IFT 6113 APPLICATIONS OF VECTOR FIELDS

tiny.cc/6113

Mikhail Bessmeltsev

Outline

- Geometry processing
- Mesh Generation
- Deformation
- Texture mapping and synthesis
- Misc
- Non-photorealistic rendering
- Crowd simulation

Outline

- Geometry processing
- Mesh Generation
- Deformation
- Texture mapping and synthesis
- Misc
- Non-photorealistic rendering
- Crowd simulation

2D: Digital Micrography

2D: Digital Micrography

In flanders fields

IFlanders fields the poppies blow Between the crosses, row on row, That mark our place; and in the sky The larks, still bravely singing, fly Scarce heard amid the guns below.

We are the Dead. Short days ago
We lived, felt dawn, saw sunset glow, Loved and were loved, and now we lie, In Flanders fields.

Take up our quarrel with the foe: To you from failing hands we throw The torch; be yours to hold it high. If ye break faith with us who die We shall not sleep, though poppies grow In Flanders fields.

IN FLANDERS FIELDS THE POPPIES BLOW BETWEEN

2D: Digital Micrography

Boundary conditions

- Vector field is parallel or perpendicular to the boundary

Aligned

Inside?

Inside?

- Smoothest interpolation of boundary values
- Laplace equation with Dirichlet boundary conditions
- Discretization?
- Representation?

$$
\begin{gathered}
\Delta u=0 \\
\left.u\right|_{\partial \Omega}=v
\end{gathered}
$$

Outline

- Geometry processing
- Mesh Generation
- Deformation
- Texture mapping and synthesis
- Misc
- Non-photorealistic rendering
- Crowd simulation

2D Mesh Generation

- Input: mesh topology + vector field (VF)
- Task: Align the mesh with the VF

'Mesh Generation Using Vector Fields' by P.Knupp, 1994

2D Mesh Generation

- User chooses which edge should align to VF

- How to formulate alignment?

Alignment

Equivalent formulation

(x, y)

Jacobian: $J=\left(\begin{array}{ll}\frac{\partial X}{\partial x} & \frac{\partial X}{\partial y} \\ \frac{\partial Y}{\partial x} & \frac{\partial Y}{\partial x}\end{array}\right)$

Discretized: $J=\left(\begin{array}{cc}X_{2}-X_{1} & X_{3}-X_{1} \\ Y_{2}-Y_{1} & Y_{3}-Y_{1}\end{array}\right)$

Equivalent formulation

(x, y)

$$
\begin{gathered}
J=\left(\begin{array}{cc}
X_{2}-X_{1} & X_{3}-X_{1} \\
Y_{2}-Y_{1} & Y_{3}-Y_{1}
\end{array}\right) \\
J=U \cdot\left(\begin{array}{ll}
l_{1} & \\
& l_{2}
\end{array}\right)=T_{U}
\end{gathered}
$$

Final statement

- Constrain inverses instead

$$
\min \int \operatorname{det}\left(J^{-1}-T^{-1}\right)^{2} d x d y
$$

Issues?

Adding non-uniform sizing

Mesh Quadrangulation

Input: Triangle mesh + sparse directions
Output: Quad mesh aligned with the directions

'Mixed-Integer Quadrangulation' by Bommes et al., 2009

Mesh Quadrangulation

1. Compute two vector fields
2. Align a quad mesh with them

Mesh Quadrangulation

1. Compute a cross field
2. For all points on a surface, compute (u,v)

Parameterization!
More on that later

Cross Fields

- 4 coupled vectors $=$ 2 directions

Representation and singularities

Smoothness?

- Associate tangent spaces
- Add period jumps

Outline

- Geometry processing
- Mesh Generation
- Deformation
- Texture mapping and synthesis
- Misc
- Non-photorealistic rendering
- Crowd simulation

Mesh Deformation

(b)
(c)
(d)

Mesh Deformation

Find a divergence-free vector field $\operatorname{div} v=0$

(c)

(d)

‘Vector Field Based Shape Deformations’ by Funck et al., 2006

Before:

Divergence-Free VF

$$
\operatorname{div} v=\nabla \cdot v=\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial v}{\partial z}=0
$$

Divergence-free => No stretch/squash!

Tangent Vector Fields

- Rotated gradient fields have zero divergence

$$
\operatorname{div} R \nabla u=0
$$

(proof for 2D case on the board)

Normal Vector Fields

Cross product of two gradients has zero divergence

$$
\begin{gathered}
\mathbf{v}(x, y, z)=\nabla p(x, y, z) \times \nabla q(x, y, z) \\
\operatorname{div} v=0
\end{gathered}
$$

Mesh Deformation

Can specify twist!

Outline

- Geometry processing
- Mesh Generation
- Deformation
- Texture mapping and synthesis
- Misc
- Non-photorealistic rendering
- Crowd simulation

Texture Synthesis

‘Stripe Patterns on Surfaces’ by F. Knoppel et al., 2015

Idea

- Input: mesh + vector field (+scale)
- Output: scalar field controlling periodic texture
- Imagine periodic texture as $f=\sin (\boldsymbol{\alpha})$

Idea

Singularities => more even spacing

Idea

Singularities => more even spacing

 Also occurring in nature

Useless fact

"It was previously believed that zebras were white animals with black stripes, since some zebras have white underbellies. Embryological evidence, however, shows that the animal's background colour is black and the white stripes and bellies are additions."

Familiar components!

- Representation
- Connection
- Singularities
- Dirichlet Energy
... but also some other notions beyond the scope of this course

Familiar components!

- Representation
- Connection
- Singularities
- Dirichlet Energy
... but also some other notions beyond the scope of this course

How to optimize for α

$\nabla \alpha$ should be perpendicular to the vector field?

How to optimize for α

$\nabla \alpha$ should be perpendicular

 to the vector field?

Can we integrate
 that?

How to optimize for α

Look for $\psi=e^{i \alpha}$ instead: it can be smooth

Can we integrate
 that?

Outline

- Geometry processing
- Mesh Generation
- Deformation
- Texture mapping and synthesis
- Misc
- Non-photorealistic rendering
- Crowd simulation

Non-photorealistic rendering

- Input: mesh
- Output:
'Illustrating Smooth Surfaces' by Hertzmann \& Zorin, 2001

Components

Silhouettes 'hatching'

Silhouettes

- Mesh silhouettes are unreliable

a)
(b)
(c)

Silhouettes

Better idea:
 Silhouettes = zeros of a scalar field

Point p is on silhouette \Leftrightarrow

$$
n \cdot(c-p)=0
$$

Camera position

Silhouettes

Better idea:
 Silhouettes = zeros of a scalar field

Point p is on silhouette \Leftrightarrow

Camera position

Hatching

- Principle curvature directions!

Hatching

- Principle curvature directions!

- Except those are not defined for umbilics (equal principal curvatures)
- At umbilics, draw geodesics!

2 directional fields?

Hatching

- Find parabolic areas of the mesh
- Constrain cross field to align with principle curvatures
- The rest should be smooth
- Smoothness term uses a connection

Result

