IFT 6113
MESH DEFORMATION
AND SKINNING
tiny.cc/ift6113

Image from ‘As-Rigid-As-Possible Shape Modeling’ by Sorkine & Alexa, 2007

Mikhail Bessmeltsev
What for?

- Animation!
- Mesh editing
- Image warping (2D)

This, and many other images in this presentation are from 'Polygon Mesh Processing' textbook by Botsch et al. or their website
Warning:

TMI

This topic is immense
We’ll only see a few samples
Deformation: user interface

• Handles
• Cages
• Skeletons
• ...

More on those later

Ju et al., SIGGRAPH 2007
Deformation models

Direct

\[v' = (\sum w_j T_j) v \]

- Linear Blend Skinning
- Dual Quaternion Skinning
- ...

Variational

\[v' = \arg\min_x E(x) \]

- Multiresolution editing
- As-Rigid-As-Possible
- Laplacian Mesh Editing
- ...

Deformation models

Direct

\[v' = (\sum w_j T_j) v \]

- Linear Blend Skinning
- Dual Quaternion Skinning
- ...

Variational

\[v' = \arg\min_x E(x) \]

- Multiresolution editing
- As-Rigid-As-Possible
- Laplacian Mesh Editing
- ...

Deformation: user interface

- Handles
- Cages
- Skeletons
- ...

[Image of user interface with handles and cage deformation]
Modeling

Paint three surface areas:
• Constrained
• Smooth falloff
• Fixed
Formulation

Find displacement vector field d

- Smooth
- Satisfies constraints

$S' = \{ p + d(p) | p \in S \}$
Simplest idea

- $d = s(p) \cdot D$
- $s(p)$ is a smooth function:
 - -1 on green vertices
 - 0 on grey ones

d known $= D$

$d = 0$

$d = ?$
How to find $s(p)$?

- Something inversely proportional to geodesic distance
- Or our favorite:

$$
\Delta s(p_i) = 0, \quad p_i \in \mathcal{R},
$$

$$
s(p_i) = 1, \quad p_i \in \mathcal{H},
$$

$$
s(p_i) = 0, \quad p_i \in \mathcal{F}.
$$
Solved?

Reality vs Expectation
Physically-Based

Find a deformation that preserves both fundamental forms

Express the fundamental forms of S' via vector field d

\[\int_{\Omega} k_s \left\| I - I' \right\|_F^2 + k_b \left\| II - II' \right\|_F^2 \, dudv \]

stretches

\[
\text{Expensive to optimize!}
\]

bends
Shell-Based Deformation

Find a deformation that preserves both fundamental forms

Linearize Express the fundamental forms of S' via vector field d

\[
\int_{\Omega} k_s \left(\|d_u\|^2 + \|d_v\|^2 \right) + k_b \left(\|d_{uu}\|^2 + 2 \|d_{uv}\|^2 + \|d_{vv}\|^2 \right) dudv
\]

- stretching
- bending
Physically-Based

\[
\int_{\Omega} \left[k_s \left(\|d_u\|^2 + \|d_v\|^2 \right) + k_b \left(\|d_{uu}\|^2 + 2 \|d_{uv}\|^2 + \|d_{vv}\|^2 \right) \right] \, dudv
\]

- stretching
- bending

Gateaux derivative =>

\[-k_s \Delta d + k_b \Delta^2 d = 0\]
Physically-Based

\[\int_{\Omega} k_s \left(\|d_u\|^2 + \|d_v\|^2 \right) + k_b \left(\|d_{uu}\|^2 + 2 \|d_{uv}\|^2 + \|d_{vv}\|^2 \right) \, dudv \]

stretcing \hspace{2cm} bending

Gateuax derivative =>

\[-k_s \Delta d + k_b \Delta^2 d = 0 \]

\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} \]

Bi-Laplacian
Deformation Energies

Initial state

$\Delta d = 0$
(Membrane)

$\Delta p = 0$

$\Delta^2 p = 0$

$\Delta^2 d = 0$
(Bilaplacian)
Deformation Energy

Initial state

\[\Delta d = 0 \]
(Membrane)

\[\Delta^2 d = 0 \]
(Bilaplacian)

\[\Delta p = 0 \]

\[\Delta^2 p = 0 \]

Higher order \(\Rightarrow\) more boundary conditions
Solved?

- Very fast
 - One linear solve!
- Physically-based
- Linearization \Rightarrow lose details

![Original](image1.png) ![Linear deformation](image2.png) ![Non-linear deformation](image3.png)

Original Linear deformation Non-linear deformation
Issue

- We need to rotate details
 - Local rotation is nonlinear!

- Can we still survive with linear solves?

![Original](image1) ![Linear deformation](image2) ![Non-linear deformation](image3)
Multiresolution Editing

Frequency decomposition

Change low frequencies

Add high frequency details, stored in local frames
Multiresolution Editing

Multiresolution Modeling

Decomposition

Freeform Modeling

Detail Information

Reconstruction
How to represent details?

• For example, normal displacements
Result

Global deformation with intuitive detail preservation
Limitations

Neighboring displacements are not coupled
 - Surface bending changes their angle
 - Leads to volume changes or self-intersections
Limitations

Neighboring displacements are not coupled
- Surface bending changes their angle
- Leads to volume changes or self-intersections

Original Normal Displ. Nonlinear
New coordinates?

Express shape in *differential coordinates*

Transform those,
then reconstruct the new shape
Mean Value Property

\(L_{vw} = A - D = \begin{cases}
1 & \text{if } v \sim w \\
-\text{degree}(v) & \text{if } v = w \\
0 & \text{otherwise}
\end{cases} \)

\((Lx)_v = 0 \)

Value at \(v \) is average of neighboring values
Laplacian Mesh Editing

Graph Laplacian:

\[\delta_i = v_i - \frac{1}{d_i} \sum_{j \in N(i)} v_j \]

\[\delta = Lv \]

Local coordinates!
Laplacian Mesh Editing

- Represent mesh using only δ
- Find a surface whose Laplacian coordinates are as close as possible to δ

\[\int_{S} \| \Delta p' - \delta' \|^2 \, dS \rightarrow \min \]

s.t. $p'_i = p_i, i \in \{point \ constraints\}$
Laplacian Mesh Editing

Find a surface whose Laplacian coordinates are as close as possible to \(\delta \)

\[
\min \sum \| \delta_i - L(p'_i) \|^2 + \sum_{i \in c} \| p'_i - p_i \|^2
\]
Laplacian Mesh Editing

Find a surface whose Laplacian coordinates are as close as possible to δ

$$\int_S \| \Delta p' - \delta' \|^2 dS \rightarrow \min$$

s.t. $p_i' = p_i, i \in \{\text{point constraints}\}$

Gateaux derivative \Rightarrow $\Delta^2 p' = \Delta \delta'$
Physically-Based

\[\int_{\Omega} k_s \left(\|d_u\|^2 + \|d_v\|^2 \right) + k_b \left(\|d_{uu}\|^2 + 2\|d_{uv}\|^2 + \|d_{vv}\|^2 \right) \, dudv \]

stretched\hspace{10cm} \text{bending}

Gateux derivative =>

\[-k_s \Delta d + k_b \Delta^2 d = 0 \]

(almost) the same equation? \hspace{1cm} Bi-Laplacian
Issue

Reconstructing from differential coordinates makes sense only if they are rotation and translation invariant.

Otherwise, you get this

Translating a handle induces local rotations!
Laplacian Coordinates

- Translation invariant
- Not rotation/scale invariant

\[\delta_i = L(v_i) = L(v_i + t); \forall t \in \mathbb{R}^3 \]
Solutions

1. Transform, ignoring rotations or details

2. while (not converged)

 – Estimate rotations (from normals)

 – Rotate differential coordinates and solve

\[E(\mathbf{V}') = \sum_{i=1}^{n} \left\| R_i \delta_i - L(p'_i) \right\|^2 + \sum_{i \in c} \left\| p'_i - p_i \right\|^2 \]

Solutions

1. Transform, ignoring rotations or details

2. while (not converged)
 – Estimate rotations \textit{(from normals)}
 – Rotate differential coordinates and solve

Rotations + **scaling** – invariant?

Add local transformations T_i as variables

$$E(V') = \sum_{i=1}^{n} \| T_i \delta_i - L(p'_i) \|^2 + \sum_{i \in c} \| p'_i - p_i \|^2$$

Rotations + **scaling** – invariant?

Add local transformations T_i as variables

$$E(V') = \sum_{i=1}^{n} \| T_i \delta_i - L(p'_i) \|^2 + \sum_{i \in c} \| p'_i - p_i \|^2$$

$$\min_{T_i} \left(\| T_i v_i - v'_i \|^2 + \sum_{j \in N_i} \| T_i v_j - v'_j \|^2 \right).$$

Rotations + **scaling** – invariant?

Add local transformations T_i as variables

$$\min_{T_i} \left(\| T_i v_i - v'_i \|^2 + \sum_{j \in \mathcal{N}_i} \| T_i v_j - v'_j \|^2 \right).$$

$T_i = \text{translation + rotation + scaling}$

Represent (a linearization of) T_i using translation/rotation/scaling parameters

Rotations + **scaling** – invariant?

Add local transformations T_i as variables

$$E(V') = \sum_{i=1}^{n} \|T_i \delta_i - L(p'_i)\|^2 + \sum_{i \in c} \|p'_i - p_i\|^2$$

$\Rightarrow T_i$ is a linear function of V'

\Rightarrow Quadratic optimization

\Rightarrow Linear solve!

As-Rigid-As-Possible Surface Modelling
As-rigid-as-possible (ARAP)
As-rigid-as-possible (ARAP)

- “Intuitive” deformations
 - Smooth deformations at large scale
- Preserve local features
- Fast, for interactive mesh editing
ARAP in a nutshell...

1. Break mesh into overlapping pieces
2. Try to move each piece rigidly
3. Combine all local transformations into a smooth one
Pieces

Vertex Umbrella
- Covers entire surface
- One cell per vertex
- All triangles exist in 3 cells
Rigid motion

If cell i moved rigidly:

$$p'_j - p'_i = R_i(p_j - p_i)$$

$$\forall j \in N(i)$$
Deviation from rigid motion

If cell i moved rigidly:

$$p'_j - p'_i = R_i(p_j - p_i)$$

$$\forall j \in N(i)$$

$$E = \sum_{j \in N(i)} \|p'_j - p'_i - R_i(p_j - p_i)\|^2$$
For the whole mesh

\[
E = \sum_i \sum_{j \in N(i)} \| p'_j - p'_i - R_i (p_j - p_i) \|^2
\]
For the whole mesh

\[
E = \sum_i \sum_{j \in N(i)} w_{ij} \| p'_j - p'_i - R_i (p_j - p_i) \|^2
\]
Orthogonal Procrustes problem

How to find the best rotation matrix aligning V with V'?
Orthogonal Procrustes problem

How to find the best rotation matrix aligning V with V'?

$$\arg\min_{R} \| RA - B \|_F$$

s.t. $R^T R = I$
Procrustes problem

1. Build covariance matrix $S = VV^T$
2. SVD: $S = U\Sigma W^T$
3. $R_i = UW^T$

Closed-form solution!
Mesh Deformation

\[
\min \Sigma_i \Sigma_{j \in N(i)} w_{ij} \| p'_j - p'_i - R_i (p_j - p_i) \|^2 \\
\text{s.t. } p'_i = \tilde{p}_i
\]

Caveats:

- \{p'_i\} and \{R_i\} are unknown
- Non-linear optimization problem
Mesh Deformation

1. Start with initial guess of \(\{p'_i\} \), find \(\{R_i\} \)
2. Given \(\{R_i\} \), minimize energy to find \(\{p'_i\} \)
3. Repeat

\[
\sum_{j \in N(i)} w_{ij} (p'_i - p'_j) = \sum_{j \in N(i)} \frac{w_{ij}}{2} (R_i + R_j)(p_i - p_j)
\]

\[
Lp' = b
\]
Advantages

Laplacian
 – Depends only on original mesh
 – Only needs to be factored once!

Rotations can be computed in parallel
 • Each iteration reduces energy
 ◦ Updating rotations guaranteed to reduce cell-error
 ◦ Updating positions guaranteed to reduce global error

Guaranteed Convergence
Results (vs Poisson)

Poisson:

ARAP:
Deformation models

Direct

\[v' = (\sum w_j T_j) v \]

- Linear BlendSkinning
- Dual Quaternion Skinning
- ...

Variational

\[v' = \text{argmin}_{x} E(x) \]

- Multiresolution editing
- As-Rigid-As-Possible
- Laplacian Mesh Editing
- ...

Deformation models

Direct

\[v' = (\sum w_j T_j) v \]

- Linear Blend Skinning
- Dual Quaternion Skinning
- ...

Variational

\[v' = \text{argmin}_{x} E(x) \]

- Multiresolution editing
- As-Rigid-As-Possible
- Laplacian Mesh Editing
- ...

1) Rest pose
2) Skinning transformations
3) Skinning weights

$W_{i,1}$
3) Skinning weights

$W_{i,2}$
Linear blend skinning (LBS)

\[v' = \left(\sum w_j T_j \right) v \]
LBS is used widely in the industry

Halo 3

Bolt

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan
LBS: candy-wrapperr artifact
LBS: candy-wrapper artifact

Figure 2: Typical “candy-wrapper” artifacts of linear blend skinning.
What went wrong?

\[v' = (\sum w_j T_j) v \]
What went wrong?

\[v' = (\sum w_j T_j) v \]

\[
R_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad R_2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]
What went wrong?

\[\nu' = (\sum w_j T_j) \nu \]

\[R_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad R_2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Why can’t we just sum up rotation matrices?
Geometry of linear blending

$\text{SE}(3)$
Geometry of linear blending

$SE(3)$

T_1

T_2

Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan
Geometry of linear blending

$SE(3)$

T_1 T_{blend} T_2
Geometry of linear blending

$\text{SE}(3)$

T_1 T_{blend} T_2
Intrinsic blending

\[T_{\text{blend}} \]

\[T_1 \]

\[T_2 \]
Slides from Skinning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan
Slides from Skininning: Real-time Shape Deformation Course, Direct Skinning Methods and Deformation Primitives by Ladislav Kavan
Intrinsic blending using Lie algebras

$$\text{argmin}_X \sum_X w_j d(X, T_j)$$

$$d(X, Y) = \|\log(YX^{-1})\|^2$$

Karcher / Frechet mean
Dual Quaternion Skinning
Where do the weights come from?
Manual?
Automatic skinning weight computation
Weights should obtain a few basic qualities
Inverse Euclidean distance weights are too crude, show obvious artifacts

\[w_j(v) = \frac{1}{\|c_i - v\|^2} \]

weights optimized inside shape

[Shepard 1968], [Schaefer et al. 2006], etc.
Inverse Euclidean distance weights are too crude

\[w_j(v) = \frac{1}{\|c_i - v\|^2} \]

weights optimized *inside* shape

[Shepard 1968], [Schaefer et al. 2006], etc.
Discontinuous projection onto surface can be smoothed out

[Baran & Popović 2007]
Discontinuous projection onto surface can be smoothed out

\[
\arg\min_{w_j} \int_{\Omega} \| \nabla w_j \|^2 + h_j (w_j - \hat{w}_j)^2 \, dA
\]

[Baran & Popović 2007]
Discontinuous projection onto surface can be smoothed out

\[
\text{argmin}_{w_j} \int_{\Omega} \left(\| \nabla w_j \|^2 + h_j (w_j - \hat{w}_j)^2 \right) dA
\]

[Baran & Popović 2007]
Discontinuous projection onto surface can be smoothed out

\[
\arg\min_{w_j} \int_{\Omega} \|\nabla w_j\|^2 + h_j (w_j - \hat{w}_j)^2 \, dA
\]

[Baran & Popović 2007]
Discontinuous projection onto surface can be smoothed out

\[\arg \min_{w_j} \int_\Omega \left(\| \nabla w_j \|^2 + h_j (w_j - \hat{w}_j)^2 \right) dA \]

[Baran & Popović 2007]
Gradient energy weights not smooth at handles.

\[\arg \min_{w_j} \int_{\Omega} (\Delta w_j)^2 \, dA \]

\[\arg \min_{w_j} \int_{\Omega} \| \nabla w_j \|^2 \, dA \]
Gradient energy weights not smooth at handles

\[
\arg\min_{w_j} \int_{\Omega} (\Delta w_j)^2 \, dA
\]

\[
\arg\min_{w_j} \int_{\Omega} \| \nabla w_j \|^2 \, dA
\]
Gradient energy weights not smooth at handles

\[\Delta^2 w_j = 0 \]

\[\Delta w_j = 0 \]
Point constraints for Laplace equation

https://www.facebook.com/521399544544480/photos/a.523048724379562/800968259920939/?type=1&theater, Facebook group “Circus tents and circus equipment”
Non-negative, local weights are mandatory

\[0 \leq w_j \leq 1 \]

\[\text{argmin}_{w_j} \int_{\Omega} (\Delta w_j)^2 \ dA \]

[Botsch & Kobbelt 2004]
Spurious extrema cause distracting artifacts

0 \leq w_j \leq 1
Must explicitly prohibit spurious extrema

\(w_j \) is “monotonic”
Previous methods fail in one way or another

<table>
<thead>
<tr>
<th>Feature</th>
<th>Euclidean</th>
<th>Δw_j</th>
<th>$\Delta^2 w_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>non-negative</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>shape-aware</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>local</td>
<td>-/✓</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>monotonic</td>
<td>-</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>arbitrary handles</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

[S Shepard 1968, Sibson 1980, Schaefer et al. 2006]
[Baran & Popovic 2007, Joshi et al. 2007]
Constrained optimization ensures satisfaction of all properties

\[\arg\min_{w_j, j=1, \ldots, m} \sum_{j=1}^{m} \int_{\Omega} (\Delta w_j)^2 \, dV \]

+ shape-aware
+ smoothness

Constrained optimization ensures satisfaction of all properties

\[
\text{argmin}_{w_j, j=1, \ldots, m} \sum_{j=1}^{m} \int_{\Omega} (\Delta w_j)^2 \, dV
\]

\[
w_j(v) = \begin{cases}
1 & \text{if } v \in h_j, \\
0 & \text{if } v \in h_k \\
\text{linear on cage facets} & \text{else}
\end{cases}
\]

Constrained optimization ensures satisfaction of all properties

\[
\arg\min_{w_j, j=1, \ldots, m} \sum_{j=1}^{m} \int_{\Omega} (\Delta w_j)^2 \, dV
\]

\[0 \leq w_j \leq 1,\]

\[\sum_{j=1}^{m} w_j = 1\]

[Jacobson et al. 2011]
Constrained optimization ensures satisfaction of all properties

\[
\arg\min_{w_j, j=1, \ldots, m} \sum_{j=1}^{m} \int_{\Omega} (\Delta w_j)^2 \, dV
\]

\[
0 \leq w_j \leq 1, \quad \sum_{j=1}^{m} w_j = 1
\]

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality

[Jacobson et al. 2011]
Constrained optimization ensures satisfaction of all properties

\[
\arg\min_{w_j, j=1, \ldots, m} \sum_{j=1}^{m} \int_{\Omega} (\Delta w_j)^2 \, dV
\]

\[\|w\|_1 = 1\]

[Rustamov 2011]
Constrained optimization ensures satisfaction of all properties

\[
\arg\min_{w_j, j=1, \ldots, m} \sum_{j=1}^{m} \int_{\Omega} (\Delta w_j)^2 \, dV
\]

\[
\|w\|_1 = 1 \rightarrow \sum_{j=1}^{m} |w_j| = 1
\]

[Rustamov 2011]

+ shape-aware
+ smoothness
+ arbitrary handles
+ non-negativity
+ locality
Constrained optimization ensures satisfaction of all properties

\[
\arg\min_{w_j, j=1, \ldots, m} \sum_{j=1}^{m} \int_{\Omega} (\Delta w_j)^2 \, dV
\]

\[
\|w\|_1 = 1 \rightarrow \sum_{j=1}^{m} |w_j| = 1 \rightarrow \sum_{j=1}^{m} w_j = 1,
\]

\[
0 \leq w_j \leq 1
\]

[Rustamov 2011]
Constrained optimization ensures satisfaction of all properties

\[
\arg\min_{w_j, j=1,\ldots,m} \sum_{j=1}^{m} \int_{\Omega} (\Delta w_j)^2 \, dV
\]

\[\nabla w_j \cdot \nabla u_j > 0\]

Previous methods fail in one way or another

<table>
<thead>
<tr>
<th>Feature</th>
<th>Euclidean</th>
<th>$\Delta w_j = u$</th>
<th>$\Delta^2 w_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>non-negative</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>shape-aware</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>local</td>
<td>–/✓</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>monotonic</td>
<td>–</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>arbitrary handles</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Constrained optimization ensures satisfaction of all properties

\[
\arg\min_{w_j, j=1,\ldots,m} \sum_{j=1}^{m} \int_{\Omega} (\Delta w_j)^2 \, dV
\]

\[\nabla w_j \cdot \nabla u_j > 0\]

Weights retain nice properties in 3D.