states of the other parts

https: / /towardsdatascience.com /the-fall-of-rnn-Istm-2d1594c74ce0

Hidden state allows to memorize info



https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0

Voxelization: issue

#occupied &
#total grid ’ '
Occupancy: 10.41% 5.09% 241%

Resolution: 32 64 128




Mesh as deformed template

Fig. 1: Given an annotated image collection of an object category, we learn a predictor f that can
map a novel image [ to its 3D shape, camera pose, and texture.

“Learning Category-Specific Mesh Reconstruction from Image Collections” by Kanazawa et al., 2018



Mesh as deformed template

Losses:

[
[ Predicted, GT
g 7T Mask:
(@] Mean Predicted 3D
Shape Shape keypoints \ — )‘
c
o o, °
=] " K int:
Encoder g AV P e —_ U éb s gl =l T
S : . ; ’/T( ooy )_ L
Q e
o
Texture

'Textu'r‘e FIo\)v

Fig. 2: Overview of the proposed framework. An image [ is passed through a convolutional
encoder to a latent representation that is shared by modules that estimate the camera pose, defor-
mation and texture parameters. Deformation is an offset to the learned mean shape, which when
added yield instance specific shapes in a canonical coordinate frame. We also learn correspon-
dences between the mesh vertices and the semantic keypoints. Texture is parameterized as an
UV image, which we predict through texture flow (see Section 2.3). The objective is to minimize
the distance between the rendered mask, keypoints and textured rendering with the correspond-
ing ground truth annotations. We do not require ground truth 3D shapes or multi-view cues for
training.



Differentiable renderers

p7/v2 [¢s.CV] 23 Jan 2019

Soft Rasterizer: Differentiable Rendering for
Unsupervised Single-View Mesh Reconstruction

Shichen Liu'?, Weikai Chen', Tianye Li'?, and Hao Li'??

'USC Institute for Creative Technologies
2University of Southern California
3Pinscreen

{lshiche:n, wechen, tli}@ict .usc.edu haofhao-1i.com

Abstract " Ing

Rendering is the process of generating 2D images from
3D assets, simulated in a virtual environment, typically with
a graphics pipeline. By inverting such renderer, one can

think of a learning approach to predict a 3D shape from
an input image. However, standard rendering pipelines
involve a fundamental discretization step called rasteriza-
tion, which prevents the rendering process to be differen-
tiable, hence able to be learned. We present the first non-
parametric and truly differentiable rasterizer based on sil-

houettes. Our method enables unsupervised learning for .y
high-quality 3D mesh reconstruction from a single image. Standard Rasterizer R*  A({D;})

Soft silhouette §

Silhouette §'




Differentiable renderers

p7v2 [cs.CV] 23 Jan 2019

Soft Rasterizer: Differentiable Rendering for
Unsupervised Single-View Mesh Reconstruction

Shichen Liu'?, Weikai Chen', Tianye Li'?, and Hao Li'??

'USC Institute for Creative Technologies

Enables unsupervised

leammg'

Rendering is the process of generating 21 images from
3D assets, simulated in a virtual environment, typically with
a graphics pipeline. By inverting such renderer, one can
think of a learning approach to predict a 3D shape from
an input image. However, standard rendering pipelines
involve a fundamental discretization step called rasteriza-
tion, which prevents the rendering process to be differen-
tiable, hence able to be learned. We present the first non-
parametric and truly differentiable rasterizer based on sil-
houettes. Our method enables unsupervised learning for
high-quality 3D mesh reconstruction from a single image.




Rendering

= projection + rasterization




Projection

Linear operation

Scree

B

X

O O
o O RO

P(x,y,z,1) = (

~N - O
S O O O




Rasterization

screen is discrete




Rasterization

Discrete /non-differentiable operation




Soft rasterizer

Relax /blur the discretization
~ distance between pixel and triangle?

D; = sigmoid <5ij —

| |

+1, if ith pixel is inside j*" triangle

dz(i,j)>




Soft rasterizer

Relax /blur the discretization
~ distance between pixel and triangle?

(a) ground truth (b)c = 0.01 (c)o=10.03

Figure 3: Example probability maps of a single triangle. (a):
definition of pixel-to-triangle distance; (b) and (c): proba-
bility maps generated with different o.



Reality check: colors et al.

\ertices

and attributes

—>

Vertex Shader

Modelview trandorm

Per-vertex attributes

Rasterization

Interpolation

Scanconversion >

Per-Sample Opeations
Depth test

Blending

Vertex Post-Processing
Viewport transorm

Clipping

Fragment Shader
Texturing/...

Lighting/shading

—» Famebuffer



Sample pipeline

Reconstructing a point cloud

| Input | Reconstructed 3D point cloud

A Point Set Generation Network for 3D Object Reconstruction from a Single Image by Fan, Su, Guibas, CVPR 2017



Sample pipeline

Reconstructing a point cloud

TESTING
Point Cloud
(X1, ¥1,21)
networ (xn; Yn Zn)

TRAINING

Render

(x'y, 3”1: z'y)
(x'2,¥'2,2'2)
(x,n» y,nr Z’n)
Ground Truth

Point Cloud
A Point Set Generation Network for 3D Object Reconstruction from a Single Image by Fan, Su, Guibas, CVPR 2017




Sample pipeline

Reconstructing a point cloud

TESTING
Point Cloud

(X1, ¥1,21)
networ (xn; Yn Zn)
1???

(x’1»3”1:Z’1)
(x'2,¥'2,2'2)

TRAINING

Render

(x,n» y,nr Z’n)
Ground Truth
Point Cloud

A Point Set Generation Network for 3D Object Reconstruction from a Single Image by Fan, Su, Guibas, CVPR 2017




Sample pipeline
Reconstructing a point cloud
TESTING

Point Cloud

(x1,Y1,21)

networ (xn; Yn Zn)

: 2?2
| How to choose error function/loss? |4

Render

(x'y, 3”1: z'y)
(x'2,¥'2,2'2)
(x,n» y,n: Z’n)
Ground Truth

Point Cloud
A Point Set Generation Network for 3D Object Reconstruction from a Single Image by Fan, Su, Guibas, CVPR 2017




Fooall!
Measuring error

« [y

How much did we distort the shape?

Option: Hausdorff distance sup inf d(z,y)
Ah(x,y)
= max{sup inf d(x,y),sup inf d(x,y)}

XEX EY yEY xeX

B

sup inf d(x
sup inf d(z,y)



| oss: Chamfer

Given two surfaces X, Y:

g6 - et 3 g
Chamfer( ) rjglellr)”x yllz + r){lé)r(l”x yll3
XEX yeY



Loss: Wasserstein
aka Earth Mover’'s Distance (EMD)

demp(X,Y) = min > [lx = ()|
X

¢P:X-Y

¢ is a bijection

Find optimal strategy of transporting
blue sand into green hole




Loss: Wasserstein
aka Earth Mover’'s Distance (EMD)

Doesn’t have to be
Euclidean

/

demp(X,Y) = min > [lx = ()|
X

¢P:X-Y

¢ is a bijection

Find optimal strategy of transporting
blue sand into green hole




Deformable Meshes

AtlasNet: A Papier-Maché Approach to Learning 3D Surface Generation

Thibault Groueix'. Matthew Fisher2, Vladimir G. Kim2, Bryan C. Russell?, Mathieu Aubry®
ILIGM (UMR 8049), Ecole des Ponts, UPE, 2Adobe Research

http://imagine.enpc.fr/~groueixt/atlasnet/

2D Image

R

R -
o
- ‘:.uﬂ‘:‘f”;"“;&‘ B

3D Point Cloud

(a) Possible Inputs  (b) Output Mesh from the 2D Image (c) Output Atlas (optimized) (d) Textured Output (e) 3D Printed Output

Figure 1. Given input as either a 2D image or a 3D point cloud (a), we automatically generate a corresponding 3D mesh (b) and its atlas
parameterization (c). We can use the recovered mesh and atlas to apply texture to the output shape (d) as well as 3D print the results (e).



AtlasNet

Learn Pg. (0,1)2 — 5S¢ C R3

min L(Sg, Starget) + AR(6)

Regularization
Chamfer or Earth-Mover distance

How to represent functions ¢g?



AtlasNet

Learn Pg. (0,1)2 — 5S¢ C R3
min L(Sg, Starget) + AR(6)

/

/ (

ReLU nonlinearities — Locally affine transformation
— Sp is a (locally) 2-manifold



AtlasNet: applications

14449

(a) Shape interpolation.

Reference Inferred Shape
object atlas correspondences

(b) Shape correspondences.



AtlasNet: [Imitations

Intersections are hard to detect




More exotic 3D representations

» Signed Distance Function (SDF)

DeepSDF: Learning Continuous Signed Distance Functions
for Shape Representation

Jeong Joon Park!3T  Peter Florence 237 Julian Straub®  Richard Newcombe®  Steven Lovegrove®

LUniversity of Washington ~ 2Massachusetts Institute of Technology ~ 3Facebook Reality Labs

Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks.
Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.



More exotic 3D representations

» Signed Distance Function (SDF)

DeepSDF: Learning Continuous Signed Distance Functions
for Shape Representation

FAC Decision
___ boundary
e  of implicit

- surface

L ] £
¢« SDF >0
'.

o e
@ SDF <0

Figure 2: Our DeepSDF representation applied to the Stanford
Bunny: (a) depiction of the underlying implicit surface SDF' = 0
trained on sampled points inside SDF' < 0 and outside SDF' > 0
the surface, (b) 2D cross-section of the signed distance field, (c)
rendered 3D surface recovered from SDF' = 0. Note that (b) and
(c) are recovered via DeepSDF.



More exotic 3D representations

» Signed Distance Function (SDF

Gradient of SDF at the
surface = normals!

Deep

L L
@ SDF <0

Figure 2: Our DeepSDF representation applied to the Stanford
Bunny: (a) depiction of the underlying implicit surface SDF' = 0
trained on sampled points inside SDF' < 0 and outside SDF' > 0
the surface, (b) 2D cross-section of the signed distance field, (c)
rendered 3D surface recovered from SDF' = 0. Note that (b) and
(c) are recovered via DeepSDF.



More exotic 3D representations

» Signed Distance Function (SDF)

* Occupancy

— Deep Neural Network

—— {0,1}

Is p inside or
outside 3D shape

“Occupancy Networks: Learning 3D Reconstruction in Function Space” by Mescheder et al., 2018



More exotic 3D representations

» Signed Distance Function (SDF)

* Occupancy
— Classifier!

|: "M.. . l!r 7 :- \\'u-r"-‘ N
"r-““ ot \/ A
L

(a) Voxel (b) Point (c) Mesh (d) Ours

Figure 1: Overview: Existing 3D representations discretize
the output space differently: (a) spatially in voxel represen-
tations, (b) in terms of predicted points, and (c) in terms of
vertices for mesh representations. In contrast, (d) we pro-
pose to consider the continuous decision boundary of a clas-
sifier fy (e.g., a deep neural network) as a 3D surface which
allows to extract 3D meshes at any resolution.

“Occupancy Networks: Learning 3D Reconstruction in Function Space” by Mescheder et al., 2018



More exotic 3D representations

» Signed Distance Function (SDF)
* Occupancy

i BOXC S? LLearmng Shape Abstractions by Assembling Volumetric Primitives

Shubham Tulsiani', Hao Su?, Leonidas J. Guibas?, Alexei A. Efros', Jitendra Malik'
University of California, Berkeley ~ 2Stanford University
'{shubhtuls, efros, malik}@eecs.berkeley.edu, *{haosu, guibas}@cs.stanford.edu




3D shape representations

Multiple Images
Voxelization
Deformation
Depth

Point Cloud
Component-based
SDF



Deformable Meshes

Multi-chart Generative Surface Modeling

Heli Ben-Hamu Haggai Maron Itay Kezurer Gal Avineri Yaron Lipman

Weizmann Institute of Science

Figure 1: Our method is able to learn shape distribution and generate unseen shapes. This figure shows 1024 human models
randomly generated by our method.

Abstract the method is demonstrated for the task of anatomic shape
generation including human body and bone (teeth) shape

1806.02143v3 [cs.CV] 3 Mar 2019

This paper introduces a 3D shape generative model generation.
based on deep neural networks. A new image-like (i.e.,
tensor) data representation for genus-zero 3D shapes is 1 Introduction
devised. Tt is hased on the ohservation that comnlicated

1v:

7
A\




Convolution for manifolds?

forward /inference

<€

backward /learning

l U U

D‘Ogb 21

)
s sk 50 B0

21



Learning on 3D geometry

FILTER

s | ;E\ = g | N

=
FILTER

\ %
=
l

i :

FILTER

Euclidean CNN

Geometric CNN

Fig. 5. [Illustration of the difference between classical CNN (left)
applied to a 3D shape (checkered surface) considered as a Euclidean
object, and a geometric CNN (right) applied intrinsically on the
surface. In the latter case, the convolutional filters (visualized as a
colored window) are deformation-invariant by construction.

From ‘Geometric Deep Learning: going beyond Euclidean data’ by Bronstein et al. 2017



Convolution Theorem
“Fourier transform of a convolution of two

signals is the pointwise product of their
Fourier transforms”

F{f g} =F{f} F{g}



Convolution Theorem

“Fourier transform of a convolution of two
signals is the pointwise product of their
Fourier transforms”

Point-wise multiplication

F{f »g} = F{if} -)i;”{g}

Convolution
(f * 9)(2) = j ) =
R



Convolution Theorem

“Fourier transform of a convolution of two
signals is the pointwise product of their
Fourier transforms”

F{f g} =F{f} F{g}

Fourier Transform

FIF@) = | FOe 20 dx = (£(x),e7275) = (f, ()
R



Convolution Theorem

“Fourier transform of a convolution of two
signals is the pointwise product of their
Fourier transforms”

Fourier basis

(F * D) = ) (£, $i)g, )s(x)

1=0

Fourier Series



Spectral convolution

Take this theorem as definition
Feurier Laplacian Eigenbasis

(F * D) = ) (£, $i)g, )s(x)

120



Spectral convolution

Take this theorem as definition
Feurier Laplacian Eigenbasis

(F * D) = ) (£, $i)g, )s(x)

120
fxg=o@ f)(@"g)

A = GADT



Spectral CNN

Spectral convolutional layer:

foutput = ReLU( CDGl,l’CDTfinput)

l”  (diagonal)
learnable
parameters

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun.
Spectral networks and locally connected networks on graphs,
Proc. ICLR, 2013.



Spectral CNN

Spectral convolutional layer:

Only makes sense within a
category of isometric shapes!

l”  (diagonal)
learnable
parameters

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun.
Spectral networks and locally connected networks on graphs,
Proc. ICLR, 2013.



Geodesic Convolution

Figure 1: Construction of local geodesic polar coordinates
on a manifold. Left: examples of local geodesic patches,
center and right: example of angular and radial weights vy,
v, respectively (red denotes larger weights).

Angular (geodesic given a direction)
and radial bins
(isocurve of geodesic distance — use Fast Marching)



Geodesic Convolution

Filters in polar coordinates a(8, 1)

Convolution:

(f xa)(z) = a6+ Af, fr)(Dl(:I:) £)(r,8)

a,r

Maps to geodesic polar coordinates



Geodesic Convolution

Ambiguity how to rotate the filter -
Try convolutions with all A8 + angular max pooling



Application:
Intrinsic Descriptors

FERRREIEEERREES filter bank 1 -
3 P filters :

max

Input M-dim LIN GC AMP Output Q-dim

Figure 3: The simple GCNNI1 architecture containing one convolutional layer applied to M = 150-dimensional geometry
vectors (input layer) of a human shape, to produce a () = 16-dimensional feature descriptor (output layer).

Apply to each vertex

input = all eigenvectors of the Laplacian



Heat kernel signature (HKS)

Wave kernel signature (WKS)

GCNN

Figure 4: Normalized Euclidean distance between the descriptor at a reference point on the shoulder (white sphere) and the
descriptors computed at the rest of the points for different transformations (shown left-to-right: near isometric deformations,
non-isometric deformations, topologlcal noise, geometrlc n01se uniform/non-uniform subsamplmg, mlssmg parts) Cold and
hot colors represe o o o o me o




PointNet

Input = point cloud (fixed # of pts)

PointNet
mug?
v table?
5 ¥
car?
Classification Part Segmentation ~ Semantic Segmentation

Figure 1. Applications of PointNet. We propose a novel deep net
architecture that consumes raw point cloud (set of points) without
voxelization or rendering. It is a unified architecture that learns
both global and local point features, providing a simple, efficient
and effective approach for a number of 3D recognition tasks.



Point clouds are...

« Unordered

— Nothing should change in the output if we
change points order

« Sampled from a surface
— Neighborhood matters

e Invariant under isometries



PointNet
permutation invariance

Symmetric functions:

flxq, ., x,) = f(xnl, . xnn)

e.g.
f(xl' ""xn) — 2 Xi

i
f(xq, ..., %) = max x;



PointNet
permutation invariance

f(x,xy,..05x,)=Yog(h(x,),...,h(x,)) is symmetric if & is symmetric

h
(1,2,3) — \ simple symmetric function

(1,1,1) — 8/7’
(23,2) — >‘* _'I

(2,3,4) — PointNet (vanilla)



PointNet
permutation invariance

Empirically, we use multi-layer perceptron (MLP) and max pooling:

h
(1,2,3) — wmLpP

(1,1,1) — wmp J Y

(2,3,2) — wmip - _bl

(2,3,4) — wmLP PointNet (vanilla)



DoiNtNet

INnvariance under rigid transforms

Another tiny net predicting canonical rotation

3

Data

(" )

T-Net
/ ke Y

transform 3
Qirams: 3x3
4 N
Matrix
i Mult. >
\_ v,
Transformed

Data



FIN



