IFT 6113 SURFACE RECONSTRUCTION tiny.cc/6113

Image from https://doc.cgal.org/latest/Poisson_surface_reconstruction_3/index.html

Mikhail Bessmeltsev

Formalities

- A3 due tonight
- Paper presentations next week!
- Sign up for presentation order

Formalities

- A3 due tonight Thursday night ($\left.14^{\text {th }}\right)$
- Paper presentations next week!
- Sign up for presentation order

Some slides from Alla Sheffer, Justin Solomon, and Hao Li

3D Reconstruction Pipeline

Two components

https://i.ytimg.com/vi/uzOCS_gdZuM/maxresdefault.jpg
Registration

Meshing

Two components

https://i.ytimg.com/vi/uzOCS_gdZuM/maxresdefault.jpg
Registration

Meshing

Registration Problem

Align two overlapping objects

Rough Plan

- ICP algorithm

A classic!

- ICP variants

Starting Point

$$
q_{i}=R p_{i}+t
$$

Can align given enough matches

How many

 correspondences determine R and t ?
How do you get correspondences?

Rough Approximation

Closest points correspond

Try a Second Time...

Iterative Closest Point (ICP)

- Choose e.g. 1000 random points
- Match each to closest point on other scan
- Reject pairs with distance $>k$ times median
- Minimize

$$
E[R, t]:=\sum_{i}\left\|R p_{i}+t-q_{i}\right\|^{2}
$$

- Iterate
"A method for registration of 3-D shapes."
Besl and McKay, PAMI 1992.

On the Board

$$
\min _{t \in \mathbb{R}^{3}, R^{\top}} \sum_{R=I}\left\|R p_{i}+t-q_{i}\right\|^{2}
$$

Closed-form formulas!

Many (!) Variants of ICP

- Source points from one or both meshes
- Matching to points in the other mesh
- Weighting correspondences
- Rejecting outlier point pairs
- Alternative error metrics

Point-to-Plane Error Metric

Flat parts can slide along each other

$$
\begin{aligned}
& E[R, t]:=\sum_{i}\left(\left(R p_{i}+t-q_{i}\right)^{\top} n_{i}\right)^{2} \\
& \approx \sum_{i}\left[\left(p_{i}-q_{i}\right)^{\top} n_{i}+r^{\top}\left(p_{i} \times n_{i}\right)+t^{\top} n_{i}\right)^{2} \text { after linearizing } \\
& \text { where } r:=\left(r_{x}, r_{y}, r_{z}\right) \\
& \text { LOeast- } \\
& \text { LObect modelling by registration of multiple range images" }
\end{aligned}
$$

Chen and Medioni, Image and Vision Computing 10.3 (1992); image courtesy N. Mitra

Closest Compatible Point

Can improve matching effectiveness by restricting match to compatible points

- Compatibility of colors [Godin et al. 94]
- Compatibility of normals [Pulli 99]
- Other possibilities:
curvatures, higher-order derivatives, and other local features

Choose Points to Improve Stability

Uniform Sampling

Stable Sampling

Local Covariance

3 small eigenvalues
2 translation
1 rotation

1 small eigenvalue
1 rotation

3 small eigenvalues 3 rotation

2 small eigenvalues
1 translation 1 rotation

1 small eigenvalue
1 translation
[Gelfand et al. 2004]

Stability Analysis

Key:
3 DOFs stable
5 DOFs stable

4 DOFs stable
6 DOFs stable

Alternative: Uniform Normals

Random Sampling

Normal-space Sampling

Convergence Funnel Visualization

Translation in cz plane Rotation about y

\square Converges
\square Does not converge

Slide courtesy N. Mitra

Distance Field Method

$$
\begin{aligned}
& \text { Co } \\
& \text { - } \\
& \text { () } \\
& \text { () } \\
& \text { (1) } \\
& \text { (} \\
& \text { C }
\end{aligned}
$$

Translation in cz plane Rotation about y

\square Converges
\square Does not converge

Point-to-Plane

$$
\begin{array}{ccccc}
\\
C O C O \\
C O C O
\end{array}
$$

Translation in cz plane Rotation about y

\square Converges
\square Does not converge

Issue: ICP Three Times

Usually have ≥ 2 scans

Improve Sequential Alignment?

Prevent "drift"

Simple Methods

- Align everything to anchor scan Which to choose? Dependence on anchor?
- Align to union of previous scans Order dependence? Speed?
- Simultaneously align everything using ICP
Local optima? Computational expense?

Graph Approach

Align similar scans, then assemble

Lu and Milios

- Pairwise phase Compute pairwise ICP on graph

- Global alignment

Least-squares rotation/translation

Failed ICP in Global Registration

Correct global registration

Possible to

Global registration including bad ICP

Two components

https://i.ytimg.com/vi/uzOCS_gdZuM/maxresdefault.jpg
Registration

Meshing

Triangulating Point Clouds

Connect neighboring points into triangles

Point cloud data

Triangulating Point Clouds

Connect neighboring points into triangles

Point cloud data

Who are the neighbors?
\Leftrightarrow What's the connectivity/topology

Methods

- Explicit, or reconstruction circa 1998
- Zippering
- Delaunay/Voronoi-based
- Implicit
- Signed distance function
- Poisson
- Data-driven

Methods

- Explicit, or reconstruction circa 1998
- Zippering
- Delaunay/Voronoi-based
- Implicit
- Signed distance function
- Poisson
- Data-driven

Basic Reconstruction: Zippering

Single scan \rightarrow mesh

- regular lattice of points in X and Y with changing depth $(Z)=$ height map
Register
Merge meshes

One scan \rightarrow mesh

- Find quadruples of lattice points
- Form triangles
- Find shortest diagonal
- Form two triangles (test depth)

One scan \rightarrow mesh

Avoid connecting depth discontinuities

Basic Reconstruction: Zippering

Single scan -> mesh
Register
Merge meshes

Basic Reconstruction: Zippering

Single scan -> mesh
Register
Merge meshes

Merging
 2 overlapping meshes

Zippering

- Remove overlapping portion of the mesh
- Use for consensus geometry
- Clip one mesh against another
- Remove triangles introduced during clipping

Post-processing

Move vertices to their average positions over all scans

Methods

- Explicit, or reconstruction circa 1998
- Zippering
- Delaunay/Voronoi-based
- Implicit
- Signed distance function
- Poisson
- Data-driven

2D: connect the dots

Connectivity?
Edges should be far from other points

2D: connect the dots

Delaunay Triangulation

Edge e is Delaunay \Leftrightarrow some circumcircle of e contains no other sample points

2D: connect the dots

Which edges to pick?

Recall:

Medial axis vs Voronoi diagram

"On the Evaluation of the Voronoi-Based Medial Axis" by Adriana Schulz, Francisco Ganacim and Leandro Cruz

Recall:
Medial axis vs Voronoi diagram

"On the Evaluation of the Voronoi-Based Medial Axis"
by Adriana Schulz, Francisco Ganacim and Leandro Cruz

2D: connect the dots

Edges should be "far" from Medial Axis

2D: connect the dots

Voronoi diagram approximates Medial Axis if points are sampled densely enough

2D: connect the dots

Edge e in crust \Leftrightarrow
circumcircle of e contains no other sample points or Voronoi vertices of S

Crust: Algorithm

Compute Voronoi diagram of S

$$
V=\{\text { Voronoi vertices }\}
$$

Crust: Algorithm

Compute Voronoi diagram of S $V=\{$ Voronoi vertices $\}$
Compute Delaunay Triangulation of $S \cup V$

Crust: Algorithm

Compute Voronoi diagram of S $V=\{$ Voronoi vertices $\}$
Compute Delaunay Triangulation of $S \cup V$ Crust = all edges between points of S

3D Crust Algorithm

- Extend 2D approach
- Voronoi vertex is equidistant from 4 sample points
- BUT in 3D not all Voronoi vertices are near medial axis (regardless of sampling density)

3D Crust Algorithm

Some vertices of the Voronoi cell are near medial axis
Intuitively - cell is closed not just from the sides but also from "top" \& "bottom"

3D Crust Algorithm

Solution: use only two farthest vertices of V_{s} - one on each side of the surface

- Call vertices poles of $\mathrm{s}\left(\mathrm{p}^{+}, \mathrm{p}^{-}\right)$

3D Crust Algorithm

- Compute Voronoi diagram of S
- For each $s_{i} \in S$, compute

$$
P=\left\{p_{i}^{+}, p_{i}^{-}\right\}
$$

- Compute Delaunay triangulation T of $S \cup P$

Crust $=$ all triangles in T with vertices in S

Results

Problems \& Modifications

Correct in the absence of noise

Slow-ish
Need dense samples
Problems at sharp corners
Noise

Methods

- Explicit, or reconstruction circa 1998
- Zippering
- Delaunay/Voronoi-based
- Implicit
- Signed distance function
- Poisson
- Data-driven

Implicit Reconstruction

1. Estimate signed distance function $d: \mathbb{R}^{3} \rightarrow \mathbb{R}$
2. Extract an isosurface $d=0$

Implicit Reconstruction

1. Estimate signed distance function $d: \mathbb{R}^{3} \rightarrow \mathbb{R}$
2. Extract an isosurface $d=0$

Marching Cubes

- Each voxel:
- Has values at 8 corners
- Has 256 possible configurations
- 15 after counting symmetries and rotations
- Either
- Inside isosurface
- Outside isosurface
- Intersects isosurface

- Can extract triangulation independently per voxel

Marching Cubes

For each intersecting voxel contains triangles of the isosurface

Configurations

- For each configuration add 1-4 triangles to isosurface
- Isosurface vertices computed by:
- Interpolation along edges (according to grid values)

Example

Problem

Can produce non-manifold results and wrong genus

- What if those two are adjacent?
- Each is ambiguous
- Consistency?

Ambiguous Faces

- Two locally valid interpretations

- Source of MC consistency problem

Solution

For those cases, store multiple triangulations

2.0 Asymptotic Decider

Choose one that agrees with neighbor voxels

Implicit Reconstruction

1. Estimate signed distance function $d: \mathbb{R}^{3} \rightarrow \mathbb{R}$
2. Extract an isosurface $d=0$

Signed distance function

Distance to points is not enough Need more structure

Signed distance function

How can we tell inside from outside?
 Estimate normals.

$+$

Estimating normals

- Fit a plane into neighborhood of each point
- Neighborhood $=k$ nearest neighbors
- Determine consistent normal orientation

Estimating normals

- Fit a plane into neighborhood of each point
- Neighborhood $=k$ nearest neighbors
- Use spatial decompositions (BSP-trees)
- Determine consistent normal orientation

Fitting plane

$$
\min _{c \in \mathbb{R}^{3},\|n\|=1} \sum_{i}\left(n^{T}\left(p_{i}-c\right)\right)^{2}
$$

On the board, time permitting

Estimating normals

- Fit a plane into neighborhood of each point
- Neighborhood $=k$ nearest neighbors
- Determine consistent normal orientation

Estimating normals

- Fit a plane into neighborhood of each point
- Neighborhood $=k$ nearest neighbors
- Determine consistent normal orientation
- Make sure $n_{i} \cdot n_{j}>0$ for neighbors

Signed Distance Function

- Distance to tangent planes
- [Hoppe et al. ‘92]

150 samples

reconstruction
on 50^{3} grid

Signed Distance Function

- Smoother: RBF basis

Hoppe '92
Compact RBF
Wendland C^{2}
Global RBF
Triharmonic

Signed Distance Function

- Poisson surface reconstruction
- [Kazhdan et al. ‘06]

Signed Distance Function

- Poisson surface reconstruction
- Solve for indicator function

$$
\chi_{M}(p)= \begin{cases}1 & \text { if } p \in M \\ 0 & \text { if } p \notin M\end{cases}
$$

$$
\chi_{M}
$$

Oriented points

Indicator function χ_{M}

Idea

Oriented normals =

 gradient of an indicator function?

Oriented points

Indicator gradient $\nabla \chi_{M}$

Idea

Oriented normals \Rightarrow vector field \vec{V}
 Find indicator function:

$$
\min _{\chi}\|\vec{V}-\nabla \chi\|^{2}
$$

Idea

Oriented normals \Rightarrow vector field \vec{V} Find indicator function:

$$
\min _{\chi}\|\vec{V}-\nabla \chi\|^{2}
$$

Differentiate,

Process

Results

