IFT 6113 BACKGROUND: LINEAR ALGEBRA AND OPTIMIZATION

http://tiny.cc/6113

Mikhail Bessmeltsev

MOTIVATION

Numerical problems are everywhere in geometric modeling!

Quick summary!

Mostly for common ground: You may already know this material. First half is important; remainder summarizes interesting recent tools.

OUR BIAS

Numerical analysis is a <u>huge</u> field.

EXAMPLES

How to flatten a mesh?

"Mesh Parameterization: Theory and Practice" by Kai Hormann, Bruno Lévy, Alla Sheffer

Credit: Hans-Christian Ebke

EXAMPLES

How to flatten a mesh?

"Boundary First Flattening" by Rohan Sawhney and Keenan Crane

EXAMPLES

How to animate a character?

"Linear Subspace Design for Real-Time Shape Deformation" by Yu Wang, Alec Jacobson, Jernej Barbič, Ladislav Kavan

EXAMPLES

How to animate a character?

 $\min_{x_i, y_i \in \mathbb{R}^2} f(x_1, y_1, \dots, x_n, y_n)$ s.t. $x_i - x'_i = 0$ $j \in J$ $y_j - y_i' = 0$ Known positions Triangle Some distortion? smoothness?

Optimized function (Energy)

 $\min_{x \in \mathbb{R}^n} f(x)$ s.t. g(x) = 0 $h(x) \ge 0$

 $\min_{x\in\mathbb{R}^n}f(x)$ Equality constraints s.t. g(x) = 0 $h(x) \geq 0$

Inequality constraints

EXAMPLES

$Ax = b \quad \leftrightarrow \quad \min_{x \in \mathbb{R}^n} ||Ax - b||_2^2$

EXAMPLES $\begin{array}{l} \max_{x \in \mathbb{R}^{n}} \|Ax\|_{2}^{2} \\ Ax = \lambda x &\leftrightarrow \\ \text{s.t. } \|x\| - 1 = 0 \end{array}$

ROUGH PLAN

- (intro) Matrices and Eigenvalues
- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

ROUGH PLAN

- (intro) Matrices and Eigenvalues
- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

How are those matrices special?

$$\begin{pmatrix} 1 & & \\ & -2 & \\ & & 5 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & -1 & -2 \\ 1 & 0 & 4 \\ 2 & -4 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \cos(0.4) & -\sin(0.4) & 0\\ \sin(0.4) & \cos(0.4) & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 3\\ 0 & 1 & 4\\ & & 1 \end{pmatrix}$$

How are those matrices special?

What is the geometric meaning of those?

$$\begin{pmatrix} 1 & & \\ & -2 & \\ & & 5 \end{pmatrix}$$
Diagonal

$$\begin{pmatrix} \cos(0.4) & -\sin(0.4) & 0\\ \sin(0.4) & \cos(0.4) & 0\\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 3\\ 0 & 1 & 4\\ & 1 \end{pmatrix}$$

$$& Orthogonal \\ A^{-1} = A^T \qquad Um something?$$

INTRO TO INTRO

What is the geometric meaning of those?

$$\begin{pmatrix} 1 & & \\ & -2 & \\ & & 5 \end{pmatrix}$$

Non-uniform scaling

$$\begin{pmatrix} \cos(0.4) & -\sin(0.4) & 0\\ \sin(0.4) & \cos(0.4) & 0\\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 3\\ 0 & 1 & 4\\ & & 1 \end{pmatrix}$$
Rotation Translation in 2D*

Eigenvalues and eigenvectors

$$Ax = \lambda x$$
 discrete

or

$\mathcal{L}[f(x)] = \lambda f(x)$ continuous

- Geometric transformations
- Linear operators on functions

EIGENVECTORS/VALUES

Geometric meaning?

Vectors which only scale

MATRIX IS POSITIVE DEFINITE $A \ge 0$ \Leftrightarrow

All eigenvalues are nonnegative

Geometric meaning?

ROUGH PLAN

- (intro) Matrices and Eigenvalues
- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

VECTOR SPACES AND LINEAR OPERATORS

$\mathcal{L}[\vec{x} + \vec{y}] = \mathcal{L}[\vec{x}] + \mathcal{L}[\vec{y}]$ $\mathcal{L}[c\vec{x}] = c\mathcal{L}[\vec{x}]$

ABSTRACT EXAMPLE

 $C^{\infty}(\mathbb{R})$

 $\mathcal{L}[f] := df/dx$

Eigenvectors?

IN FINITE DIMENSIONS

LINEAR SYSTEM OF EQUATIONS

Simple "inverse problem"

COMMON STRATEGIES

Gaussian elimination

 $- O(n^3)$ time to solve Ax=b or to invert

- **But:** Inversion is unstable and slower!
- Never ever compute A⁻¹ if you can avoid it.

SIMPLE EXAMPLE

 $\frac{d^2f}{dr^2} = g, f(0) = f(1) = 0$

STRUCTURE?

LINEAR SOLVER CONSIDERATIONS

- Never construct A⁻¹ explicitly (if you can avoid it)
- Added structure helps <u>Sparsity</u>, symmetry, positive definiteness, bandedness

$inv(A)*b \ll (A'*A) \setminus (A'*b) \ll A \setminus b$

LINEAR SYSTEMS: SOLVERS

• **Direct** (explicit matrix)

- Dense: Gaussian elimination/LU, QR for leastsquares
- **Sparse:** Reordering (SuiteSparse, Eigen)
- Iterative (apply matrix repeatedly)
 - Positive definite: Conjugate gradients
 - Symmetric: MINRES, GMRES
 - Generic: LSQR
GENERIC ADVICE

Generic tools are often not too effective!

GENERIC ADVICE

Try the simplest solver first.

VERY COMMON: SPARSITY

FOR IFT 6113

- No need to implement a linear solver
- If a matrix is sparse, your code should store it as a sparse matrix!

Eigen 3.3.5			Q Search
Overview Getting started Chapters	Sparse matrix manipulations Sparse linear algebra Manipulating and solving sparse problems involves various modules which are summarized below:		
 Dense many and analy manipulation Dense linear problems and decompositio Sparse linear algebra 			
Sparse matrix manipulations	Module	Header file	Contents
Solving Sparse Linear Systems Matrix-free solvers	SparseCore	<pre>#include <eigen sparsecore=""></eigen></pre>	SparseMatrix and SparseVector classes, matrix assembly, basic sparse linear algebra (including sparse triangular solvers)
Quick reference guide for sparse matr	SparseCholesky	<pre>#include <eigen sparsecholesky=""></eigen></pre>	Direct sparse LLT and LDLT Cholesky factorization to solve sparse self-adjoint positive definite problems
Geometry	SparseLU	<pre>#include<eigen sparselu=""></eigen></pre>	Sparse LU factorization to solve general square sparse systems
Extending/Customizing Eigen General tonics	SparseQR	<pre>#include<eigen sparseqr=""></eigen></pre>	Sparse QR factorization for solving sparse linear least-squares problems
Table of contents	IterativeLinearSolvers	<pre>#include <eigen iterativelinearsolvers=""></eigen></pre>	Iterative solvers to solve large general linear square problems (including self-adjoint positive definite problems)
	Sparse	<pre>#include <eigen sparse=""></eigen></pre>	Includes all the above modules
	Sparse matrix format In many applications (e.g., finite element methods) it is common to deal with very large matrices where only a few coefficients are different from zero. In such cases, memory consumption can be reduced and performance increased by using a specialized		
↓ Sparse matrix format ↓ First example	representation storing only the nonzero coefficients. Such a matrix is called a sparse matrix.		
 Une SparseMatrix class Uniting a sparse matrix Supported operators and functions Basic operations Matrix products Block operations 	The SparseMatrix class		
	The class SparseMatrix is the main sparse matrix representation of Eigen's sparse module; it offers high performance and low memory usage. It implements a more versatile variant of the widely-used Compressed Column (or Row) Storage scheme. It consists of four compact arrays:		
Triangular and selfadjoint views			

https://eigen.tuxfamily.org/dox/group__TutorialSparse.html

ROUGH PLAN

- (intro) Matrices and Eigenvalues
- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

UNCONSTRAINED OPTIMIZATION

Trivial when f(x) is linear

Easy when f(x) is quadratic

Hard in case of generic non-linear.

$$f(x, y) = 3x^2 - y$$
$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (6x, -1)$$

Geometric meaning?

Gradient

$$\rightarrow \nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$$

 $f:\mathbb{R}^n\to\mathbb{R}$

Gradient

https://en.wikipedia.org/?title=Gradient

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Jacobian

$$f: \mathbb{R}^n \to \mathbb{R} \to H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

$$f(x) \approx f(x_0) + \nabla f(x_0)^\top (x - x_0) + (x - x_0)^\top H f(x_0) (x - x_0)$$

http://math.etsu.edu/multicalc/prealpha/Chap2/Chap2-5/10-3a-t3.gif

Critical point

https://en.wikipedia.org/wiki/Convex_function

CONVEX FUNCTIONS $H(x) \ge 0$

https://en.wikipedia.org/wiki/Convex_function

SPECIAL CASE: LEAST-SQUARES

 $\min_{x} \frac{1}{2} \|Ax - b\|_{2}^{2}$

 $\rightarrow \min_{x} \frac{1}{2} x^{\top} A^{\top} A x - b^{\top} A x + \|b\|_{2}^{2}$

 $\implies A^{\top}Ax = A^{\top}b$

Normal equations (better solvers for this case!)

USEFUL DOCUMENT

The Matrix Cookbook Petersen and Pedersen

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf

UNCONSTRAINED OPTIMIZATION

BASIC ALGORITHMS

Gradient descent

BASIC ALGORITHMS

$$egin{aligned} &\lambda_0 = 0, \lambda_s = rac{1}{2}(1 + \sqrt{1 + 4\lambda_{s-1}^2}), \gamma_s = rac{1 - \lambda_2}{\lambda_{s+1}} \ &y_{s+1} = x_s - rac{1}{eta}
abla f(x_s) \ &x_{s+1} = (1 - \gamma_s) y_{s+1} + \gamma_s y_s \end{aligned}$$

Quadratic convergence on convex problems! (Nesterov 1983)

A very cool intro: <u>https://distill.pub/2017/momentum/</u>

Accelerated gradient descent

BASIC ALGORITHMS

 $x_{k+1} = x_k - [Hf(x_k)]^{-1} \nabla f(x_k)$

Newton's Method

- (Often sparse) approximation from previous samples and gradients
- Inverse in closed form!

Quasi-Newton: BFGS and friends

EXAMPLE: SHAPE INTERPOLATION

Figure 5: Interpolation and extrapolation of the yellow example poses. The blending weights are 0, 0.35, 0.65, 1.0, and 1.25.

Fröhlich and Botsch. "Example-Driven Deformations Based on Discrete Shells." CGF 2011.

INTERPOLATION PIPELINE

Roughly:

1. Linearly interpolate edge lengths and dihedral angles.

$$\ell_e^* = (1-t)\ell_e^0 + t\ell_e^1$$
$$\theta_e^* = (1-t)\theta_e^0 + t\theta_e^1$$

2. Nonlinear optimization for vertex positions. $\min_{x_1,...,x_m} \lambda \sum w_e (\ell_e(x) - \ell_e^*)^2$

е

e

Sum of squares: Gauss-Newton

$$+\mu \sum w_b (\theta_e(x) - \theta_e^*)^2$$

SOFTWARE

- Matlab: fminunc or minfunc
- C++: libLBFGS, dlib, others

Typically provide functions for function and gradient (and optionally, Hessian).

Try several!

SOME TRICKS

Lots of small elements: $||x||_2^2 = \sum_i x_i^2$ Lots of zeros: $||x||_1 = \sum_i |x_i|$ Uniform norm: $||x||_{\infty} = \max_i |x_i|$ Low rank: $||X||_* = \sum_i \sigma_i$ Mostly zero columns: $||X||_{2,1} = \sum_j \sqrt{\sum_i x_{ij}^2}$ Smooth: $\int \|\nabla f\|_2^2$ Piecewise constant: $\int \|\nabla f\|_2$???: Early stopping Regularization

SOME TRICKS

Original

Blurred

Multiscale/graduated optimization

ROUGH PLAN

- (intro) Matrices and Eigenvalues
- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

LAGRANGE MULTIPLIERS: IDEA

LAGRANGE MULTIPLIERS: IDEA

LAGRANGE MULTIPLIERS: IDEA

USE OF LAGRANGE MULTIPLIERS

Turns constrained optimization into unconstrained root-finding.

$$\nabla f(x) = \lambda \nabla g(x)$$
$$g(x) = 0$$

QUADRATIC WITH LINEAR EQUALITY

$$\min_{x} \quad \frac{1}{2}x^{\top}Ax - b^{\top}x + c \\ \text{s.t.} \quad Mx = v$$

(assume A is symmetric and positive definite)

QUADRATIC WITH LINEAR EQUALITY

MANY OPTIONS

• Reparameterization Eliminate constraints to reduce to unconstrained case

Newton's method

Approximation: quadratic function with linear constraint

Penalty method

Augment objective with barrier term, e.g. $f(x) + \rho |g(x)|$

EXAMPLE: SYMMETRIC EIGENVECTORS

$$f(x) = x^{\top} A x \implies \nabla f(x) = 2Ax$$
$$g(x) = \|x\|_2^2 \implies \nabla g(x) = 2x$$
$$\implies Ax = \lambda x$$

EXAMPLE: MESH EMBEDDING

G. Peyré, mesh processing course slides

LINEAR SOLVE FOR EMBEDDING

 $x_i \in \mathbb{R}^2$

 $\min_{\substack{x_1, \dots, x_{|V|} \\ \text{s.t.} \quad x_v \text{ fixed } \forall v \in V_0 } } \sum_{\substack{(i,j) \in E \\ v \in V_0}} w_{ij} \| x_i - x_j \|_2^2$

- $w_{ij} \equiv 1$: Tutte embedding
- *w_{ij}* from mesh: Harmonic embedding

Assumption: w symmetric.

$$\min_{\substack{x_1, \dots, x_{|V|} \\ \text{s.t.} }} \sum_{\substack{(i,j) \in E \\ x_v \text{ fixed } \forall v \in V_0 }} w_{ij} \|x_i - x_j\|_2^2$$

What if
$$V_0 = \{\}$$
?

NONTRIVIALITY CONSTRAINT

$$\left\{\begin{array}{cc} \min_{x} & \|Ax\|_{2} \\ \text{s.t.} & \|x\|_{2} = 1 \end{array}\right\} \mapsto A^{\top}Ax = \lambda x$$

Prevents trivial solution $x \equiv 0$.

Extract the smallest eigenvalue.

Mullen et al. "Spectral Conformal Parameterization." SGP 2008.

$$\min_{\substack{u\\ u^{\top}Be=0 \\ u^{\top}Bu=1}} u^{\top} L_C u \quad \longleftrightarrow \quad L_c u = \lambda B u$$

BASIC IDEA OF EIGENALGORITHMS

$$\begin{aligned} A\vec{v} &= c_1 A\vec{x}_1 + \dots + c_n A\vec{x}_n \\ &= c_1 \lambda_1 \vec{x}_1 + \dots + c_n \lambda_n \vec{x}_n \text{ since } A\vec{x}_i = \lambda_i \vec{x}_i \\ &= \lambda_1 \left(c_1 \vec{x}_1 + \frac{\lambda_2}{\lambda_1} c_2 \vec{x}_2 + \dots + \frac{\lambda_n}{\lambda_1} c_n \vec{x}_n \right) \\ A^2 \vec{v} &= \lambda_1^2 \left(c_1 \vec{x}_1 + \left(\frac{\lambda_2}{\lambda_1} \right)^2 c_2 \vec{x}_2 + \dots + \left(\frac{\lambda_n}{\lambda_1} \right)^2 c_n \vec{x}_n \right) \\ &\vdots \\ A^k \vec{v} &= \lambda_1^k \left(c_1 \vec{x}_1 + \left(\frac{\lambda_2}{\lambda_1} \right)^k c_2 \vec{x}_2 + \dots + \left(\frac{\lambda_n}{\lambda_1} \right)^k c_n \vec{x}_n \right). \end{aligned}$$

TRUST REGION METHODS

Example: Levenberg-Marquardt

EXAMPLE: POLYCUBE MAPS

Huang et al. "L1-Based Construction of Polycube Maps from Complex Shapes." TOG 2014.

$$\begin{aligned} & \underset{X \in \mathcal{A}(b_i; X) \\ \text{min}_X \sum_{b_i} & \mathcal{A}(b_i; X) \| n(b_i; X) \|_1 \\ & \text{s.t.} & \sum_{b_i} \mathcal{A}(b_i; X) = \sum_{b_i} \mathcal{A}(b_i; X_0) \end{aligned}$$

Note: Final method includes more terms!

Preserve area

Aside: Convex Optimization Tools

Try lightweight options

ITERATIVELY REWEIGHTED LEAST SQUARES

Repeatedly solve linear systems

ALTERNATING PROJECTION

p

 p_2

 p_0

 p_1

min $d(p, p_0)$

s.t. $p \in \mathcal{C}_1 \cap \mathcal{C}_2 \cap \cdots \cap \mathcal{C}_k$

 \mathcal{C}_2

 \mathcal{C}_1

AUGMENTED LAGRANGIANS

$$\begin{array}{ll} \min_{x} & f(x) \\ \text{s.t.} & g(x) = 0 \\ & \downarrow \\ \min_{x} & f(x) + \frac{\rho}{2} \|g(x)\|_{2}^{2} \end{array} \xrightarrow{\text{Does nothing when}} \\ \text{s.t.} & g(x) = 0 \end{array}$$

Add constraint to objective

ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM) $\min_{x,z} f(x) + g(z)$ s.t. Ax + Bz = c

 $\Lambda_{\rho}(x,z;\lambda) = f(x) + g(z) + \lambda^{\top}(Ax + Bz - c) + \frac{\rho}{2} \|Ax + Bz - c\|_{2}^{2}$

$$\begin{aligned} x \leftarrow \arg \min_{x} \Lambda_{\rho}(x, z, \lambda) \\ z \leftarrow \arg \min_{z} \Lambda_{\rho}(x, z, \lambda) \\ \lambda \leftarrow \lambda + \rho(Ax + Bz - c) \end{aligned}$$

https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf

FRANK-WOLFE

To minimize
$$f(x)$$
 s.t. $x \in \mathcal{D}$:
 $s_k \leftarrow \begin{cases} \arg \min_s \ s^\top \nabla f(x_k) \\ \text{s.t.} \ s \in \mathcal{D} \end{cases}$
 $\gamma \leftarrow \frac{2}{k+2}$
 $x_{k+1} \leftarrow x_k + \gamma(s_k - x_k)$

https://en.wikipedia.org/wiki/Frank%E2%80%93Wolfe_algorithm

Linearize objective, preserve constraints

ROUGH PLAN

- (intro) Matrices and Eigenvalues
- Linear problems
- Unconstrained optimization
- Equality-constrained optimization
- Variational problems

VARIATIONAL CALCULUS: BIG IDEA

Sometimes your unknowns are not numbers!

Can we use calculus to optimize anyway?

ON THE BOARD

 $\min_{f} \int_{\Omega} \|\vec{v}(x) - \nabla f(x)\|_{2}^{2} d\vec{x}$

 $\min_{\int_{\Omega} f(x)^2 d\vec{x}=1} \int_{\Omega} \|\nabla f(x)\|_2^2 d\vec{x}$

GÂTEAUX DERIVATIVE $d\mathcal{F}[u;\psi] := \frac{d}{dh}\mathcal{F}[u+h\psi]|_{h=0}$

Vanishes for all ψ at a critical point!

Analog of derivative at u in ψ direction