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ANGLES AND LENGTHS

How to measure angle
between two vectors?




ANGLES AND LENGTHS

(a,b)

coSa =

lalllipll




ANGLES AND LENGTHS

(a,b)

cosa =

J{a, a)/(b, D)




ANGLES AND LENGTHS

a = (xarYa:Za)T
b= (xp,yp, 2p)"
alb

coSax =

lallllbl]




ANGLES AND LENGTHS

a = (ua' va)
b = (ub'vb)
a =777

\



PREVIOUSLY

VA

r(s) i= —— ¥ (s) = k(s) -n(s)




TODAY

Quantify how a surface

bends

.vetstreet.com/our-pi erts /why-does-my-cat-arch-her-back



HIGH-LEVEL QUESTIONS

&

(a)KG>0,KH>0 (PIKG>0,KH<0 {(c)KG=0,KH=0
elliptic concave elliptic convexe plane
()EG=0,KH>0 (e)KG=0,KH <0 HKG<0,KH=0
parabolic concave parabolic convexe saddle (hyperbolic)
s L ouls ?
disti ngulsLL:
EIKG<0,KH<0 (MEKG<0,KEH>0
hyperbolic-like hyperbolic-like

http:/ /pubs.rsc.org/is/content /articlelanding /2013 /cp /c3cp44375b



HIGH-LEVEL QUESTIONS

Does curvature
depend on

space /deformation?
http: / /thegeometryofbending.blogspot.com




HIGH-LEVEL QUESTIONS

| ZERO CURVATURE POSITIVE CURVATURE NEGATIVE CURVATURE

http:/ /starchild.gsfc.nasa.gov /docs /StarChild /questions /question35.html



PRACTICAL APPLICATION

The Best Way to Eat Pizza, According to
Science, Means You Probably Have Been
Doing It Wrong

¥ Bend It Like Gauss:

f Share this

By LUCIA PETERS 0©ct10 2014

Congratulations, New Yorkers: Here’s proof that you are apparently
the only people in the United States who have mastered the best
way to eat pizza. As part of their *It's Okay to Be Smart” Web series,
PES’ latest video delves into all the scientific trivia you never thought
you'd need to know about everyone’s favorite late-night drunk food
— including the most scientifically sound way to gobble down your
slice.

https:/ /www.bustle.com /articles /43697-the-best-way-to-eat-pizza-according-to-
science-means-you-probably-have-been-doing-it



Bocall!
FRENET FRAME: CURVES IN R?

G (T 0 k O T
d_ N — — K 0 T N
\ B 0 —7 0/ \B

* Binormal: TX N
* Curvature: In-plane motion
» Torsion: Out-of-plane motion

Theorem:

Curvature and torsion determine
geometry of a curve up to rigid motion.



Can we say something about
surface curvature using
curve curvature /torsion?



Pocall:
GAUSS MAP

Normal map from curve to S!

4

http://mesh.brown.edu/3DPGP-2007/pdfs

/sg06-course01.pdf



UNIT NORMAL




Fesad/:S|IGNED CURVATURE ON
PLANE CURVES

T(s) = (cosf(s),sinf(s))

T'(s)

B HS, — sin 9(5))
=0'(s) ( cos 8(s)
= k(s) - n(s)



Fesad/:S|IGNED CURVATURE ON
PLANE CURVES

T(s) = (cosf(s),sinf(s))

0'(s) = k(s)

Tangent rotates due to curvature

T'(s)

_9'(s) - (— sin 6(s)
-7 cos 8(s) )
= k(s) - n(s)



Fesad/:S|IGNED CURVATURE ON
PLANE CURVES

T(s) = (cosf(s),sinf(s))

0'(s) = k(s)

Normal rotates due to curvature

T'(s)

B HS,( ).(— sin 6(s)
-7 cos 8(s) )
= k(s) - n(s)



GAUSS MAP FOR SURFACE

http: / /mathworld.wolfram.com /images /eps-gif /UnitSphere_800.gif



GAUSS MAP FOR SURFACE

Derivative?

http: / /mathworld.wolfram.com /images /eps-gif /UnitSphere_800.gif



SMOOTH MAPS

®(x)




SMOOTH MAPS

®(x)




SMOOTH MAPS

®(x)




SMOOTH MAPS




SMOOTH MAPS

P(x) ©0:M > N




SMOOTH MAPS




DIFFERENTIAL OF A MAP

Definition dp:TyM — Ty )N

d
do -y'(s) = QD(;/S(S))

Linear map of tangent spaces

Image from Wikipedia



ANGLES AND LENGTHS

a = (ug, vg), b = (up,vp)
(do(a),de(b))

V{do(a), dp(a))y/{de(b), dp (b))

CoOS X =

\



ANGLES AND LENGTHS
{Ja,jb)
V{a,ja)/{b,]b)

cosa =

\



ANGLES AND LENGTHS
a’J']b
JaTj b\ aTJT]b

cCoS X =

\



ANGLES AND LENGTHS
alJTJb
VaTJT]b\JaT]T]b

coSsax =

\



METRIC TENSOR
AKA FIRST FUNDAMENTAL FORM

a = (ua'va)
b = (up,vp)
g(a,b)

lallllbll
\

coSax =



METRIC TENSOR
AKA FIRST FUNDAMENTAL FORM

g: 1,5 XT,5 - R
g is symmetric, positive definite

\



CALCULATION ON BOARD

Where is the
derivative of N?

Spoiler alert: T,S



SECOND FUNDAMENTAL FORM

DN, : T,S — T,S

l

Ap(V, W) := =(DNp(V), W)

“Shape operator”



RELATIONSHIP TO CURVATURE
OF CURVES




A, IS SELF-ADJOINT

(on board)



PRINCIPAL DIRECTIONS AND
CURVATURES

Ko = K1 COS> 0 + Ko sin® 6

K1, k7 eigenvalues of A ; T,, T, eigenvectors of A



PRINCIPAL CURVATURES




EXTRINSIC CURVATURE




INTERPRETATION

Positive and negative curvature is ignored, Saddle surfaces are shown Inflections are shown u
both have the same Gaussian curvature in the blue/purple colours in green o

126990,45

21360178

£62521.56

e 98305250
™~ Aat

-333052.7

L 5625215

: L a1me0LT

-126890.4

-0.000

= =
Curvature Evaluation Curvature Evaluation |

Type | princ. x| Type v oo

Mean

6 287
Principal Min and Max
can change the direction
of evaluation and give
sharp color changes that
don't actually indicate
any ervors

1021651

1832 581

3218874

Aat

-3218.875

-1832 581

-1021.651

-6, 287

-0.000

Mean avoids this by averaging both directions g

http: / /www.aliasworkbench.com /theoryBuilders /TB7_evaluate3.htm



UNIQUENESS RESULT

Theorem:
A smooth surface is determined up to

rigid motion by its first and second
fundamental forms.



WHO CARES?

Curvature
completely determines
local surface geometry.



USE AS A DESCRIPTOR

Gaussian

http:/ /graphics.ucsd.edu/~iman/Curvature /



SMOOTHING AND
RECONSTRUCTION

Linear Surface Reconstruction from Discrete Fundamental Forms on Triangle
Meshes
Wang, Liu, and Tong
Computer Graphics Forum 31.8 (2012)



FAIRNESS MEASURE

Triangular Surface Mesh Fairing
via Gaussian Curvature Flow
Zhao, Xu
Journal of Computational and
Applied Mathematics 195.1-2
(2006)

and many more




GUIDING RENDERING

Highlight Lines for Conveying
Shape
DeCarlo, Rusinkiewicz
NPAR (2007)

http:/ /www.cs.rutgers.edu/~decarlo/pubs /npar07.pdf



GUIDING MESHING

=

=
\\._//

NN

input mesh direction fields sampling meshing

Anisotropic Polygonal Remeshing
Alliez et al.
SIGGRAPH (2003)



CHALLENGE ON MESHES

Curvature is a
second derivative,
but triangles are flat.

http:/ /upload .wikimedia.org/wikipedia/commons /f/fb/Dolphin_triangle _mesh.png



STANDARD CITATION

ESTIMATING THE TENSOR OF CURVATURE OF A
SURFACE FROM A POLYHEDRAL APPROXIMATION

Gabriel Taubin

(CCV 7995

IBM T.].Watson Research Center
P.O.Box 704, Yorktown Heights, NY 10598

taubin@watson.ibm.com

Abstract

Estimating principal curvatures and principal direc-
tions of a surface from a polyhedral approximation
with a large number of small faces, such as those pro-
duced by iso-surface construction algorithms, has be-
come a basic step in many computer vision algorithms.
Particularly in those targeted at medical applications.
In this paper we describe a method to estimate the ten-
sor of curvature of a surface at the vertices of a poly-
hedral approximation. Principal curvatures and prin-
cipal directions are obtained by computing in closed
form the eigenvalues and eigenvectors of certain 3 x 3
symmetric matrices defined by integral formulas, and

Alacalsr malota-d + + 1 syt inr moasmocoetotio e £ +1- # 3

mate principal curvatures at the vertices of a triangu-
lated surface. Both this algorithm and ours are based
on constructing a quadratic form at each vertex of
the polyhedral surface and then computing eigenval-
ues (and eigenvectors) of the resulting form, but the
quadratic forms are different. In our algorithm the
quadratic form associated with a vertex is expressed as
an integral, and is constructed in time proportional to
the number of neighboring vertices. In the algorithm of
Chen and Schmitt, it is the least-squares solution of an
overdetermined linear system, and the complexity of
constructing it is quadratic in the number of neighbors.

2 The Tensor of Curvature




TAUBIN MATRIX

1 T
M = / koTyT, db
27T

— 17T
Ko := K1 cos® 0 + Ko sin’ @
Ty :=T7cosO +15sin6



TAUBIN MATRIX

1 T
M = koTyT, db
27T

— T

 Eigenvectors are N, Ty, and T,

. 3 1 1 3
 Eigenvalues are Sk ok and Skp + oK



TAUBIN’'S APPROXIMATION

T .

2T ) _

!
Mvi .— Z w@]’inwT;

U5~y



TAUBIN’'S APPROXIMATION

U3

Divided difference
approximation

U; l
-~ o T

U5~y



PROBLEM

http:/ /iristown.engr.utk.edu/~koschan /paper /CVPRO1.pdf

Local estimates are noisy



MAIN TAKE-AWAY

Use application to motivate
choice of curvature.

Simulation, smoothing, analysis, meshing,
nonphotorealistic rendering, ...



ANOTHER EXAMPLE

Estimating Curvatures and Their Derivatives on Triangle Meshes

Szymon Rusinkiewicz
Princeton University

Abstract

The computation of curvature and other differential prop-
erties of surfaces is essential for many techniques in analysis
and rendering. We present a finite-differences approach for
estimating curvatures on irregular triangle meshes thar may
be thought of as an extension of a common method for esti-
mating per-vertex normals. The technique is efficient in space
and time, and results in significantly fewer outlier estimates
while more broadly offering accuracy comparable to existing
methods. It generalizes naturally to computing derivatives of
curvature and higher-order surface differentials.

1 Introduction

As the acquisition and use of sampled 3D geometry become
more widespread, 3D models are increasingly becoming the
focus of analysis and signal processing techniques previously
applied to data types such as audio, images, and video. A key
component of algorithms such as feature detection, filtering,
and indexing, when applied to both geometry and other data
types, is the discrete estimation of differential quantities. In

3DPYT 04

Figure 1: Left: suggestive contours for line drawings [DeCarlo
et al. 2003] are a recent example of a driving application for the
estimation of curvatures and derivatives of curvature. Right: sug-
gestive contours are drawn along the zeras of curvaiure in the
view direction, shown here in blue, but only where the derivative
of curvature in the view direction is positive (the curvature deriva-
tive zeros are shown here in red). This paper describes a general




SECOND FUNDAMENTAL FORM
MATRIX

Assume u, v are orthogonal



SECOND FUNDAMENTAL FORM
MATRIX



FINITE DIFFERENCE PER-
FACE

e,-u\ [ (n,—n)-u

! (en'v> B ( (nz —I’I])'V )
p(e)_ (n,—n,) u
e,-v ) \ (n,—n,)-v

- ((j U ) _ ( (n, —n,)-u )
nl e,V (?Il — n[]) -V

Figure from the paper

Least-squares



AVERAGE FOR PER-VERTEX

» Rotate tangent plane about
cross product of normals

» Average using Voronoi
weights



COMPLETELY DIFFERENT
FORMULA

Consistent Computation of First- and Second-Order
Differential Quantities for Surface Meshes

Xiangmin Jiao®

Dept. of Applied Mathematics & Statistics

Stony Brook University

Abstract

Differential quantities, including normals, curvatures, principal di-
rections, and associated matrices, play a fundamental role in geo-
metric processing and physics-based modeling. Computing these
differential quantities consistently on surface meshes is important
and challenging, and some existing methods often produce incon-
sistent results and require ad hoc fixes. In this paper, we show that
the computation of the gradient and Hessian of a height function
provides the foundation for consistently computing the differential
quantities. We derive simple, explicir formulas for the transforma-
tions between the first- and second-order differential quantities (i.e.,
normal vector and curvature matrix) of a smooth surface and the
first- and second-order derivatives (i.e., gradient and Hessian) of its
corresponding height function. We then investigate a general, flex-
ible numerical framework to estimate the derivatives of the height
function based on local polynomial fittings formulated as weighted
least squares approximations. We also propose an iterative fitting

Hongyuan Zha'
College of Computing
Georgia Institute of Technology

often require ad hoc fixes to avoid crashing of the code, and their
effects on the accuracy of the applications are difficult to analyze.

The ultimate goal of this work is to investigate a mathematically
sound framework that can compute the differential quantities con-
sistently (i.e., satisfying the intrinsic constraints) with provable con-
vergence on general surface meshes, while being flexible and easy
to implement. This is undoubtly an ambitious goal. Although we
may have not fully achieved the goal, we make some contributions
toward it. First, using the singular value decomposition [Golub and
Van Loan 1996] of the Jacobian matrix, we derive explicit formulas
for the transformations between the first- and second-order differ-
ential quantities of a smooth surface (i.e., normal vector and cur-
vature matrix) and the first- and second-order derivatives of its cor-
responding height function (i.e., gradient and Hessian). We also
give the explicit formulas for the transformations of the gradient
and Hessian under a rotation of the coordinate system. These trans-
formations can be obtained without forming the shape operator and
the associated commnutation of its eicenvalues or eicenvectors. We




COMPLETELY DIFFERENT
FORMULA

Consistent Computation of First- and Second-Order
Differential Quantities for Surface Meshes

Xiangmin Jiao™ Hongyuan Zha'
Dept. of Applied Mathematics & Statistics College of Computing
Stony Brook University Georgia Institute of Technology
Abstract often require ad heoc fixes to avoid crashing of the code, and their

effects on the accuracy of the applications are difficult to analyze.

Differential quantities, including normals, curvatures, principal di-
rections, and associated matrices, play a fundamental role in geo-

! Theorem 3 The mean and Gaussian curvature of the height func—
: R?* — Rare

ThL ultimate goal of this work is to 1nvmtmatL a mathumahcallv

(VA H(VS) det(H)

€4
and Hessian under a rotation of the coordinate system. These trans-

formations can be obtained without forming the shape operator and
the associated computation of its eigenvalues or eigenvectors. We

and e

ible 7
function based on local polynomial fittings formulated as weighted
least squares approximations. We also propose an iterative fitting

crhama to imnecara acconracy  Thic framanrarl- canaralizas madime




CONSERVED QUANTITY
APPROACH

Discrete Differential-Geometry Operators

for Triangulated 2-Manifolds

Mark Meyer!, Mathieu Desbrun':2, Peter Schroder!, and Alan H. Barr!

! Caltech

ST Yisualization and Math, (11

Summary. This paper proposes a unified and consistent set of flexible tools to
approximate important geometric attributes, including normal vectors and cur-
vatures on arbitrary triangle meshes. We present a consistent derivation of these
first and second order differential properties using averaging Voronoi cells and the
mixed Finite-Element/Finite-Volume method, and compare them to existing for-
mulations. Building upon previous work in discrete geometry, these operators are
closely related to the continuous case, guaranteeing an appropriate extension from
the continuous to the diserete setting: they respect most intrinsic properties of the
continuous differential operators. We show that these estimates are optimal in ac-
curacy under mild smoothness conditions, and demonstrate their numerical quality.
We also present applications of these operators, such as mesh smoothing, enhance-
ment, and quality checking, and show results of denoising in higher dimensions,
such as for tensor images.



DISCRETE DIFFERENTIAL
GEOMETRY

Structure preservation:

— Keeping properties from the continuous
abstraction exactly true in a discretization.



GAUSS-BONNET THEOREM

Number of
boundaries

f KdA + f kyds = 2m(x(M) — r‘zi)
M oM

I A

Gaussian 2-2¢

curvature ‘
Geodesic curvature

(curvature projected
on tangent plane)



FOR POLYGONAL CELLS

/KdAZQ?T—Zéj
4 j

Change is in
normal
direction

Turning angle
integrated
curvature



FLIP THINGS BACKWARD

DEFINITION:

Gaussian curvature integrated over region V
is given by

/KdAZQ’]T—Z@]
4 j

Divide by area for curvature estimate



Pocall’
EULER CHARACTERISTIC




Recdl: cONSEQUENCES FOR
TRIANGLE MESHES

V—E+F =%

“Each edge is
adjacent to two
faces. Each face

has three edges.” OF — F

Closed mesh: Easy estimates!




Recdl: cONSEQUENCES FOR
TRIANGLE MESHES

1
V ——F =
> X

“Each edge is
adjacent to two
faces. Each face
has three edges.”

2 = 3F
Closed mesh: Easy estimates!



Recdl: cONSEQUENCES FOR
TRIANGLE MESHES

Closed mesh: Easy estimates!



DISCRETE GAUSS-BONNET
/ KdA = Z/'KdA

Partition the surface



DISCRETE GAUSS-BONNET

Apply our detinition



DISCRETE GAUSS-BONNET

Pull out constants



DISCRETE GAUSS-BONNET

Consider sum over triangles



DISCRETE GAUSS-BONNET

o =72V — F)
By definition | _o.,  .ged/>



MEAN CURVATURE NORMAL

E(M) = Area(M)
VE(p)=Hn

“Variational derivative”

VE(p) =0Vp € int M
Minimal surfaces

Image courtesy K. Crane



AREA FUNCTIONAL FOR




SINGLE TRIANGLE




oA _

SINGLE TRIANGLE:
DERIVATIVES

pnﬁ = peg+ pJ_é)J_

1
55\/2?% + p7

p
A

0
1
K o= VpA=_bel




SINGLE TRIANGLE:
COMPLETE




RATIO OF BASE TO HEIGHT




HEIGHT VECTOR

tan «
! tan o + tan S




ALTERNATIVE GRADIENT
FORMULA

1
1 b T CA

_10 5 q

21|

tan o
tan a4 tan 3 |

1 P
= §(Cotoz—|—cot6) p— (¥ —q)

= (5~ cota+ (5~ ) cot 5)




SUMMING AROUND A VERTEX

VA = = Z(cot a; + cot B;)(p — q;)

J

4’ VﬁA:%((ﬁ_F)COtOé—l—(ﬁ—(j)COtﬁ)
4 Vanishes as yoy

7 refine the mesh

J




INTEGRATED MEAN CURVATURE
NORMAL

DEFINITION:

The mean curvature normal integrated over
region V is given by
1

V5A = 5 Z(cot a; + cot B;)(p — q;)
J

Divide by area for curvature estimate



PIPELINE

- Compute integrated H, K

» Divide by area of cell for
estimated value



ANOTHER MEAN CURVATURE

Pj

Q/H——mw

Used for tr1angulat10n apphcatlons




TUNED FOR VARIATIONAL
APPLICATIONS

Computing discrete shape operators on general meshes

Eitan Grinspun Yotam Gingold Jason Reisman Denis Zorin
Columbia University New York University New York University New York University
eitan@cs.columbia.edu  gingold@mrl nyu.edu jasonr@mrl.nyu.edu dzorin@mrl.nvu.edu
Abstract
Discrete curvature and shape operators, which ¢ Cotan out dir Theirs

are essential in a variety of applications: simulati
geometric data processing. In many of these appl
approaches for formulating curvature operators
expensive methods used in engineering applicatic
computer graphics.

1 obj

We propose a simple and efficient formulation for
degrees of freedom associated with normals. On
curvature operators commonly used in graphics;
and produces consistent results for different rypes




TUNED FOR ROBUSTNESS

Eurographics Symposium on Geometry Processing (2007)
Alexander Belyaev, Michael Garland (Editors)

Robust statistical estimation of curvature
on discretized surfaces

Evangelos Kalogerakis, Patricio Simari, Derek Nowrouzezahrai and Karan Singh

Dynamic Graphics Project, Computer Science Department, University of Toronto

Lnitial weighting

Abstract

A robust statistics approach to curvature estimation on discretely samy
point clouds, is presented. The method exhibits accuracy, stability and
sampled surfaces with irregular configurations. Within an M-estimation
noise and structured outliers by sampling normal variations in an ad
each point. The algorithm can be used to reliably dervive higher order d)
surface normals while preserving the fine features of the normal and «
with state-of-the-art curvature estimation methods and shown to impro
across ground truth test surfaces under varying tessellation densities |
noise. Finally, the benefits of a robust statistical estimation of curvature
applications of mesh segmentation and suggestive contowr rendering.

Feature

boundary 02

Categories and Subject Descriptors (according w ACM CCS): 1.3.5 [Computational Geometry and Object Model-
ing|: Geometric algorithms, languages, and systems; curve, surface, solid, and object representations.




ALTERNATIVE STRATEGIES

» Locally fit a smooth surtace
What type of surface? How to fit?

e Different formula

Function of curvature? Where on mesh?
Convergence of approximation?

e [ . earn curyature
computation

Tune for application? Training data?



PRACTICAL ADVICE

1ry as many as you can.

Most are easy to implement!
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