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Directional Field Synthesis, Design, and Processing

Amir Vaxman'  Marcel Campen”  Olga Diamanti®  Daniele Panozzo™  David Bommes!  Klaus Hildebrandt®  Mirela Ben-Chen®

Utrecht University ~ *New York University  *ETH Zurich  *“RWTH Aachen University  “Delft University of Technology ~ ®Technion

Abstract

Direction fields and vector fields play an increasingly important role in computer graphics and geometry processing. The
synthesis of directional fields on surfaces, or other spatial domains, is a fundamental step in numerous applications, such as mesh
generation, deformation, texture mapping, and many more. The wide range of applications resulted in definitions for many types
af directional fields: from vector and tensor fields, over line and cross fields, to frame and vector-set fields. Depending on the
application at hand, researchers have used various notfions of objectives and constraints to xynthesize such fields. These notions
are defined in termys of fairmess, feature alignment, symmetry, or field topology, to mention just a few. To fucilitate these objectives,
various representations, discretizations, and optimization strategies have been developed. These choices come with varying
strengths and weaknesses. This report provides a systematic overview of directional field synthesis for graphics applications, the
challenges it poses, and the methods developed in recent years (o address these challenges.

Categorics and Subject Descriptors (according to ACM CCS): 1.3.5 [Compuier Graphics]: Computational Geometry and Object
Muodeling

1. Introduction There have been significant developments in directional field
svnthesis over the past decade. These developments have been dnven |







Why Vector Fields?

“Blood flow in the rabbit aortic arch and descending thoracic
aorta”
Vincent et al.; J. Royal Society 2011

Biological science and imagin



Why Vector Fields?
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Weather modeling



Fluid modeling
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Why Vector Fields?

https:/ /forum.unity3d.com/threads/megaflow-vector-fields-fluid-flows-release

Simulation and engineering



Plan

Crash course
in theory/discretization of vector fields.



CONTINUOUS



Studying Vector fields

How to
« define a VF on a surface?
« Differentiate it?

* Integrate?

 Define its topology?

—

http: / /theanalyticpoem.net/concept-map/3-
dimension /torus_vectors_oblique /




Studying Vector fields

How to
* define a VF on a surface?
« Differentiate it?

* Integrate?

 Define its topology?

http: / /theanalyticpoem.net/concept-map/3-
dimension /torus_vectors_oblique /




Pooall
Tangent Space

T,S := Image(Do,,)




Gt g ngent Space: Coordinate-

Free
veET,S —

there exists curve a: (—¢,e) = S
with a(0) = p,a’(0) = v




Some Definitions

Tangent bundle:

TM = {(p,

v e T, M}

)

U

Vector field:




Studying Vector fields

How to
« define a VF on a surface?
« Differentiate it?

* Integrate?

 Define its topology?

http: / /theanalyticpoem.net/concept-map/3-
dimension /torus_vectors_oblique /




Booall
Scalar Functions

http:/ /www.ieeta.pt/polymeco/Screenshots /PolyMeCo_OneView.jpg

Map points to real numbers



Rooall
Differential of a Map

Suppose f:S - R and take p € S. For v € T,,S, choose a curve a: (—¢,&) - §
with a(0) = p and a'(0) = v. Then the differential of f is df:T,S — R with

@) = | (Fea)t)=(Foa)()

On the board (time-permitting):
« Does not depend on choice of
- Linear map

http:/ /blog.-

Following Curves and Surfaces, Montiel & Ros



Proall
Gradient Vector Field

Vf:S — R?with
{ (V)p),v) = (df)p(v),v € TS
<(Vf)(p)7 N(p)> =0



How do you
differentiate
a vector field?



Answer

THETHING

emegenerator.net

http: / /www.relatably.com /m /img /complicated-memes /60260587.jpg



What's the issue??

What's a ‘constant’ VF on a
surface?

https:/ /math.stackexchange.com /questions /2215084 /parallel-transport-equations



What's the issue??

How to identify different
tangent spaces?



Many Notions of Derivative

« Differential of covector
(defer for now)

* Lie derivative
Weak structure, easier to compute

« Covariant derivative
Strong structure, harder to compute



Group
structure!

V oy

o

Diffeomorphism with inverse { _,

N
dt

Useful property: ,.s(x) = P (9(x))

Vector Field Flows:
Diffeomorphism



Killing Vector Fields (KVFEs)

Preserves
distances
infinitesimally




Differential of Vector Field Flow

M

dwt(p) : TpM — th(p)M

Image from Smooth Manifolds, Lee



(Lv W)y -

Lie Derivative

d(0—1)e,(p) Wa,(p))

/ - Wo.(p)

Vo,

— lim —
t—0

= [( )y, ) W (p) — Wy

Image from Smooth Manifolds, Lee



Amoeba example




Amoeba example

V




Amoeba example




Amoeba example




Amoeba example




Amoeba example

W,




Amoeba example




Amoeba example




What's Wrong with Lie
Derlvatives?

1
(LyW)p i=lim — [(dY—t)p, () W, (p)) — W)

t—0 ¢

Image courtesy A. Carape

Depends on structure of V




What We Want

erivative of

y ‘/ ) )
: / the blue vector field in the

orange dire

ction?”




Parallel Transport
p T
= w g 43
M

Canonical identification of

tangent spaces -



Covariant Derivative (Embedded)

VyW = [Dy W]l = proj,, ¢(W o a)'(0)

Y

Integral curve of V through p
Synonym: (Levi-Civita) Connection

p)
Note: [Dy W]+ =1(V,W)N




Some Properties

Properties of the Covariant Derivative

As defined, VY depends only on V,, and Y to first order along c.

Also, we have the Five Properties:

1. C*-linearity in the V-slot:
vv1_|_ﬂ/2y = VV1Y+ fV\/zY where f : § — R

2. R-linearity in the Y-slot:
V\/(Yl + 3Y2) =VvYi+aVyYo where a € R

3. Product rule in the Y-slot:
Vv(fY)=Ff-VyY +(Vyf)- Y where f : S - R

4. The metric compatibility property: The Lie bracket
Vv(Y,Z)=(VvY,Z)+ (Y ,VvZ) | [V, Va](f) := Dy, Dy,(f)

7] . 17 - DV2DV1(f)
5. The "torsion-free” property:

Defines a vector field, which
Vy Vo -V, Vi = [V, V2 is tangent to S if V4, Vs are!

Slide by A. Butscher, Stanford CS 468



Poodll
Geodesic Equation

projz. s [v"(s)] = 0

« The only acceleration is out of the surface
* No steering wheel!




Intrinsic Geodesic Equation

Vﬁz(t)ﬁ/(t) =0
« No stepping on the accelerator
» No steering wheel!




Parallel Transport

Only path-
independent if

domain is flat.

Preserves length, inner product
(can be used to define covariant derivative)



Holonomy

Integrated Gaussian curvature

Path dependence of parallel transport



Studying Vector fields

How to
« define a VF on a surface?
« Differentiate it?

* Integrate?

 Define its topology?

http: / /theanalyticpoem.net/concept-map/3-
dimension /torus_vectors_oblique /




Vector Field Topology

ox ay

Image from Smooth Manifolds, Lee



Poincare-Hopf Theorem

g index,, (v) = x (M)
)
where vector field v has isolated singularities {x;}.

indexpv = 1

Image from “Directional Field Synthesis, Design, and Processing” (Vaxman et al., EG STAR 2016)



Famous Corollary

Hairy ball theorem



Singularities in wild



Singularities in wild




DISCRETE VECTOR FIELDS
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Vector Fields on Triangle Meshes

No consensus:

 Triangle-based
» Edge-based
» Vertex-based
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Vector Fields on Triangle Meshes

No consensus:

 Triangle-based
» Edge-based
» Vertex-based




Triangle-Based

 Triangle as its own tangent plane

* One vector per triangle
— “Piecewise constant”
— Discontinuous at edges /vertices

» Easy to “unfold” /“hinge”




Discrete Levi-Civita Connection

 Simple notion of parallel transport

 Transport around vertex:
Excess angle is (integrated)
Gaussian curvature (holonomy!)




Arbitrary Connection

A

Represent using angle 6,4, of extra rotation.

% \L/Notat ‘jl.“,,m




Trivial Connections

» Vector field design

» Zero holonomy on discrete

cycles

— Except for a few singularities
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“Trivial Connections on Discrete Surfaces”/

Crane et al., SGP 2010




Trivial Connections: Detalls

* Solve 0,44, Of extra rotation per edge

 Linear constraint:

Zero holonomy on basis cycles
— V+2g constraints: Vertex cycles plus harmonic

— Fix curvature at chosen singularities

« Underconstrained: Minimize ||0]|
— Best approximation of Levi-Civita



Result

Resulting trivial connection
(no other singularities present)

Linear system



Aside:
Nice 2D ldentification

7 < ae'?



Face-Based Calculus

Vertex-based Edge-based
“Conforming” “Nonconforming”
Already familiar [Wardetzky 2006]

Relationship: ¥;; = ¢; + ¢; — o
Gradient Vector Field



Pocall
Gradient of a Hat Function

1 1
”VfH - €3 Sin93 - E
1
€5
V=2

2A

I

Length of e,; cancels
“base” in A




Helmholtz-Hodge
Decomposition

Divergence
free

e ——

—




Helmholtz-Hodge
Decomposition

Divergence

—— g Al i
e

:-—;——;E = = ll':'\'.:::-- S=—— _i:—_:;:{
Vf | Curl free




Bosall
Fuler Characteristic




Discrete Helmholtz-Hodge

)

2=V —E+F

— 9F =(V —1)+(E —1) +2g

. Dimensionaljt
Either works out

» Vertex-based gradientst—2efectly!

<

- Edge-based rotated gradients

Can work out
div /grad/curl

or

- Edge-based gradients

» Vertex-based rotated gradients

“Mixed” finite elements
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Vector Fields on Triangle

Meshes

No consensus:

 Triangle-based
» Edge-based
» Vertex-based

Not Covered here!
Google ‘Discrete
Exterior Calculug’

C RS
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Vector Fields on Triangle
Meshes

No consensus:

 Triangle-based
» Edge-based
» Vertex-based




Vertex-Based Fields

e Pros

— Possibility of higher-
order differentiation

e Cons

— Vertices don’t have
natural tangent
spaces

— Gaussian curvature
concentrated



2D (Planar) Case: Easy

Piecewise-linear (x,y) components



3D Case: Ambiguous

Interpolate
vector and
tangent space!




Recent Method for Continuous
Flelds

Discrete Connection and Covariant Derivative
for Vector Field Analysis and Design

Beibei Liu and Yiying Tong

Michigan State University

and

Fernando de Goes and Mathieu Desbrun
California Institute of Technology

In this paper, we introduce a discrete definition of connection on simplicial
manifolds, involving closed-form continuous expressions within simplices
and linile rotalions across simplices. The linile-dimensional paramelers of
this connection are optimally compuied by minimizing a quadratic mea-
sure of the deviation to the (discontinuous) Levi-Civita connection induced
by the embedding of the inpul triangle mesh, or to any melric connection
with arbitrary cone singularities at vertices. From this discrete connection,
a covarianl derivalive is construcled through exactl dillerentialion, leading
to explicit expressions for local integrals of first-onder derivatives (such as
divergence, curl and the Cauchy-Riemann operator), and for Lo-based ener-
gies (such as the Dirichlet energy). We finally demonstrate the wility, fexi
bility, and accuracy of our discrete formulations for the design and analysis
ol veclor, n-veclor, and n-direction lields.

Calegorics and Subject Descriplors: 1.3.5 [Computer Graphics]: Compu-
tational Geometry & Object Modeling—Curve & surface representations,

CCS Concepts: eComputing methodologies — Mesh models;

digilal geometry processing, with applicalions ranging from lex (ure
synthesis to shape analysis, meshing, and simulation. However, ex-
isting discrete counterparts of such a differential operator acting on
simplicial manifolds can either approximate local derivatives (such
as divergence and curl) or estimate global integrals (such as the
Dirichlet energy), but not both simultaneously.

In this paper, we present a unified discretization of the covariant
derivative that offers closed-form expressions for both local and
global first-order derivatives ol verlex-based tangent veclor lields
on triangulations. Our approach is based on a new construction of
discrete connections that provides consistent interpolation of tan-
gent vectors within and across mesh simplices, while minimizing
the deviation to the Levi-Civita connection induced by the 3D em-
bedding of the inpul mesh—or more generally, 1o any melric con-
nection with arbitrary cone singularities at vertices. We demon-
strate the relevance of our contributions by providing new com-
putational tools to design and edit vector and n-direction fields.
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Vector Fields on Triangle
Meshes

No consensus:

 Triangle-based
» Edge-based
» Vertex-based
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Vector Fields on Triangle
Meshes

No consensus:

 Triangle-based
» Edge-based

» Vertex-based
rs?




More Exotic Choice

Eurographics Symposium on Geometry Processing 2013 Virlume 32 (201 3), Number 5
Yaron Lipman and Richard Hao Zhang
(Guest Editors)

An Operator Approach to Tangent Vector Field Processing

Omri Azencot' and Mirela Ben-Chen' and Frédéric Chazal® and Maks D\fsjunikmr3

1Technion - Israel Institute of Technology
2 Geometrica, INRIA
3LIX, Fcole Polytechnique

Figure 1: Using our framework various vector field design goals can be easily posed as linear constraints. Here, given three
symumetry maps: rofational (81), bilateral (52) and front/back (53), we can generate a symmetric vector field usi

fleft), SI + 52 (center) and S1 + 52 + 83 (right). The top row shows the front of the 3D model, and the) ]
Vector fields

Abstract as derivative

In thiy paper, we introduce a novel coordinate-free method for manipulating and analyzing vector)
surfaces. Unlike the commonly used representations of a vector field as an assignment of vecto o erators
the mesh, or as real values on edges, we argue that vector fields can also be naturally viewed as p

domain and range are functions defined on the mesh. Although this point of view is common in diffe OIETry I

it has so far not been adopted in eeometry processing apmlications. We recall the theoretical properties of vector




Extension: Direction Fields

I -vector field One vector, classical “vector field”

Two directions with T symmetry,

Z—dll'ectl(m ﬁeld “line ﬁe]d”, ;nz_R()Sy field”

Three independent vectors, “3-

3 . -
I-vector field polyvector field”

Four vectors with /2 symmetry,

4-vector field ) .
“non-unit cross field”

Four directions with /2 symmetry,

4-direction field “unit cross field”, “4-RoSy field”

Two pairs of vectors with T symme-

22_ fiel
vector field try each, “frame field”

Two pairs of directions with T sym-

22_direction field
frect metry each, “non-ortho. cross field”

Six directions with /3 symmetry,
“6-RoSy”

Three pairs of vectors with T sym-
X 23_vector field p Y
metry each

s[5 v

6-direction field

“Directional Field Synthesis, Design, and Processing” (Vaxman et al., EG STAR 2016)



Polyvector Flelds

Eurographics Symposium on G try Prc ing 2014 Volume 33 (2014), Number 5
Thomas Funkhouser and Shi-Min Hu
(Guest Editors)

Designing N-PolyVector Fields with Complex Polynomials

Olga Diamanti'  Amir Vaxman®  Danicle Panozzo' Olga Sorkinc-Homung'

YETH Zurich, Switzerland
?Vienna Institute of Technology, Austria

(—)f(z) = (z—wug) - (2 —ug)
= f(2) = 2P a2+ a2z +ag
— {ao, ..., ax}

Figure 1: A smooth 4-PolyVector field is generated from a sparse set of principal direction constrainis (faces in light blue). We
optimize the field for conjugacy and use it 1o guide the generation of a planar-quad mesh. Pseudocolor represents planarity.

Abstract

We introduce N-PolyVector fields, a generalization of N-RoSy fields for which the vectors are neither necessarily
orthogonal nor rotationally symmeiric. We formally define a novel representation for N-PolyVectors as the root sels
of complex polynomials and analyze their topological and geometric properties. A smooth N-PolyVector field can
be efficiently generated by solving a sparse linear system without integer variables. We exploit the flexibility of
N-PolyVector fields to design conjugate vector fields, offering an intuitive tool to generate planar quadrilateral
meshes.

1. Introduction ing N unit-length vectors related by a rotation of an integer

One encoding of direction fields



