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DEFINING “CURVE”

Curve = function?

𝑓𝑓: ℝ → ℝ2

𝑓𝑓(𝑡𝑡)

𝑡𝑡



SUBTLETY

𝛾𝛾 𝑡𝑡 = (0,0)

Not all functions are curves!



DIFFERENT FROM CALCULUS

http://sd271.k12.id.us/lchs/faculty/sjacobson/ibphysics/compendium/12_files/image003
j

Sudden 
acceleration

Same curves?



GRAPHS OF SMOOTH 
FUNCTIONS

http://en.wikipedia.org/wiki/Singular_point_of_a_curve

Not smooth!

Smooth functions



GEOMETRY OF A CURVE

A curve is a
set of points

with certain properties.

It is not a function.



GEOMETRIC DEFINITION

Set of points that locally looks like a line.



GEOMETRIC DEFINITION

Too restrictive?



DEFINING “CURVE”

Curve = function?

𝑓𝑓: ℝ → ℝ2

𝑓𝑓(𝑡𝑡)

𝑡𝑡



DEFINING “CURVE”

Curve = function?

𝑓𝑓𝑝𝑝: ℝ → ℝ2

𝑓𝑓(𝑡𝑡)

𝑡𝑡



PARAMETERIZED CURVE

Now this is OK!



WHAT WAS THE PROBLEM 
HERE?

http://en.wikipedia.org/wiki/Singular_point_of_a_curve

Smooth functions



FIXING

http://en.wikipedia.org/wiki/Singular_point_of_a_curve

Non-zero velocity!
𝑓𝑓𝑓 𝑡𝑡 ≠ 0



DEPENDENCE OF VELOCITY

On the board:
Effect on velocity and acceleration.



CHANGE OF PARAMETER

Geometric measurements should be
invariant

to changes of parameter.



ARC LENGTH

On the board:
Independence of parameter



PARAMETERIZATION BY ARC 
LENGTH

Constant-speed parameterization

http://www.planetclegg.com/projects/WarpingTextToSplines.html

𝑠𝑠 𝑡𝑡 ≔ �
𝑡𝑡0

𝑡𝑡
𝛾𝛾𝛾(𝑡𝑡) 𝑑𝑑𝑑𝑑

𝑡𝑡 𝑠𝑠 ≔inverse of 𝑠𝑠(𝑡𝑡)
𝛾𝛾 𝑠𝑠 ≔ 𝛾𝛾(𝑡𝑡 𝑠𝑠 )



SAME CURVE?



MOVING FRAME IN 2D

https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas

𝜏𝜏 𝑠𝑠 ≔ 𝛾𝛾′ 𝑠𝑠

| 𝛾𝛾′ 𝑠𝑠 |=1

𝑛𝑛 𝑠𝑠 ≔ 𝑅𝑅𝑅𝑅𝑅𝑅
𝜋𝜋
2
𝜏𝜏 𝑠𝑠 = 0 −1

1 0 𝜏𝜏(𝑠𝑠)

Tangent

Normal



PHILOSOPHICAL POINT

Differential geometry “should” be 
coordinate-invariant.

Referring to x and y is a hack!
(but sometimes convenient…)



FRENET-SERRET FORMULAS

Use coordinates from the curve 
to express its shape!

On the board:

https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas



RADIUS OF CURVATURE

𝑟𝑟 𝑠𝑠 =
1

𝑘𝑘(𝑠𝑠)

r



Fundamental theorem of the 
local theory of plane curves:

k(s) characterizes a planar 
curve up to rigid motion.



IDEA OF PROOF

Provides intuition for curvature
Image from DDG course notes by E. Grinspun



FRENET FRAME:  CURVES IN ℝ𝟑𝟑

• Binormal:  𝑻𝑻 × 𝑵𝑵
• Curvature: In-plane motion

• Torsion: Out-of-plane motion
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Fundamental theorem of the 
local theory of space curves:

Curvature and torsion 
characterize a 3D curve up 

to rigid motion.



Representing 
curves digitally



TRADITIONAL APPROACH

Piecewise smooth approximations



MODELING CURVES



NOT THE ONLY MODELING TOOL



QUESTION

What is the arc length of 
a cubic Bézier curve?



QUESTION

What is the arc length of 
a cubic Bézier curve?



ONLY APPROXIMATIONS 
ANYWAY



ANOTHER REASONABLE 
APPROXIMATION

Piecewise linear



BIG PROBLEM

Boring differential structure



FINITE DIFFERENCE 
APPROACH

THEOREM:  As Δℎ → 0, [insert statement].



REALITY CHECK

THEOREM:  As Δℎ → 0, [insert statement].



TWO KEY CONSIDERATIONS

• Convergence to 
continuous theory

• Discrete behavior



GOAL

Examine discrete theories 
of differentiable curves.



GOAL

Examine discrete theories
of differentiable curves.



GAUSS MAP

http://mesh.brown.edu/3DPGP-2007/pdfs/sg06-course01.pdf

Normal map from curve to S1



SIGNED CURVATURE ON PLANE CURVES



TURNING NUMBERS

http://mesh.brown.edu/3DPGP-2007/pdfs/sg06-course01.pdf



RECOVERING THETA



TURNING NUMBER THEOREM

A “global” theorem!



DISCRETE GAUSS MAP

http://mesh.brown.edu/3DPGP-2007/pdfs/sg06-course01.pdf



DISCRETE GAUSS MAP

http://mesh.brown.edu/3DPGP-2007/pdfs/sg06-course01.pdf



DISCRETE GAUSS MAP

http://mesh.brown.edu/3DPGP-2007/pdfs/sg06-course01.pdf



KEY OBSERVATION



WHAT’S GOING ON?

Total change in curvature

( )
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WHAT’S GOING ON?

Total change in curvature

( )

𝜅𝜅 ≈
2𝜃𝜃

𝑙𝑙1 + 𝑙𝑙2



Continuous:
𝑘𝑘 𝑠𝑠 = 𝜃𝜃′ 𝑠𝑠

Discrete (finite difference):

𝑘𝑘𝑖𝑖 =
𝜃𝜃𝑖𝑖

(𝑙𝑙𝑖𝑖+𝑙𝑙𝑖𝑖+1)/2

𝑙𝑙𝑖𝑖
2

𝜃𝜃𝑖𝑖
𝑙𝑙𝑖𝑖+1

2



INTERESTING DISTINCTION

Same integrated curvature



INTERESTING DISTINCTION

Same integrated curvature



WHAT’S GOING ON?

Total change in curvature

( )



DISCRETE TURNING ANGLE 
THEOREM

)(

)(

)(

)(
)(

)(

)( Structure Preservation!



ANOTHER DISCRETIZATION



FOR SMALL 𝜽𝜽

Same behavior in the limit
http://en.wikipedia.org/wiki/Taylor_series



Does discrete curvature 
converge in limit?



Discretizing 3D curves

“True2Form: 3D Curve Networks from 2D Sketches via Selective Regularization” by Baoxuan Xu, William Chang, Alla Sheffer, Adrien 
Bousseau, James McCrae, Karan Singh



FRENET FRAME

http://upload.wikimedia.org/wikipedia/commons/6/6f/Frenet.png



APPLICATION

Structure Determination of Membrane Proteins Using Discrete Frenet Frame
and Solid State NMR Restraints

Achuthan and Quine
Discrete Mathematics and its Applications, ed. M. Sethumadhavan (2006)

NMR 
scanner

Kinked alpha helix
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POTENTIAL DISCRETIZATION

Discrete Frenet
frame

“Bond and torsion 
angles”

(derivatives converge to 
𝜿𝜿 and τ, resp.)

Discrete frame introduced in:
The resultant electric moment of complex molecules

Eyring, Physical Review, 39(4):746—748, 1932.



TRANSFER MATRIX

Discrete Frenet Frame, Inflection Point Solitons, and Curve Visualization
with Applications to Folded Proteins

Hu, Lundgren, and Niemi
Physical Review E 83 (2011)

Discrete construction that works for fractal curves 
and converges in continuum limit.



FRENET FRAME:  ISSUE

http://upload.wikimedia.org/wikipedia/commons/6/6f/Frenet.png



SEGMENTS NOT ALWAYS 
ENOUGH

http://www.cs.columbia.edu/cg/rods/

Discrete Elastic Rods
Bergou, Wardetzky, Robinson, Audoly, and Grinspun

SIGGRAPH 2008



SIMULATION GOAL

http://www.cs.columbia.edu/cg/rods/








ADAPTED FRAMED CURVE

Normal part encodes twist
http://www.cs.columbia.edu/cg/rods/



WHICH BASIS TO USE



BISHOP FRAME

http://www.cs.columbia.edu/cg/rods/

No twist
(“parallel 

transport”)



BISHOP FRAME

http://www.cs.columbia.edu/cg/rods/

No twist
(“parallel 

transport”)



CURVE-ANGLE 
REPRESENTATION

Degrees of freedom for elastic energy:
• Shape of curve
• Twist angle 𝜽𝜽



DISCRETE KIRCHOFF RODS

Lower index: primal

Upper index: dual



DISCRETE KIRCHOFF RODS

Tangent unambiguous on edge



DISCRETE KIRCHOFF RODS

Integrated curvature

Yet another 
curvature!

Turning angle



DISCRETE KIRCHOFF RODS

Darboux vector

Yet another 
curvature!

Orthogonal to osculating plane, 
norm 𝜿𝜿𝒊𝒊



BENDING ENERGY

Convert to pointwise and integrate



DISCRETE PARALLEL 
TRANSPORT

• Map tangent to tangent
• Preserve binormal
• Orthogonal

http://www.cs.columbia.edu/cg/rods/



DISCRETE MATERIAL FRAME

http://www.cs.columbia.edu/cg/rods/



DISCRETE TWISTING ENERGY

Note 𝜽𝜽𝟎𝟎 can be arbitrary



SIMULATION

\omit{physics}



EXTENSION AND SPEEDUP

http://www.cs.columbia.edu/cg/threads/



EXTENSION AND SPEEDUP

http://www.cs.columbia.edu/cg/threads/



Three different 
curvature discretizations



Easy theoretical object, 
hard to use.



NEXT

Surfaces
http://graphics.stanford.edu/data/3Dscanrep/stanford-bunny-cebal-ssh.jpg

http://www.stat.washington.edu/wxs/images/BUNMID.gif
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