## IFT 6113 SKETCH-BASED MODELING

tiny.cc/6113


Robust Flow-Guided Neural Prediction for Sketch-Based Freeform Surface Modeling by Li et al., SIGGRAPH ASIA 2018

Mikhail Bessmeltsev

## Motivation



30x speed
© ARTV Tutorials

## Applications

- Modeling
- Natural shapes
- CAD-models
- Buildings
- Trees
- Animating
- Characters
- Liquids
- Etc.


## Teddy

Takeo lgarashi
Hidehiko Tanaka
University of Tokyo
Satoshi Matsuoka
Tokyo Institute of Technology

## Teddy: <br> A Sketching <br> Interface for 3D <br> Freeform Design

## Teddy


a) initial 2 D polygon

d) fan triangles

b) result of CDT
e) resulting spine


c) chordal axis

f) final triangulation

## Teddy

- Skeleton -> 3D:
- Depth proportional to distance to the outer contour
- Assume every 'fan' edge is a part of an ellipse:

a) before
b) elevate spines
c) elevate edges d) sew elevated edges


## Can we interpret natural drawings?

## What lines do we draw?


© Ivan Huska, easy-drawings-andsketches.com

## What lines should we render?

Occlusion contours
$n \cdot\left(p-O_{\text {camera }}\right)=0$


## What lines should we render?

Occlusion contours
$n \cdot\left(p-O_{\text {camera }}\right)=0$


Demo

## What lines should we render?

Occlusion contours
$n \cdot\left(p-O_{\text {camera }}\right)=0$


## Suggestive contours

- Extend the occlusion contours



## What lines should we render?

- Occlusion contours

$$
n \cdot\left(p-O_{\text {camera }}\right)=0
$$

- Suggestive contours

$$
\min _{p} n \cdot\left(p-O_{\text {camera }}\right)
$$



## Not a universal tool

Objects without concavities don't have suggestive contours


Recall: Principal Directions and Curvatures
$\underset{\kappa_{1}, \kappa_{2} \text { ieigenvalue of of } A_{i v} T_{1}, T_{2} \text { eigenvectors of } A_{p}}{\kappa_{1}} \cos ^{2} \operatorname{\kappa }_{2} \sin ^{2} \theta\left|k_{1}\right|>\left|k_{2}\right|$

## Ridges and valleys

Extrema of principal curvature $\frac{\partial k_{1}}{\partial T_{1}}=0$


## Ridges and valleys

## Local max of $k_{1}>0$ ridge Local min of $k_{1}<0$ valley



Recalb:

## Second Fundamental Form

$D \mathbb{N}_{p}: T_{p} S \rightarrow T_{p} S$

"Shape operator"

## Apparent Ridges



Figure 4: The maximum view-dependent curvature at $b^{\prime}$ is much larger than at $a^{\prime}$ uniquely because of projection.

## Apparent Ridges

$$
A_{p(V, W)}^{\prime}=-\left\langle\operatorname{proj}_{\text {screen }} D N_{p}(V), W\right\rangle
$$


(a)

(b)

(c)

Figure 2: Depiction of a cube with traditional computer graphics shading and with line drawing (using our apparent ridges).

## What lines do we draw?

## Where Do People Draw Lines?

Forrester Cole, Aleksey Golovinskiy, Alex Limpaecher, Heather Stoddart Barros, Adam Finkelstein, Thomas Funkhouser, and Szymon Rusinkiewicz

Princeton University


Figure 1: Where people draw lines. Average images composed of 107 drawings show where artists most commonly drew lines in our study.

## What lines do we draw?



## What lines do we draw?

- Occlusion contours
- Suggestive contours
- Ridges and valleys
- Apparent ridges
- Feature lines


## Can you classify these lines?


© Ivan Huska, easy-drawings-andsketches.com

## Stats



Figure 9: Non-contour lines. Categorization of artists' lines that are not exterior or interior occluding contours: geometric ridges and valleys (RV), apparent ridges (AR), suggestive contours (SC), and combinations.

## If we can label the lines, can we reconstruct 3 D ?

## Issues

- Infinite \# of 3D surfaces have the same 2D
- Drawings are approximate


## Occlusion contours

$$
n \cdot\left(p-O_{\text {camera }}\right)=0
$$

- Contour generators not parallel to the screen
- Sign of contour curvature = sign of Gaussian curvature
- Gaussian curvature around contour generators' endpoints < 0
- Depth discontinuities!



## Occlusion contours

$$
n \cdot\left(p-O_{\text {camera }}\right)=0
$$

Necessary, but not sufficient for shape recognition


## Completing Contours

SmoothSketch: 3D free-form shapes from complex sketches

Olga A. Karpenko* Brown University

John F. Hughes ${ }^{\dagger}$
Brown University


We only see visible contours Complete into loops and inflate!

## Completina Contours



## Completing Contours

- Heuristics:
- Measure some energy of Bézier curve



## Completing Contours

- Heuristics:
- Measure some energy of Bézier curve



# A simpler problem: <br> illumination effects 

done


# A simpler problem: illumination effects 



## Preprocessing

- Complete all regions
- Find/ask user to specify depth order
- Constrained Delaunay Triangulation (CDT)

(b)

(c)

(d)

(e)


## How to lift to 3D?

(e)


## Idea

## Steady-state heat equation <br> (with a heat source) <br> $$
\begin{aligned} & \Delta z_{0}=a \\ & \left.Z_{0}\right|_{\partial \Gamma}=0 \end{aligned} \quad a \in \mathbb{R}
$$



-1 -1
Prof. Dr. Peter Arbenz, Introduction to finite elements and sparse linear system solving, 2017

## After inflation

- Each piece is centered around $z=0$
- Need to use z-order! $z_{1}<z_{2}$
- Need a smooth model


## (a)

## After inflation

- Each piece is centered around $z=0$
- Need to use z-order! $z_{1}<z_{2}$
- Need a smooth model
(b)


## Smooth function? $z^{i}=z_{0}^{i}+g^{i}(x)$ <br> $\min \int_{\Omega}\left\|\nabla g_{i}\right\|^{2} d x$ s.t. $z_{i}<z_{j}$

(d)

## Cross-sections

- Lines of curvature
- At intersections:
- Orthogonal
- Define a tangent plane
- (often) belong to perpendicular planes


## A simpler problem: shade?

## CrossShade: Shading Concept Sketches Using Cross-Section Curves

Cloud Shao ${ }^{1 *}$
${ }^{1}$ University of Toronto

(b) Estimated normals

Alla Sheffer ${ }^{3} \quad$ Karan Singh ${ }^{1}$
Adrien Bousseau ${ }^{2 *}$
${ }^{2}$ REVES - INRIA Sophia Antipolis
${ }^{3}$ University of British Columbia
(a) Input curves


(c) Shading

## CrossShade

Find a normal field over the drawing $n_{i}$ : tangent plane normals

$t_{i j}$ : tangents

$$
\mathrm{n}_{1} \cdot \mathrm{n}_{2}=0
$$

## CrossShade

## Find a normal field over the drawing

 $n_{i}$ : tangent plane normals$t_{i j}$ : tangents

$$
\begin{gathered}
\mathrm{n}_{1} \cdot \mathrm{n}_{2}=0 \\
\mathrm{t}_{1} \cdot \mathrm{t}_{2}=0
\end{gathered}
$$

Cross-sections as curvature lines

Frenet Frame: Curves in $\mathbb{R}^{\mathbf{3}}$

$$
\frac{d}{d s}\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right)=\underset{\text { Binormal: } \boldsymbol{T} \times \boldsymbol{N}}{\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)}\left(\begin{array}{l}
T \\
N \\
B
\end{array}\right)
$$

- Curvature: In-plane motion
- Torsion: Out-of-plane motion



Recalb:

## Intuition

$$
\operatorname{proj}_{T_{\gamma(s) S} S}\left[\gamma^{\prime \prime}(s)\right]=0
$$

- The only acceleration is out of the surface
- No steering wheel!



## CrossShade

## Find a normal field over the drawing

 $n_{i}$ : tangent plane normals$t_{i j}$ : tangents

$$
\begin{aligned}
& \mathrm{t}_{1} \times \mathrm{n}_{2}=0 \\
& \mathrm{t}_{2} \times \mathrm{n}_{1}=0 \\
& \text { Geodesics? }
\end{aligned}
$$

"humans perceive intersecting cross-section curves as geodesics"

## CrossShade

Find a normal field over the drawing $n_{i}$ : tangent plane normals
$t_{i j}:$ tangents

$\rightarrow \mathrm{n}_{1}$ $\mathrm{t}_{2} \times \mathrm{n}_{1}=0$

At least one is a geodesic

## CrossShade: overview


(a) Input curves

(b) Estimated curve planes

(c) Normals along curves

(d) Normals over the sketch

(e) Resulting shading

Figure 4: Our algorithm takes as input an annotated sketch (a). Orange curves denote cross-sections, blue curves represent smooth silhouettes, and green curves correspond to other object boundaries. We first optimize for the supporting plane of each cross-section and compute the $3 C$ cross-sections based on those (b). We use the resulting 3D curves to compute 3D normals at each intersection and interpolate normals along the curves (c). We finally generate a normal field in between the curves using Coons' interpolation (d).

## Shading/Hatching

- Approximates actual surface shading?
- Assume a shading model - E.g. Lambertian
- How to get illuminance per point?
- Shape from shading


Edward Law. Pencil drawing by H. M. Raeburn, 1909

## Concave or convex?


M.C. Escher, "Concave and convex"

## Shape priors

- Developability?
- Garments
- Geometric primitives
- Spheres, cylinders,...


## Shape representations

- Meshes
- Generalized cylinders
- Bézier
- NURBS


## A rigorous approach

Only for smooth shapes

# Giovanni Bellettini - Valentina Beorchia Maurizio Paolini • Franco Pasquarelli <br> Shape Reconstruction from Apparent Contours 

Theory and Algorithms

Springer

## Junctions

- Local depth depth order!



## What to do with hidden parts?

- Use continuity
- Use symmetry
- Use anatomical priors?



## Symmetry

Computers \& Graphics 46 (2015) 221-230


## Contents lists available at ScienceDirect

## Computers \& Graphics

## Modeling 3D animals from a side-view sketch

CrossMark
Even Entem ${ }^{\text {a,b,* }}$, Loic Barthe ${ }^{\text {a }}$, Marie-Paule Cani ${ }^{\text {b }}$, Frederic Cordier ${ }^{c}$, Michiel van de Panne ${ }^{\mathrm{d}}$
${ }^{\text {a }}$ IRIT - University of Toulouse, France
${ }^{\text {b }}$ University of Grenoble-Alpes, CNRS (Laboratoire Jean Kuntzmann) and Inria, France
${ }^{c}$ University of Haute Alsace, France
${ }^{\mathrm{d}}$ University of British Columbia, Canada

## ARTICLE INFO

## Article history:

Received 8 July 2014
Received in revised form
29 September 2014
Accepted 29 September 2014
Available online 8 October 2014

## Keywords:

Implicit modelling
Sketch-based modelling
Organic shapes
Direct reconstruction

ABSTRACT
Using 2D contour sketches as input is an attractive solution for easing the creation of 3D models. This paper tackles the problem of creating 3D models of animals from a single, side-view sketch. We use the $a$ priori assumptions of smoothness and structural symmetry of the animal about the sagittal plane to inform the 3D reconstruction. Our contributions include methods for identifying and inferring the contours of shape parts from the input sketch, a method for identifying the hierarchy of these structural parts including the detection of approximate symmetric pairs, and a hierarchical algorithm for positioning and blending these parts into a consistent 3D implicit-surface-based model. We validate this pipeline by showing that a number of plausible animal shapes can be automatically constructed from a single sketch.



b
C
d

f
g
h

i
j


## Animation: Line of Action

The Line of Action: an Intuitive Interface for Expressive Character Posing


Figure 1: Expressive character poses created in a few seconds each, by sketching intuitive lines of action.

## Animation: Line of Action

- Assume we know which bones
- Joint $x, y$ positions should be along the LOA
- Where along LOA?
- More importantly, bones should be parallel to LOA
- Need curve - bone chain correspondence!


## Drawings are inexact



## Drawings are inexact



## 2D embedding

## Low-curvature lines ~ body parts Circular contours $\sim$ joints



## 2D embedding

Adjacencies


## 2D embedding



## 2D embedding

Input: rigged character + gesture drawing


Discrete optimization

## 3D optimization

Balance 2D embedding with

- Simplicity
- Foreshortening cues



## 3D optimization

Balance 2D embedding with

- Simplicity
- Foreshortening cues
- Depth order from T-Junctions


## Answering your question: yes

## 3D Sketching using Multi-View Deep Volumetric Prediction

Johanna Delanoy<br>Inria Université Côte d'Azur

Mathieu Aubry<br>LIGM (UMR 8049), Ecole des Ponts

Phillip Isola<br>OpenAI

Adrien Bousseau
Inria Université Côte d'Azur

Alexei A. Efros UC Berkeley

b) $3 D$ prediction
seen from another viewpoint
b) $3 D$ prediction
seen from another viewpoint -
c) New drawing and updated prediction


d) 3D printed objects

a) Initial drawing

Figure 1: Our sketch-based modeling system can process as little as a single perspective drawing (a) to predict a volumetric object (b). Users can refine this prediction and complete it with novel parts by providing additional drawings from other view points (c). This iterative sketching workflow allows quick 3D concept exploration and rapid prototyping (d).

## Sketches are messy and often in bitmap format

- Reconstruct directly
- Probably ML/DL?
- Vectorize
- Simplify


## Sketches are messy <br> and often in bitmap format



