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MOTIVATION

Numerical problems are everywhere
in geometric modeling!

Quick summary!

Mostly for common ground: You may already know this material.
First half is important; remainder summarizes interesting recent tools.



OUR BIAS

Patterns, algorithms, & examples
common in geometry.
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Numerical analysis is a huge field.
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EXAMPLES

How to flatten a mesh?

ANV,
v = NN =N

Object space (3D) Texture space (2D)

“Mesh Parameterization: Theory and Practice” by Kai Hormann, Bruno Lévy, Alla Sheffer



E Credit: Hans-Christian Ebke




EXAMPLES

How to flatten a mesh?

min _ [ (Uq, V1, ., Uy, Un)

U;,v;ERA

Fit a target
2D shape?

Triangle
distortion?

More sharp
corners?




mipimal_area
distortion

'targct shape

Sharp % .

uniformization

cone
singularities

direct editing

“Boundary First Flattening” by Rohan Sawhney and Keenan Crane



EXAMPLES

How to animate a character?

rest pose LBS with our method
[Jacobson et al. 2011]

“Linear Subspace Design for Real-Time Shape Deformation” by Yu Wang, Alec Jacobson, Jernej Barbic, Ladislav Kavan



EXAMPLES

How to animate a character?

min f(x1;)71; ---;xn::Vn)
X;,ViERZ

, —
S.t. x j T X = jeJ
P Known positions
Yi = Vi =
Triangle Some

distortion? smoothness?




min f(x)

xeRM
s.t.g(x) =0
h(x) =0




Optimized function
(Energy)
min [ (x)

x€ERMN
s.t.g(x) =0
h(x) =0



)
s.t. g(x) =0
h(x) =0




min f(x)
s.t.g(x) =0
h(x) =0

[nequality
constraints




Ax

EXAMPLES

min ||Ax — b||?
xEIRnH B



EXAMPLES

min || Ax||
Ax = Ax XER™

s.t. ||x|[—1=0
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MATRICES

How are those matrices special?

1 1 -1 0 0 -1 -2
( —2 ) (—1 2 0) (1 0 4 )
5 0 0 5 2 -4 0

cos(0.4) —sin(0.4) 0
sin(0.4) cos(04) O
0 0 1



MATRICES

How are those matrices special?

1 1 -1 0 0 -1 -2
( —2 ) -1 2 0 (1 0 4 )
5 0 0 5 2 —4 0

Diagonal Symmetric Skew-symmetric

A=AT AT = -4
cos(0.4) —sin(0.4) 0
sin(0.4) cos(04) O

1 0 3
0O 1 4
0 0 1 1

Orthogonal Um something?
A—l — AT



MATRICES

What is the geometric meaning of those?

(=)

Diagonal
cos(0.4) —sin(0.4) 0 1 0 3
sin(0.4) cos(04) O ( 0 1 4)
0 0 1 1
Orthogonal Um something?

A—l — AT



INTRO TO INTRO

What is the geometric meaning of those?

[ =)

Non-uniform scaling

cos(0.4) —sin(0.4) 0
sin(0.4) cos(04) O

1 0 3
0O 1 4
0 0 1 1

Rotation Translation in 2D*



MATRICES

Eigenvalues and eigenvectors

Ax = Ax discrete

or

L[f(X)] — Af(X) continuous



MATRICES

« Geometric transformations
 Linear operators on functions



EIGENVECTORS/VALUES

Geometric meaning?

Vectors which only scale




MATRIX IS POSITIVE DEFINITE
AZz0
&
All eigenvalues are nonnegative



min f(x)

xeRM
s.t.g(x) =0
h(x) =0
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VECTOR SPACES AND
LINEAR OPERATORS

LT+ y] = L|Z]+ Ly
Llct| = cL|T]



ABSTRACT EXAMPLE

C*(R)
LIf) = /e

Eigenvectors?




IN FINITE DIMENSIONS

A T
S S~

matrix vector

r— Axr
R,_/

linear operator



LINEAR SYSTEM OF
EQUATIONS

|
Sl

A T

Simple “inverse problem”



COMMON STRATEGIES

« Gaussian elimination
— O(n?®) time to solve Ax=b or to invert

« But: Inversion is unstable and slower!

« Never ever compute A if you can avoid it.



SIMPLE EXAMPLE

d2
d—;;:g,f(O):f(l):()
1
-2 1 f1
1 -2 1 £

1 -2 1 £

g1
g2

9n



STRUCTURE?



LINEAR SOLVER
CONSIDERATIONS

- Never construct A1 explicitly
(if you can avoid it)

» Added structure helps
Sparsity, symmetry, positive definiteness,
bandedness

inv(A)*b < (A’*A)\ (A’xb) < A\Db



LINEAR SYSTEMS: SOLVERS

» Direct (explicit matrix)
— Dense: Gaussian elimination /LU, QR for least-
squares

— Sparse: Reordering (SuiteSparse, Eigen)

- Iterative (apply matrix repeatedly)
— Positive definite: Conjugate gradients
— Symmetric: MINRES, GMRES
— Generic: LSQR



GENERIC ADVICE

Generic tools are often not too effective!



GENERIC ADVICE

Try the
simplest solver first.



VERY COMMON: SPARSITY

Induced by the connectivity of
the triangle mesh.

Z;E
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Iteration of CG has local effect
= Precondition!




FOR IFT 6113

« No need to implement a linear solver

- If a matrix is sparse, your code shoul

store it as a sparse matrix!
E Eigen 33.5

Overview

Sparse matrix manipulations

Sparse linear algebra

Getting started
Chapters
Dense matrix and array manipulation

Dense linear problems and decompositig| - Manipulating and solving sparse problems involves various modules which are summarized below:
Sparse linear algebra

Sparse matrix manipulations. Module Header file Contents

Solving Sparse Linear Systems

SparseCore #include <Eigen/SparseCore> SparseMatrix and SparseVector classes, matrix assembly, basic sparse linear algebra (including sparse triangular
Matrix-free solvers
solvers)
Reference
Quick reference guide for sparse matr| | SParseCholesky #include <Eigen/SparseCholesky> Direct sparse LLT and LDLT Cholesky factorization to solve sparse self-adjoint positive definite problems
Geometry SparseLU #include<Eigen/SparselU> Sparse LU factorization to solve general square sparse systems
Extending/Customizing Eigen L B .
- - SparseQR #include<Eigen/SparseQR> Sparse QR factorization for solving sparse linear least-squares problems
eneral topics
Class List IterativeLinearSolvers #include <Eigen/IterativelinearSolvers> lterative solvers to solve large general linear square problems (including self-adjoint positive definite problems)
Sparse #include <Eigen/Sparse| Includes all the above modules

Sparse matrix format

In many applications (e.g., finite element methods) it is common to deal with very large matrices where only a few coefficients are

c . different from zero. In such cases, memory consumption can be reduced and performance increased by using a specialized
parse matrix format

First example representation storing only the nonzero coefficients. Such a matrix is called a sparse matrix.

Table of contents

The SparseMatrix class )
. The SparseMatrix class
Filling a sparse matrix

Supported operators and functions . ) ) . .
o i The class SparseMatrix is the main sparse matrix representation of Eigen's sparse module; it offers high performance and low

A memory usage. It implements a more versatile variant of the widely-used Compressed Column (or Row) Storage scheme. It consists of
Block operations four compact arrays:

Basic operations

Triangular and selfadjoint views -

Generated on Mon Aug 27 2018 06:59:39 for Eigen by (m)x’y‘ &) 1813

https:/ /eigen.tuxfamily.org /dox /group__ TutorialSparse.html

o Unlaar s etaras tha caafficiant vnliae of tha nan zarae



ROUGH PLAN

« Unconstrained optimization
» Equality-constrained optimization

» Variational problems



UNCONSTRAINED
OPTIMIZATION

min f(x)

xXERN

Trivial when f(x) is linear

Easy when f(x) is quadratic

‘ Hard in case of generic non-linear.




UNCONSTRAINED
OPTIMIZATION

min f(x)

xXERN
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NOTIONS FROM CALCULUS

f(X,y) — 3X2 — Yy
af d
v/ = (aﬁa]yc) = (6% —1)

Geometric meaning?

Gradient



NOTIONS FROM CALCULUS
f:R"—=R
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Gradient



NOTIONS FROM CALCULUS

f:R" =R
([ Of Of o f
V= (axljaxzj""ﬁxn)

https:/ /en.wikipedia.org /?title=Gradient

Gradient



NOTIONS FROM CALCULUS

Jacobian



NOTIONS FROM CALCULUS

f(z)
http:/ /math.etsu.edu/multicalc /prealpha/Chap2 /Chap2-5 /10-3a-t3.gif

Hessian



OPTIMIZATION TO ROOT-
FINDING

Viiz)=0

(unconstrained

addle point

Local max

| Local min
Xz

Critical point



CONVEX FUNCTIONS

f"(x) >0

tf (z1) + (1 =) f (22)

f(trr + (1 —t)x2) >

T try + (1 —t)xy T2

https:/ /en.wikipedia.org /wiki /Convex_function



CONVEX FUNCTIONS
H(x)=0

https:/ /en.wikipedia.org /wiki /Convex_function



SPECIAL CASE: LEAST-
SQUARES

1
min 5 | Az — b||5

1
— min §:UTATA:L' —b" Az + ||b]|3

— A'Arx =A'"b

Normal equations
(better solvers for this case!)



USEFUL DOCUMENT

The Matrix Cookbook

Petersen and Pedersen

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274 .pdf



UNCONSTRAINED
OPTIMIZATION

min f(x
XL T

Unstructured.



BASIC ALGORITHMS

1(80,6,) .

.8,
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v |
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o1
)

L+l — LTk — Oéka(a?k)
Gradient descent




BASIC ALGORITHMS

1 1 — Ao
)\0 — 07)\3 — 5(1 + \/1 +4)\§—1)773 —

;vf(ws)

Ls4+1 = (1 — 78)ys—l—1 T VsYs

Quadratic convergence on convex problems!
(Nesterov 1983)

A very cool intro: https: / /distill.pub /2017 /momentum /

Accelerated gradient descent

Ys+1 L g



https://distill.pub/2017/momentum/

BASIC ALGORITHMS

Tiy1 = o — [Hf(x)] 7V (xg)

Newton’s Method



BASIC ALGORITHMS

L+l — Lk — M,;1Vf(aj‘k)

» (Often sparse) approximation from
previous samples and gradients

 Inverse in closed form!

Quasi-Newton: BFGS and friends



EXAMPLE: SHAPE
INTERPOLATION

Figure 6: Interpolation of an adaptively meshed and strongly twisted helix with blending weights 0, 0.25, 0.5, 0.75, 1.0.

Frohlich and Botsch. “"Example-Driven Deformations Based on Discrete Shells.” CGF 2011.



INTERPOLATION PIPELINE

Roughly:
1. Linearly interpolate edge lengths and dihedral angles.

05 = (1 — )0 + o
p* = (1 —1)8° + th}

2. Nonlinear optimization for vertex positions.

min A we(le(x) — )




SOFTWARE

« Matlab: fminunc or minfunc
 C++. 1ibLBFGS, dlib, others

Typically provide functions for function
and gradient (and optionally, Hessian).

Try several!



SOME TRICKS

Lots of small elements: ||z||3 = > . x?
Lots of zeros: ||x||1 = > _. |z;
Uniform norm: ||x||. = max; |x;
Low rank: || X ||« = ). 0;
Mostly zero columns: || X||2.1 = ) ’ \/ Z,& :L'fj
Smooth: [ ||V f]3

Piecewise constant: [ ||V f]|2
7?77 Karly stopping

Regularization



SOME TRICKS

Original Blurred

Multiscale /graduated optimization



ROUGH PLAN

» Equality-constrained optimization

» Variational problems



LAGRANGE MULTIPLIERS: IDEA

Yz, \minx f(x)
St g(z) =0




LAGRANGE MULTIPLIERS: IDEA

- ~umin,  f(x)
£V St g(z) =

- Decrease f:—Vf
- Violate constraint: +Vg




LAGRANGE MULTIPLIERS: IDEA

- ~min, f(x)
s.t. g(xz) =0

A




USE OF LAGRANGE
MULTIPLIERS

Turns constrained optimization into

unconstrained root-finding.

Vf(z)=AVg(z)
g(xz) =0



quadratic

min [/ (x
min, f (x)

S.t. g(x) =0

linear




QUADRATIC WITH LINEAR
EQUALITY

min,, %ZUTA{E —b'x+c

s.t. Mx=wv

(assume A is symmetric and positive definite)



QUADRATIC WITH LINEAR
EQUALITY

min,, %ZUTA{E —b'x+c

s.t. Mx=wv

(assume A is symmetric and positive definite)

|

(4 (5)-(



nonlinear
min / (x
min, f (x)

S.t. g(x) =0

nonlinear




MANY OPTIONS

* Reparameterization

Eliminate constraints to reduce to unconstrained case

« Newton’s method

Approximation: quadratic function with linear constraint

» Penalty method

Augment objective with barrier term, e.g. f(x) + p|g(x)]



EXAMPLE: SYMMETRIC
EIGENVECTORS

flz)=z' Az = Vf(z) =24z
g(x) = ||zl = Vg(z) =2z
— Ax = A\x



EXAMPLE: MESH
EMBEDDING

Combinatorial

Mesh

SN\l A
\\\\"'V‘Vl .

i
““"v "

-

.

Conformal

G. Peyré, mesh processing course slides




LINEAR SOLVE FOR
EMBEDDING

XiE]RZ

minaz’l,---,w|V| Z(i,j)EE wZJHx’L o ‘/BJH%
s.t. x, fixed Vv € V]

w;; = 1. Tutte embedding
w;; from mesh: Harmonic embedding

Assumption: w symmetric.



minxl,m,xm Z(’L,j)EE w’LJHx’L _w3‘|%
s.t. x, fixed Yv € V]

What if
Vo = {}°¢




NONTRIVIALITY CONSTRAINT

{ ming || Az|2 } v AT Az = Az

S.t1. ZL‘HQ — 1

Prevents trivial solution x = 0.

Extract the smallest eigenvalue.



Mullen et al. “Spectral Conformal Parameterization.” SGP 2008.

m&n w' Lou  <——  L.u = \Bu

uw' Be=0<«— Easy fix
uw' Bu=1




BASIC IDEA OF
EIGENALGORITHMS

Av = C1 Afl 4 C?I..Af'n,
— i\ L1+ -+ A\, &, since AZ; = \; 7

n
— )\1 (’lfrl + —CQ-TQ T+t ~  Cnlp
)\1 )\1

2 2
A% 2 A2 = An 7
V= )\1 015(‘1 + )\ Coro + - + )\— Cnln
1 1



TRUST REGION METHODS

10 ming,, §5$TH5.CC—|—@UTCC
2
b‘e S.t. H(S:UHQ < A
___—

Example: Levenberg-Marquardt



EXAMPLE: POLYCUBE MAPS

Note: Final method includes more
terms!




Aside:
Convex Optimization Tools

versus

Sometines work, foﬁ HON-CORVEN /ami/m& e

Try lightweight options



ITERATIVELY REWEIGHTED
LEAST SQUARES

: T 3 ming . ) ; yi(z ' ai +b;)°
min ) o( "”"*bz)ﬁ{ sty = ¢(a T aitbi)(z T a; + bi)

< mi y
1 XL 1min T .
min g |z — pille = { | sz_yfll pil3
v i Yi < ||.’L' pz||2

Repeatedly solve linear systems



ALTERNATING PROJECTION

Po ngIl d(pap())

st.pelCiNCyN---NCy




AUGMENTED LAGRANGIANS

Add constraint to objective



ALTERNATING DIRECTION
METHOD OF MULTIPLIERS

(ADMM)
min, . f(x)+ g(2)
s.t. Ax + Bz =c

Al 2 A) = f(2) + g(z) + AT (Az + Bz — o) + L[| Az + Bz — ||
r < argmin A, (z, 2, \)
X
z < argmin A, (z, 2, \)
Z

A4 A+ p(Ax + Bz — ¢)

https://web.stanford.edu/~boyd /papers/pdf/admm_slides.pdf



FRANK-WOLFE <asite>

To minimize f(x) s.t. x € D:

: T
argming sV f(zg)
s = { s.t. s€D }

2
k+ 2
Trt+1 < Tk + Y(Sk — Tg)

Y <

https:/ /en.wikipedia.org /wiki/Frank%E2%80%93Wolfe_algorithm

Linearize objective, preserve constraints



ROUGH PLAN

 Variational problems



VARIATIONAL CALCULUS:
BIG IDEA

Sometimes your unknowns
are not numbers!

Can we use calculus to optimize anyway?



ON THE BOARD

min | [i@) = V() [} d2



GATEAUX DERIVATIVE

d
dF |u; ] = o Flu + h)]|n=o

Vanishes for all y at a critical point!

S

Analog of derivative at u in ¢ direction



