Formalities

• A3 due tonight
• Paper presentations next week!
 – Sign up for presentation order
Formalities

• A3 due tonight Thursday night (14th)
• Paper presentations next week!
 – Sign up for presentation order
Some slides from Alla Sheffer, Justin Solomon, and Hao Li
3D Reconstruction Pipeline

acquisition → initial alignment → registration → merging

Data provided by Paramount Pictures and Aguru Images
Two components

Registration

Meshing
Two components

Registration

Meshing
Registration Problem

Align two overlapping objects
Rough Plan

• ICP algorithm
 A classic!

• ICP variants
Starting Point

\[q_i = R p_i + t \]

Can align given enough matches
How many correspondences determine R and t?
How do you get correspondences?
Rough Approximation

Closest points correspond
Try a Second Time...
Iterative Closest Point (ICP)

- **Choose** e.g. 1000 random points
- **Match** each to closest point on other scan
- **Reject** pairs with distance > k times median
- **Minimize**

$$E[R, t] := \sum_{i} \|Rp_i + t - q_i\|^2$$

- **Iterate**

“A method for registration of 3-D shapes.”
On the Board

$$\min_{t \in \mathbb{R}^3, \ R^T R = I} \sum_i \| R p_i + t - q_i \|^2$$

Closed-form formulas!
Many (!) Variants of ICP

- **Source points** from one or both meshes
- **Matching** to points in the other mesh
 - **Weighting** correspondences
 - **Rejecting** outlier point pairs
 - **Alternative** error metrics

See [Rusinkiewicz & Levoy, 3DIM 2001]
Point-to-Plane Error Metric

Flat parts can slide along each other

\[E[R, t] := \sum_{i} ((Rp_i + t - q_i)^\top n_i)^2 \]

\[\approx \sum_{i} [(p_i - q_i)^\top n_i + r^\top (p_i \times n_i) + t^\top n_i)^2 \text{ after linearizing} \]

where \(r := (r_x, r_y, r_z) \)

“Object modelling by registration of multiple range images”
Chen and Medioni, Image and Vision Computing 10.3 (1992); image courtesy N. Mitra
Closest Compatible Point

Can improve matching effectiveness by restricting match to compatible points

- Compatibility of colors [Godin et al. 94]
- Compatibility of normals [Pulli 99]
- Other possibilities: curvatures, higher-order derivatives, and other local features
Choose Points to Improve Stability

Uniform Sampling

Stable Sampling

Sample discriminative points
Local Covariance

3 small eigenvalues
2 translation
1 rotation

3 small eigenvalues
3 rotation

2 small eigenvalues
1 translation
1 rotation

1 small eigenvalue
1 rotation

1 small eigenvalue
1 translation

[Gelfand et al. 2004]
Stability Analysis

Key:
- 3 DOFs stable
- 4 DOFs stable
- 5 DOFs stable
- 6 DOFs stable
Alternative: Uniform Normals

Random Sampling Normal-space Sampling
Convergence Funnel Visualization

Translation in xz plane
Rotation about y

Converges
Does not converge
Distance Field Method

Translation in xz plane
Rotation about y

- Converges
- Does not converge
Point-to-Plane

Translation in xz plane
Rotation about y

- Converges
- Does not converge
Issue: ICP Three Times

$\phi_1 \circ \phi_2 \circ \phi_3 = ?$

Usually have ≥ 2 scans
Improve Sequential Alignment?

Prevent “drift”
Simple Methods

- **Align everything to anchor scan**
 Which to choose? Dependence on anchor?

- **Align to union of previous scans**
 Order dependence? Speed?

- **Simultaneously align everything using ICP**
 Local optima? Computational expense?
Graph Approach

Align similar scans, then assemble
Lu and Milios

- **Pairwise phase**
 Compute pairwise ICP on graph

- **Global alignment**
 Least-squares rotation/translation
 Linearize for global alignment
Failed ICP in Global Registration

Correct global registration

Global registration including bad ICP

Possible to make robust?
Two components

Registration

Meshing

https://i.ytimg.com/vi/uzOCS_gdZuM/maxresdefault.jpg
Triangulating Point Clouds

Connect neighboring points into triangles
Triangulating Point Clouds

Connect neighboring points into triangles

Who are the neighbors?
⇔ What’s the connectivity/topology
Methods

• Explicit, *or reconstruction circa 1998*
 – Zippering
 – Delaunay/Voronoi-based

• Implicit
 – Signed distance function
 – Poisson

• Data-driven
Methods

• Explicit, *or reconstruction circa 1998*
 – Zippering
 – Delaunay/Voronoi-based

• Implicit
 – Signed distance function
 – Poisson

• Data-driven
Basic Reconstruction: Zippering

Single scan → mesh

- regular lattice of points in X and Y with changing depth (Z) = height map

Register

Merge meshes
One scan → mesh

• Find quadruples of lattice points
• Form triangles
 – Find shortest diagonal
 – Form two triangles (test depth)
One scan → mesh

Avoid connecting depth discontinuities
Basic Reconstruction: Zippering

✅ Single scan -> mesh

Register

Merge meshes
Basic Reconstruction: Zippering

✔ Single scan -> mesh
✔ Register
 Merge meshes
Merging
2 overlapping meshes

Zippering
– Remove overlapping portion of the mesh
 • Use for consensus geometry
– Clip one mesh against another
– Remove triangles introduced during clipping
Post-processing

Zippering results

‘Consensus geometry’

Move vertices to their average positions over all scans
Methods

• Explicit, *or reconstruction circa 1998*
 – Zippering
 – Delaunay/Voronoi-based

• Implicit
 – Signed distance function
 – Poisson

• Data-driven
2D: connect the dots

Connectivity?

Edges should be far from other points
2D: connect the dots

Delaunay Triangulation

Edge e is Delaunay \iff some circumcircle of e contains no other sample points
2D: connect the dots

Which edges to pick?
Recall:

Medial axis vs Voronoi diagram

“On the Evaluation of the Voronoi-Based Medial Axis”
by Adriana Schulz, Francisco Ganacim and Leandro Cruz
Medial axis vs Voronoi diagram

“On the Evaluation of the Voronoi-Based Medial Axis” by Adriana Schulz, Francisco Ganacim and Leandro Cruz
2D: connect the dots

Edges should be “far” from Medial Axis
2D: connect the dots

Voronoi diagram approximates Medial Axis
if points are sampled densely enough
Edge e in crust \iff circumcircle of e contains no other sample points or Voronoi vertices of S
Crust: Algorithm

Compute Voronoi diagram of S

$V = \{\text{Voronoi vertices}\}$
Crust: Algorithm

Compute Voronoi diagram of S

\[V = \{\text{Voronoi vertices}\} \]

Compute Delaunay Triangulation of $S \cup V$
Compute Voronoi diagram of S

$$V = \{\text{Voronoi vertices}\}$$

Compute Delaunay Triangulation of $S \cup V$

Crust = all edges between points of S
3D Crust Algorithm

- Extend 2D approach
- Voronoi vertex is equidistant from 4 sample points
- BUT in 3D not all Voronoi vertices are near medial axis (regardless of sampling density)
3D Crust Algorithm

Some vertices of the Voronoi cell are near medial axis

Intuitively – cell is closed not just from the sides but also from “top” & “bottom”
3D Crust Algorithm

Solution: use only two farthest vertices of V_s - one on each side of the surface

- Call vertices *poles* of s (p^+, p^-)
3D Crust Algorithm

• Compute Voronoi diagram of S

• For each $s_i \in S$, compute

$$P = \{p_i^+, p_i^−\}$$

• Compute Delaunay triangulation T of $S \cup P$

Crust = all triangles in T with vertices in S
Results
Problems & Modifications

Correct in the absence of noise

Slow-ish
Need dense samples
Problems at sharp corners
Noise
Methods

• Explicit, *or reconstruction circa 1998*
 – Zippering
 – Delaunay/Voronoi-based

• **Implicit**
 – Signed distance function
 – Poisson

• Data-driven
Implicit Reconstruction

1. Estimate signed distance function $d: \mathbb{R}^3 \rightarrow \mathbb{R}$
2. Extract an isosurface $d = 0$
Implicit Reconstruction

1. Estimate signed distance function $d: \mathbb{R}^3 \to \mathbb{R}$

2. **Extract an isosurface** $d = 0$
Marching Cubes

• Each voxel:
 – Has values at 8 corners
 – Has 256 possible configurations
 • 15 after counting symmetries and rotations
 – Either
 • Inside isosurface
 • Outside isosurface
 • Intersects isosurface

• Can extract triangulation independently per voxel
Marching Cubes

For each intersecting voxel contains triangles of the isosurface
Configurations

• For each configuration add 1-4 triangles to isosurface

• Isosurface vertices computed by:
 – Interpolation along edges (according to grid values)
Example
Problem

Can produce non-manifold results and wrong genus

– What if those two are adjacent?
 • Each is ambiguous
– Consistency?
Ambiguous Faces

- Two locally valid interpretations

- Source of MC consistency problem
Solution
For those cases, store multiple triangulations

Choose one that agrees with neighbor voxels
Implicit Reconstruction

1. Estimate signed distance function $d: \mathbb{R}^3 \to \mathbb{R}$
2. Extract an isosurface $d = 0$
Signed distance function

Distance to points is not enough

Need more structure
Signed distance function

How can we tell inside from outside?

Estimate normals.
Estimating normals

- Fit a plane into neighborhood of each point
 - Neighborhood = k nearest neighbors
- Determine consistent normal orientation
Estimating normals

• Fit a plane into neighborhood of each point
 – Neighborhood = k nearest neighbors
 • Use spatial decompositions (BSP-trees)
 • Determine consistent normal orientation
Fitting plane

$$\min_{c \in \mathbb{R}^3, \|n\| = 1} \sum_i (n^T (p_i - c))^2$$

On the board, time permitting
Estimating normals

• Fit a plane into neighborhood of each point
 – Neighborhood = k nearest neighbors
• Determine consistent normal orientation
Estimating normals

• Fit a plane into neighborhood of each point
 – Neighborhood = k nearest neighbors

• Determine *consistent* normal orientation
 – Make sure $n_i \cdot n_j > 0$ for neighbors
Signed Distance Function

• Distance to tangent planes
 – [Hoppe et al. ‘92]
Signed Distance Function

- Smoother: RBF basis

- Hoppe '92
- Compact RBF Wendland C^2
- Global RBF Triharmonic
Signed Distance Function

• Poisson surface reconstruction
 – [Kazhdan et al. ‘06]
Signed Distance Function

• Poisson surface reconstruction
 – Solve for indicator function

\[\chi_M(p) = \begin{cases}
1 & \text{if } p \in M \\
0 & \text{if } p \notin M
\end{cases} \]
Oriented points \rightarrow Indicator function χ_M
Idea

Oriented normals = gradient of an indicator function?

Oriented points

Indicator gradient $\nabla \chi_M$
Idea

Oriented normals \Rightarrow vector field \vec{V}
Find indicator function:

$$\min_\chi \|\vec{V} - \nabla \chi\|^2$$
Idea

Oriented normals ⇒ vector field \vec{V}

Find indicator function:

$$\min_{\chi} \| \vec{V} - \nabla \chi \|^2$$

Differentiate, Poisson equation:

$$\Delta \chi = \nabla \cdot \vec{V}$$
Results