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Background

• Neural networks
• CNNs
• Autoencoders



Background: standard CNNs

https://www.cc.gatech.edu/~hays/compvision/proj6/



Semi-Supervised Learning

“Semi-supervised learning using Gaussian fields and harmonic functions”
Zhu, Ghahramani, & Lafferty 2003



Semi-Supervised Technique

Dirichlet energy → Linear system of equations (Poisson)



Related Method

• Step 1:
Build k-NN graph

• Step 2:  
Compute p smallest Laplacian eigenvectors

• Step 3:
Solve semi-supervised problem in 
subspace

“Using Manifold Structure for Partially Labelled Classification”
Belkin and Niyogi; NIPS 2002



Manifold Regularization

“Manifold Regularization:  
A Geometric Framework for Learning from Labeled and Unlabeled Examples”

Belkin, Niyogi, and Sindhwani; JMLR 2006

Loss function Regularizer

Dirichlet energy



Examples of Manifold Regularization

• Laplacian-regularized least squares (LapRLS)

• Laplacian support vector machine (LapSVM)

“On Manifold Regularization”
Belkin, Niyogi, Sindhwani; AISTATS 2005



Tasks

• 3D reconstruction
• Shape retrieval
• Shape completion
• Shape interpolation
• Shape segmentation



ShapeNet



ShapeNet



Example task: 
3D reconstruction

Fixed size vector

Input
Image | Point Cloud | 

Mesh | …
Neural Network 3D output

Fixed size vector



3D reconstruction

Fixed size vector

Input
Image | Point Cloud | 

Mesh | …
Neural Network 3D output

Fixed size vector

How to represent 3D 
geometry?



Latent representation

“Multi-view 3D Models from Single Images with
a Convolutional Network” by Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox, 2016



Simplest: depth map





Multi-scale



Gaussian Markov Random Field

Want: depth ≈ linear function(features)
𝑑𝑖 1 ≈ 𝑥𝑖

𝑇𝜃

My depth ≈ depth of my neighbors
𝑑𝑖 𝑠 ≈ 𝑑𝑗 𝑠



Gaussian Markov Random Field

Normalizing
factor

Parameters

Features Depth (at scale)



Gaussian Markov Random Field

Parameters

Features Depth (at scale)

Find by minimizing negative log-likelihood of data:

min
𝜃,𝜎

−log 𝑃𝐺 𝑑 𝑋; 𝜃, 𝜎



Where to get depth maps?
Much easier: stereo images!

https://www.flickr.com/photos/ntenny/46048092055

https://www.flickr.com/photos/ntenny/46048092055


Almost autoencoder:



What if there’s a patch of 
constant color?



What if there’s a patch of 
constant color?

Solution: add Dirichlet 
energy as a regularizer

∇𝐷 𝑥 2



Caveat: disparity is low-res
But we need to calculate 𝐼2 𝑥 + 𝐷 𝑥



Hi-res Depth Maps

Predict: depth + normal map 
→ point cloud → mesh

“3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks” by Liu et al., 2017



Voxelization



Unpooling Deconvolution



Accumulate information 
from all views

Idea: use a recurrent neural network (RNN)

Hidden state allows to memorize info
https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce



Accumulate information 
from all views

Idea: use a (RNN) LSTM

Hidden state allows to memorize info
https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0

https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0


Accumulate information 
from all views

Idea: use a (RNN) LSTM

Hidden state allows to memorize info
https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0

New view → shows parts that were occluded → prediction mismatch

Update the LSTM states for the previously occluded sections

Retain the states of the other parts

https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0


Voxelization: issue



Mesh as deformed template

“Learning Category-Specific Mesh Reconstruction from Image Collections” by Kanazawa et al., 2018



Mesh as deformed template



Differentiable renderers



Differentiable renderers

Enables unsupervised 
learning!



Rendering

= projection + rasterization



Projection
Linear operation

Screen

x

y

z

𝑃 𝑥,𝑦, 𝑧, 1 =

1 0 0 0 𝑥
0 1 0 0 𝑦
0 0 1 0 𝑧
0 0 1/𝑑 0 1

=

𝑥
𝑦
𝑧
𝑧/𝑑



Rasterization
screen is discrete



Rasterization
Discrete/non-differentiable operation



Soft rasterizer

Relax/blur the discretization
~ distance between pixel and triangle?

𝐷𝑗
𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝛿𝑖𝑗 ⋅

𝑑2 𝑖, 𝑗

𝜎

+1, if 𝑖th pixel is inside 𝑗th triangle



Soft rasterizer

Relax/blur the discretization
~ distance between pixel and triangle?

𝐷𝑗
𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝛿𝑖𝑗 ⋅

𝑑2 𝑖, 𝑗

𝜎

+1, if 𝑖th pixel is inside 𝑗th triangle



Reality check: colors et al.

                                   

             

                     
         

        

              
                   

             

                             

                  

               

               

             

                

          

        



Sample pipeline
Reconstructing a point cloud

A Point Set Generation Network for 3D Object Reconstruction from a Single Image by Fan, Su, Guibas, CVPR 2017



Sample pipeline
Reconstructing a point cloud

A Point Set Generation Network for 3D Object Reconstruction from a Single Image by Fan, Su, Guibas, CVPR 2017

Deep neural 
network

𝑥1, 𝑦1, 𝑧1
(𝑥2, 𝑦2, 𝑧2)…
(𝑥𝑛, 𝑦𝑛, 𝑧𝑛)

Point Cloud

TRAINING

TESTING

Render

Sample 𝑥′1, 𝑦′1, 𝑧′1
(𝑥′2, 𝑦′2, 𝑧′2)…
(𝑥′𝑛, 𝑦′𝑛, 𝑧′𝑛)

Ground Truth
Point Cloud



Sample pipeline
Reconstructing a point cloud

A Point Set Generation Network for 3D Object Reconstruction from a Single Image by Fan, Su, Guibas, CVPR 2017

Deep neural 
network

𝑥1, 𝑦1, 𝑧1
(𝑥2, 𝑦2, 𝑧2)…
(𝑥𝑛, 𝑦𝑛, 𝑧𝑛)

Point Cloud

TRAINING

TESTING

Render

Sample 𝑥′1, 𝑦′1, 𝑧′1
(𝑥′2, 𝑦′2, 𝑧′2)…
(𝑥′𝑛, 𝑦′𝑛, 𝑧′𝑛)

Ground Truth
Point Cloud

???



Sample pipeline
Reconstructing a point cloud

A Point Set Generation Network for 3D Object Reconstruction from a Single Image by Fan, Su, Guibas, CVPR 2017

Deep neural 
network

𝑥1, 𝑦1, 𝑧1
(𝑥2, 𝑦2, 𝑧2)…
(𝑥𝑛, 𝑦𝑛, 𝑧𝑛)

Point Cloud

TRAINING

TESTING

Render

Sample 𝑥′1, 𝑦′1, 𝑧′1
(𝑥′2, 𝑦′2, 𝑧′2)…
(𝑥′𝑛, 𝑦′𝑛, 𝑧′𝑛)

Ground Truth
Point Cloud

???How to choose error function/loss?



Measuring error

𝑑 , =?

How much did we distort the shape?

Option: Hausdorff distance

𝑑𝐻 𝑥,𝑦

= max{sup
𝑥∈X

inf
𝑦∈Y

𝑑(𝑥, 𝑦) , sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦)}



Loss: Chamfer

Given two surfaces 𝑋, 𝑌:

𝑑𝐶ℎ𝑎𝑚𝑓𝑒𝑟 𝑋, 𝑌 = ෍

𝑥∈𝑋

min
𝑦∈𝑌

𝑥 − 𝑦 2
2 +෍

𝑦∈𝑌

min
𝑥∈𝑋

𝑥 − 𝑦 2
2



Loss: Wasserstein
aka Earth Mover’s Distance (EMD)

𝑑𝐸𝑀𝐷 𝑋, 𝑌 = min
𝜙:𝑋→𝑌

෍

𝑋

𝑥 − 𝜙(𝑥)

𝜙 is a bijection

Find optimal strategy of transporting 
blue sand into green hole



Loss: Wasserstein
aka Earth Mover’s Distance (EMD)

𝑑𝐸𝑀𝐷 𝑋, 𝑌 = min
𝜙:𝑋→𝑌

෍

𝑋

𝑥 − 𝜙(𝑥)

𝜙 is a bijection

Doesn’t have to be 
Euclidean

Find optimal strategy of transporting 
blue sand into green hole



Deformable Meshes



AtlasNet

Learn 𝜑𝜃: 0,1
2 → 𝑆𝜃 ⊂ ℝ3

min
𝜃

ℒ 𝑆𝜃 , 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 + 𝜆ℛ(𝜃)

Chamfer or Earth-Mover distance
Regularization

How to represent functions 𝜑𝜃?



AtlasNet

Learn 𝜑𝜃: 0,1
2 → 𝑆𝜃 ⊂ ℝ3

min
𝜃

ℒ 𝑆𝜃 , 𝑆𝑡𝑎𝑟𝑔𝑒𝑡 + 𝜆ℛ(𝜃)

ReLU nonlinearities → Locally affine transformation 
→ 𝑆𝜃 is a (locally) 2-manifold



AtlasNet: applications



AtlasNet: limitations

Intersections are hard to detect



More exotic 3D representations

• Signed Distance Function (SDF)



More exotic 3D representations

• Signed Distance Function (SDF)



More exotic 3D representations

• Signed Distance Function (SDF)
Gradient of SDF at the 

surface = normals!



More exotic 3D representations

• Signed Distance Function (SDF)
• Occupancy

𝑝 ∈ ℝ3 Deep Neural Network {0,1}

Is 𝑝 inside or 
outside 3D shape

“Occupancy Networks: Learning 3D Reconstruction in Function Space” by Mescheder et al., 2018



More exotic 3D representations

• Signed Distance Function (SDF)
• Occupancy

– Classifier!

Deep Neural Network

“Occupancy Networks: Learning 3D Reconstruction in Function Space” by Mescheder et al., 2018



More exotic 3D representations

• Signed Distance Function (SDF)
• Occupancy
• Boxes?



3D shape representations

• Multiple Images
• Voxelization
• Deformation
• Depth
• Point Cloud
• Component-based
• SDF



Deformable Meshes



Convolution for manifolds?



Learning on 3D geometry

From ‘Geometric Deep Learning: going beyond Euclidean data’ by Bronstein et al. 2017



Convolution Theorem

“Fourier transform of a convolution of two 
signals is the pointwise product of their 
Fourier transforms”

ℱ 𝑓 ∗ 𝑔 = ℱ 𝑓 ⋅ ℱ{𝑔}



Convolution Theorem

“Fourier transform of a convolution of two 
signals is the pointwise product of their 
Fourier transforms”

ℱ 𝑓 ∗ 𝑔 = ℱ 𝑓 ⋅ ℱ{𝑔}

Convolution

(𝑓 ∗ 𝑔)(𝑧) = න
ℝ

𝑓 𝑥 𝑔 𝑧 − 𝑥 𝑑𝑥

Point-wise multiplication



Convolution Theorem

“Fourier transform of a convolution of two 
signals is the pointwise product of their 
Fourier transforms”

ℱ 𝑓 ∗ 𝑔 = ℱ 𝑓 ⋅ ℱ{𝑔}

Fourier Transform

ℱ 𝑓 𝜔 = න
ℝ

𝑓 𝑥 𝑒−2𝜋𝑖𝑥𝜔𝑑𝑥 = 𝑓 𝑥 , 𝑒−2𝜋𝑖𝑥𝜔 = 𝑓,𝜙(𝜔)



Convolution Theorem

“Fourier transform of a convolution of two 
signals is the pointwise product of their 
Fourier transforms”

𝑓 ∗ 𝑔 𝑥 =෍

𝑖≥0

𝑓, 𝜙𝑖 𝑔, 𝜙𝑖 𝜙𝑖(𝑥)

Fourier Series

Fourier basis



Spectral convolution

Take this theorem as definition

𝑓 ∗ 𝑔 𝑥 =෍

𝑖≥0

𝑓, 𝜙𝑖 𝑔, 𝜙𝑖 𝜙𝑖(𝑥)

Fourier Laplacian Eigenbasis



Spectral convolution

Take this theorem as definition

𝑓 ∗ 𝑔 𝑥 =෍

𝑖≥0

𝑓, 𝜙𝑖 𝑔, 𝜙𝑖 𝜙𝑖(𝑥)

Fourier Laplacian Eigenbasis

𝑓 ∗ 𝑔 = Φ Φ𝑇𝑓 Φ𝑇𝑔

Δ = ΦΛΦ𝑇



Spectral CNN

Spectral convolutional layer:

𝑓𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝐿𝑈(෍

𝑙′

Φ𝐺𝑙,𝑙′Φ
𝑇𝑓𝑖𝑛𝑝𝑢𝑡)

(diagonal) 
learnable 

parameters

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. 
Spectral networks and locally connected networks on graphs,

Proc. ICLR, 2013.



Spectral CNN

Spectral convolutional layer:

𝑓𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝐿𝑈(෍

𝑙′

Φ𝐺𝑙,𝑙′Φ
𝑇𝑓𝑖𝑛𝑝𝑢𝑡)

(diagonal) 
learnable 

parameters

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. 
Spectral networks and locally connected networks on graphs,

Proc. ICLR, 2013.

Only makes sense within a 
category of isometric shapes!



Geodesic Convolution

Angular (geodesic given a direction)
and radial bins 

(isocurve of geodesic distance → use Fast Marching)



Geodesic Convolution

Filters in polar coordinates 𝑎(𝜃, 𝑟)

Convolution:

Maps to geodesic polar coordinates



Geodesic Convolution

Ambiguity how to rotate the filter →
Try convolutions with all Δ𝜃 + angular max pooling 



Application: 
Intrinsic Descriptors

Apply to each vertex 
input = all eigenvectors of the Laplacian



Application: 
Intrinsic Descriptors



PointNet

Input = point cloud (fixed # of pts)



Point clouds are…

• Unordered
– Nothing should change in the output if we 

change points order

• Sampled from a surface
– Neighborhood matters

• Invariant under isometries



PointNet
permutation invariance

Symmetric functions:

𝑓 𝑥1, … , 𝑥𝑛 = 𝑓 𝑥𝜋1 , … , 𝑥𝜋𝑛

e.g.

𝑓 𝑥1, … , 𝑥𝑛 =෍

𝑖

𝑥𝑖

𝑓(𝑥1, … , 𝑥𝑛) = max
𝑖

𝑥𝑖



PointNet
permutation invariance



PointNet
permutation invariance



PointNet
invariance under rigid transforms

Another tiny net predicting canonical rotation




