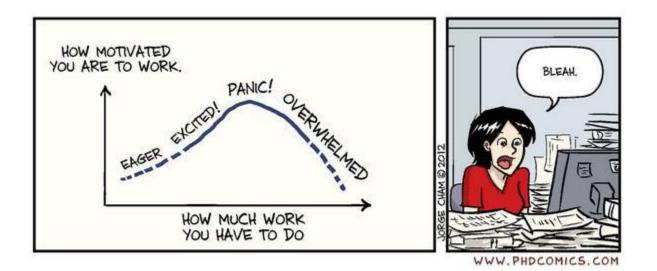
IFT 6113 LAPLACIAN APPLICATIONS

http://tiny.cc/ift6113/

BRACE YOURSELVES

- A2 out, due **Oct 16th**
- Project proposal due: Oct 23rd
- Paper title due: Oct 29th



Review:

Rough Intuition

http://pngimg.com/upload/hammer_PNG3886.png

You can learn a lot about a shape by hitting it (lightly) with a hammer!

Review:

Spectral Geometry

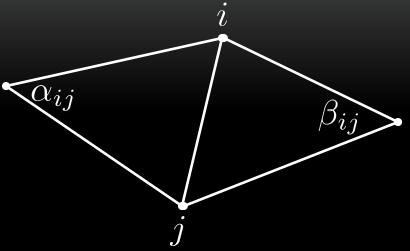
What can you learn about its shape from

vibration frequencies and oscillation patterns?

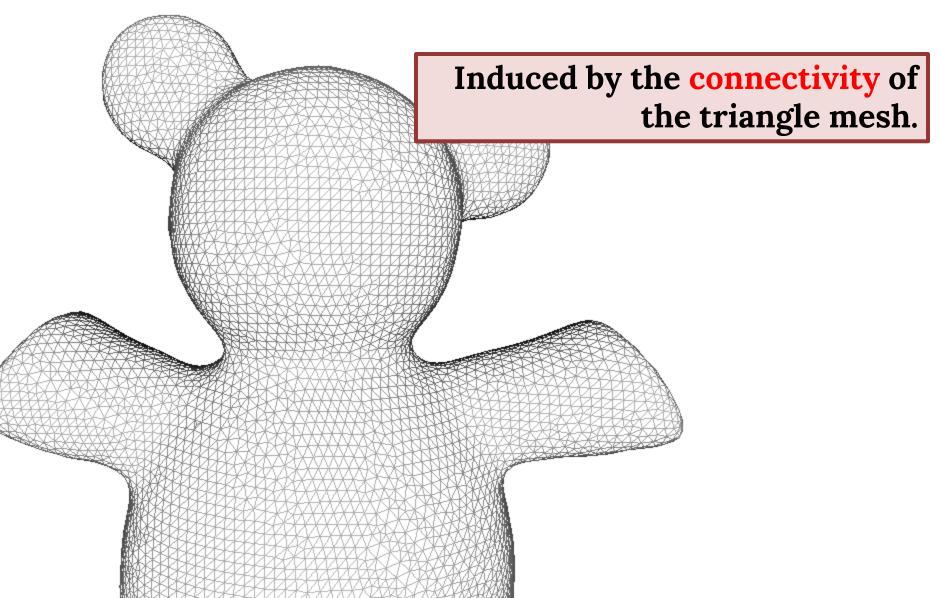
 $\Delta f = \lambda f$

THE COTANGENT LAPLACIAN

$$L_{ij} = \begin{cases} \frac{1}{2} \sum_{i \sim k} (\cot \alpha_{ik} + \cot \beta_{ik}) & \text{if } i = j \\ -\frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij}) & \text{if } i \sim j \\ 0 & \text{otherwise} \end{cases}$$



Laplacian is sparse!



How can we use L?

• (useful properties of the Laplacian)

 In Computer Graphics and Geometry Modeling/Processing

• In Machine Learning

How can we use L?

• (useful properties of the Laplacian)

 In Computer Graphics and Geometry Modeling/Processing

• In Machine Learning

One Object, Many Interpretations

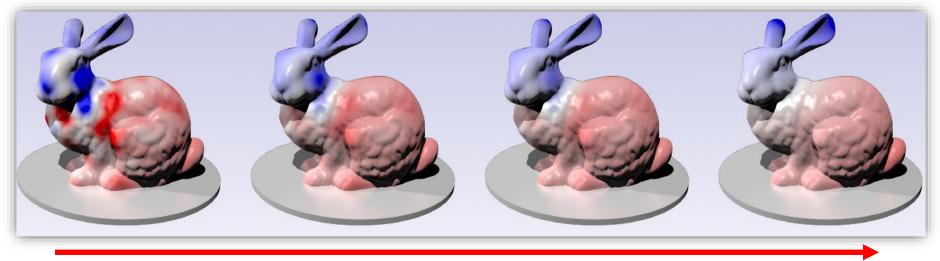
$$L_{vw} = A - D = \begin{cases} 1 & \text{if } v \sim w \\ -\text{degree}(v) & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$$

Labeled graph	Degree matrix	Adjacency matrix	Laplacian matrix
	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\begin{array}{ccccccccccc} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right)$	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$

https://en.wikipedia.org/wiki/Laplacian_matrix

Deviation from neighbors

One Object, Many Interpretations



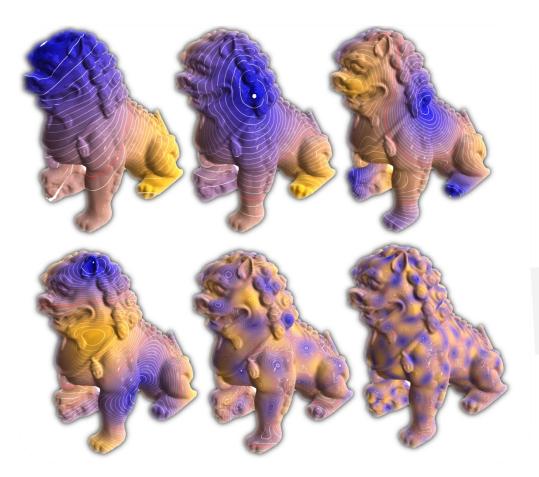
Decreasing E

$$E[f] := \int_{S} \|\nabla f\|_{2}^{2} dA = -\int_{S} f(x) \Delta f(x) dA(x)$$

Images made by E. Vouga

Dirichlet energy: Measures smoothness

One Object, Many Interpretations



 $\Delta \psi_i = \lambda_i \psi_i$

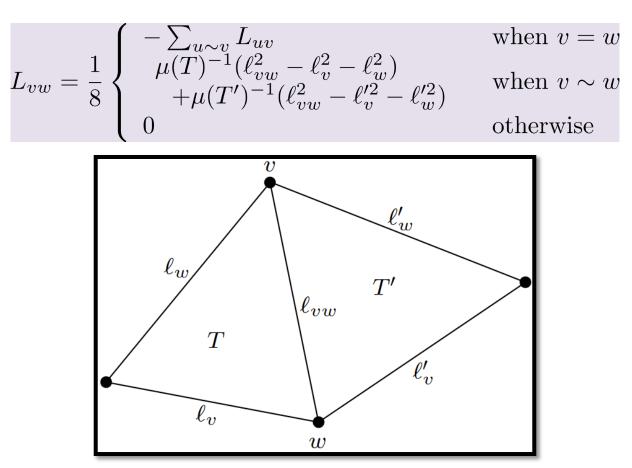
Vibration modes of surface (not volume!)

http://alice.loria.fr/publications/papers/2008/ManifoldHarmonics//photo/dragon_mhb .png

Vibration modes

Key Observation (in discrete case)

After (More) Trigonometry



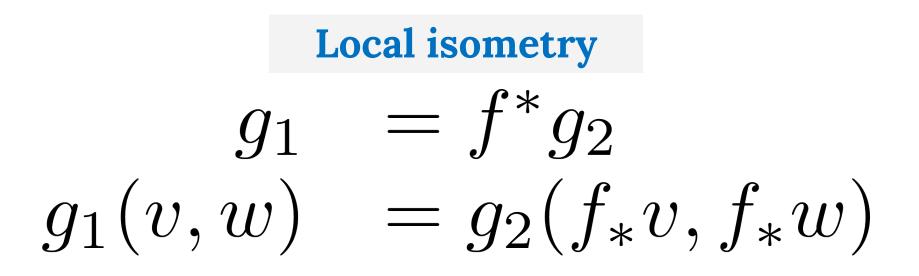
Image/formula in "Functional Characterization of Instrinsic and Extrinsic Geometry," TOG 2017 (Corman et al.)

Laplacian only depends on edge lengths

Isometry Bending without stretching.

Lots of Interpretations

Global isometry
$$d_1(x, y) = d_2(f(x), f(y))$$



Intrinsic Techniques

http://www.revedreams.com/crochet/yarncrochet/nonorientable-crochet/

Isometry invariant

Isometry Invariance: Hope

Isometry Invariance: Reality

"Rigidity"

http://www.4tnz.com/content/got-toilet-paper

Few shapes can deform isometrically

Isometry Invariance: Reality

"Rigidity"

≈isometries?

http://www.4tnz.com/content/got-toilet-paper

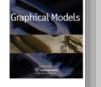
Few shapes can deform isometrically

Useful Fact

Graphical Models 74 (2012) 121-129

Contents lists available at SciVerse ScienceDirect

Graphical Models



journal homepage: www.elsevier.com/locate/gmod

Discrete heat kernel determines discrete Riemannian metric

Wei Zeng^{a,*}, Ren Guo^b, Feng Luo^c, Xianfeng Gu^a

^a Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA ^b Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA ^c Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA

ARTICLE INFO

Article history: Received 5 March 2012 Accepted 28 March 2012 Available online 12 April 2012

Keywords:

Discrete heat kernel Discrete Riemannian metric Laplace–Beltrami operator Legendre duality principle Discrete curvature flow

ABSTRACT

The Laplace–Beltrami operator of a smooth Riemannian manifold is determined by the Riemannian metric. Conversely, the heat kernel constructed from the eigenvalues and eigenfunctions of the Laplace–Beltrami operator determines the Riemannian metric. This work proves the analogy on Euclidean polyhedral surfaces (triangle meshes), that the discrete heat kernel and the discrete Riemannian metric (unique up to a scaling) are mutually determined by each other. Given a Euclidean polyhedral surface, its Riemannian metric is represented as edge lengths, satisfying triangle inequalities on all faces. The Laplace–Beltrami operator is formulated using the cotangent formula, where the edge weight is defined as the sum of the cotangent of angles against the edge. We prove that the edge lengths can be determined by the edge weights unique up to a scaling using the variational approach.

The constructive proof leads to a computational algorithm that finds the unique metric on a triangle mesh from a discrete Laplace–Beltrami operator matrix.

Published by Elsevier Inc.

1. Introduction

1.1. Motivation

Laplace–Beltrami operator plays a fundamental role in Riemannian geometry [26]. Discrete Laplace–Beltrami The Laplace–Beltrami operator on a Riemannian manifold plays an fundamental role in Riemannian geometry.

Beware

But calculations on a volume are expensive!

Image from: Raviv et al. "Volumetric Heat Kernel Signatures." 3DOR 2010.

Not the same.

Why Study the Laplacian?

- Encodes intrinsic geometry Edge lengths on triangle mesh, Riemannian metric on manifold
- Multi-scale

Filter based on frequency

- Geometry through linear algebra Linear/eigenvalue problems, sparse positive definite matrices
- Connection to physics

Heat equation, wave equation, vibration, ...

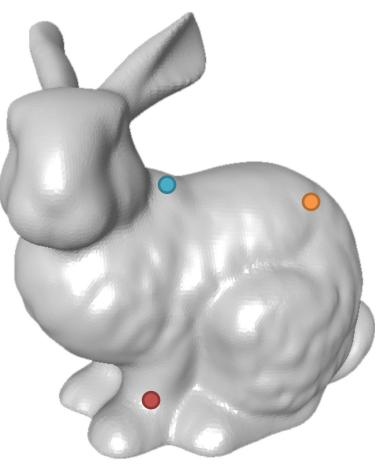
How can we use L?

• (useful properties of the Laplacian)

 In Computer Graphics and Geometry Modeling/Processing

• In Machine Learning

Example Task: Shape Descriptors



http://liris.cnrs.fr/meshbenchmark/images/fig_attacks.jpg

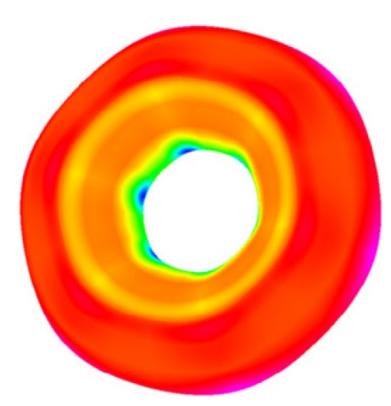
Pointwise quantity

Descriptor Tasks

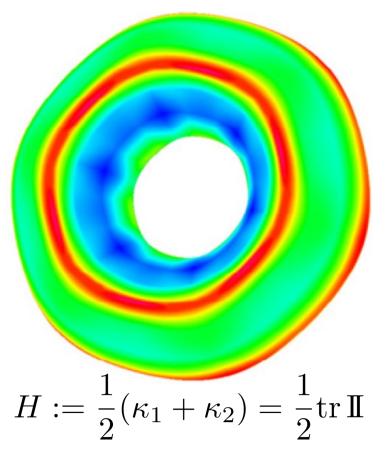
• Characterize local geometry Feature/anomaly detection

• Describe point's role on surface Symmetry detection, correspondence

Descriptors We've Seen Before



 $K := \kappa_1 \kappa_2 = \det \mathbb{I}$



http://www.sciencedirect.com/science/article/pii/S0010448510001983

Gaussian and mean curvature

Desirable Properties

• **Distinguishing** Provides useful information about a point

• Stable

Numerically and geometrically

• Intrinsic

No dependence on embedding

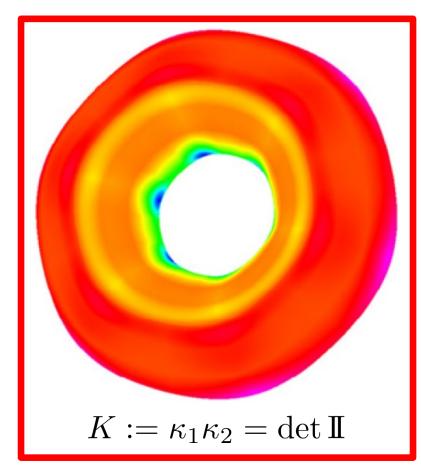
Sometimes undesirable!

Intrinsic Descriptors

Invariant under

- Rigid motion
- Bending without stretching

Intrinsic Descriptor



Theorema Egregium ("Totally Awesome Theorem"): Gaussian curvature is intrinsic.

http://www.sciencedirect.com/science/article/pii/S0010448510001983

End of the Story?

$K = \kappa_1 \kappa_2$

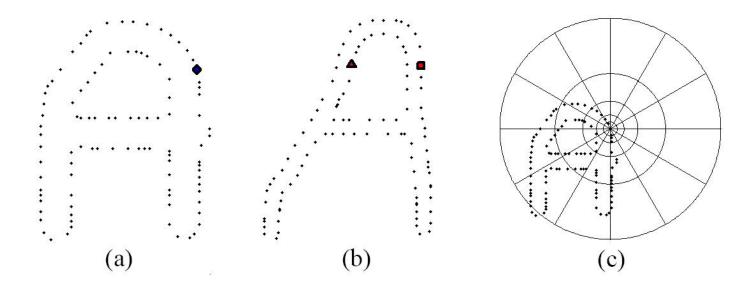
Second derivative quantity

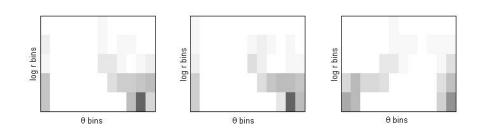
Desirable Properties

Incorporates neighborhood information in an intrinsic fashion

Stable under small deformation

Shape Context





(d) (e) (f)

Shape Context

- + Translational invariance
- + Scale invariance
- Rotational invariance

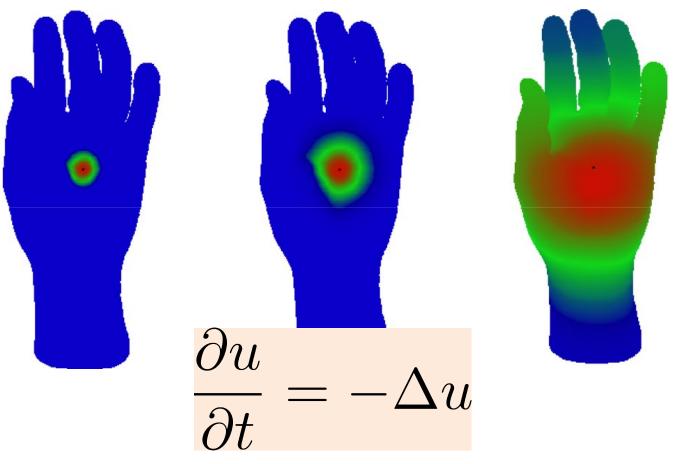
Shape Context

Idea!

Compute angles relative to the tangent

+ Translational invariance
+ Scale invariance
+ Rotational invariance

Recall: Connection to Physics



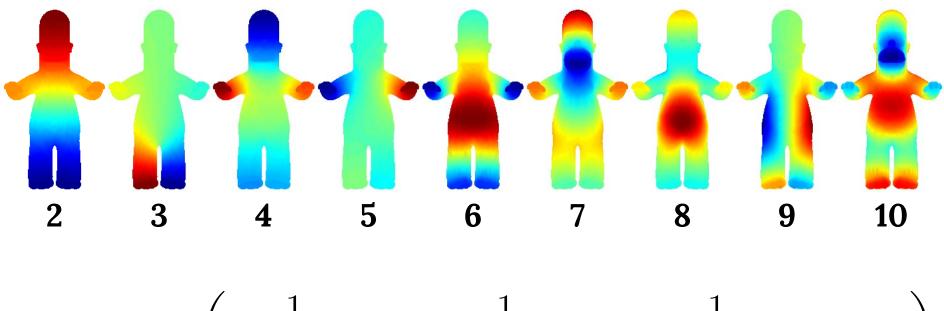
http://graphics.stanford.edu/courses/cs468-10fall/LectureSlides/11_shape_matching.pdf

Heat equation

Intrinsic Observation

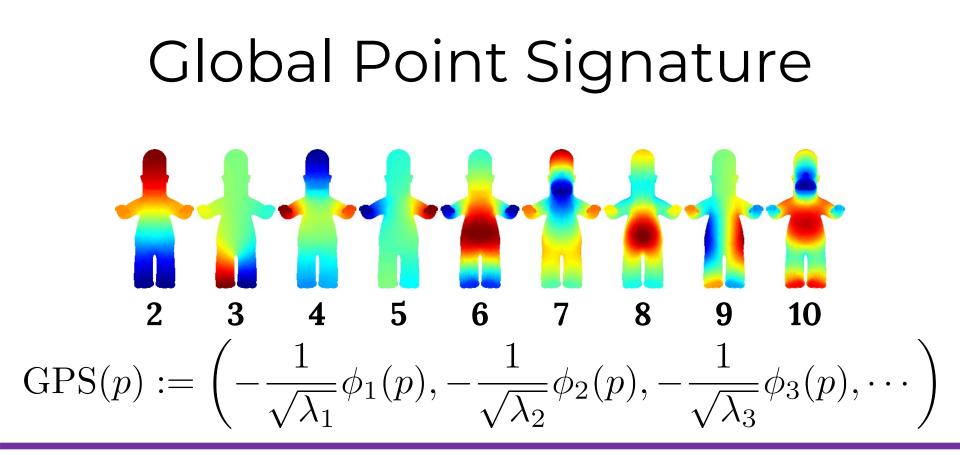
Heat diffusion patterns are not affected if you bend a surface.

Global Point Signature



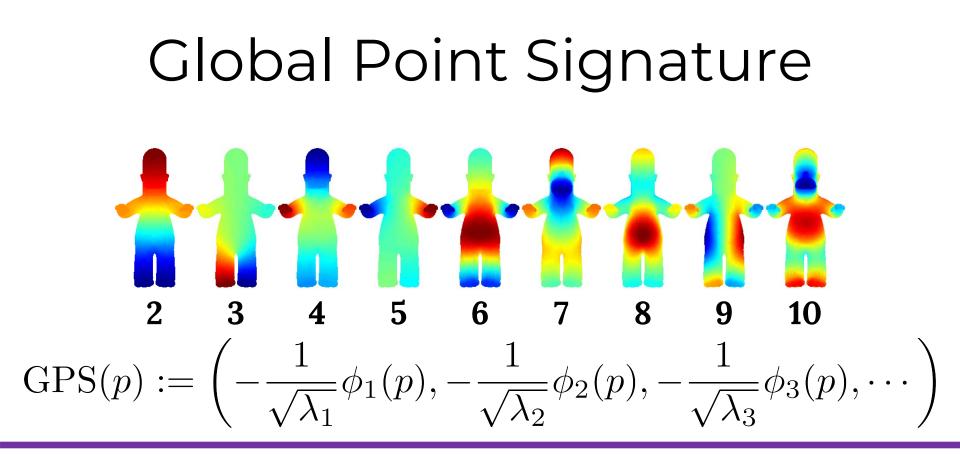
$$GPS(p) := \left(-\frac{1}{\sqrt{\lambda_1}}\phi_1(p), -\frac{1}{\sqrt{\lambda_2}}\phi_2(p), -\frac{1}{\sqrt{\lambda_3}}\phi_3(p), \cdots\right)$$

"Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation" Rustamov, SGP 2007



If surface does not self-intersect, neither does the GPS embedding.

Proof: Laplacian eigenfunctions span $L^2(\Sigma)$; if GPS(*p*)=GPS(*q*), then all functions on Σ would be equal at *p* and *q*.



GPS is isometry-invariant.

Proof: Comes from the Laplacian.

Drawbacks of GPS

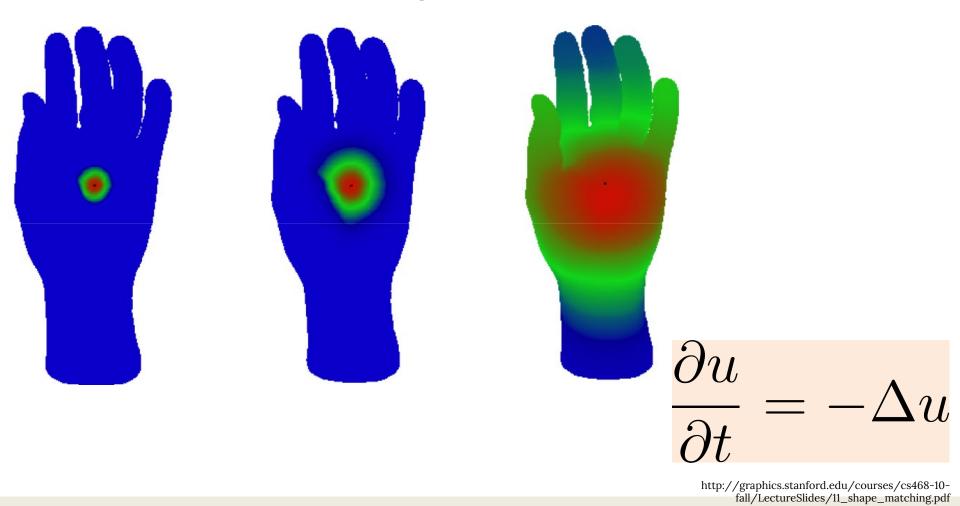
• Assumes unique λ 's

 Potential for eigenfunction "switching"

Nonlocal feature

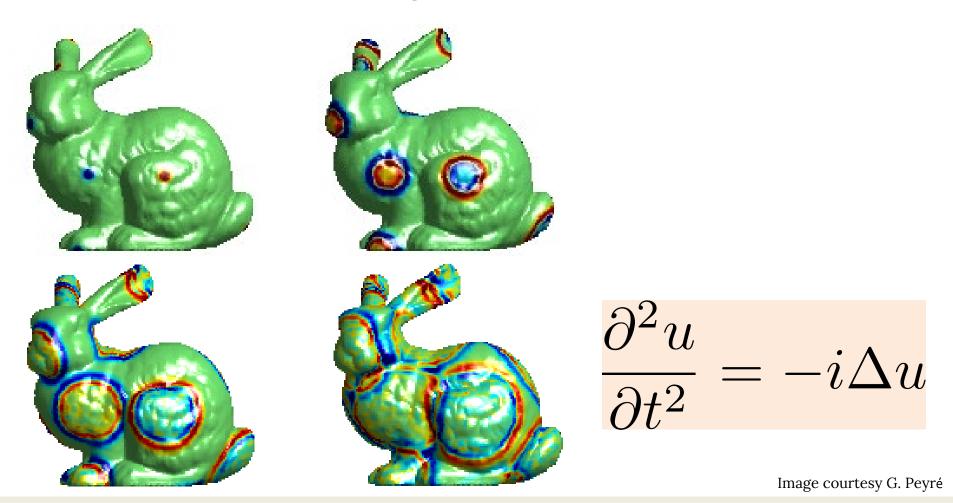
PDE Applications of the Laplacian

New idea:



Heat equation

PDE Applications of the Laplacian



Wave equation

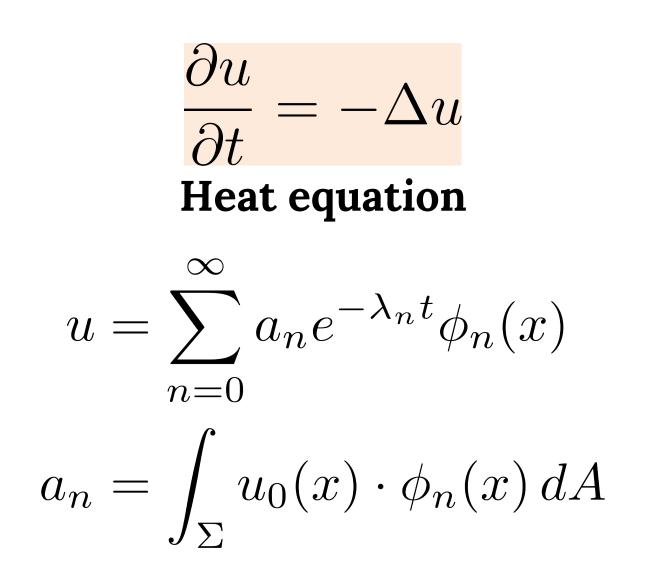
PDE Applications of the Laplacian

 ∂t^2

Image courtesy G. Peyré

Wave equation

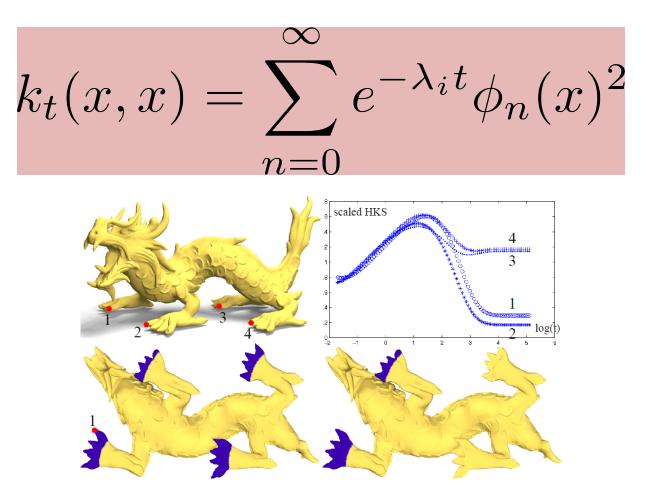
Solutions in the LB Basis



$$k_t(x,x) = \sum_{n=0}^{\infty} e^{-\lambda_i t} \phi_n(x)^2$$

Continuous function of $t \in [0, \infty)$ How much heat diffuses from x to

itself in time t?



"A concise and provably informative multi-scale signature based on heat diffusion" Sun, Ovsjanikov, and Guibas; SGP 2009

$$k_t(x,x) = \sum_{n=0}^{\infty} e^{-\lambda_i t} \phi_n(x)^2$$

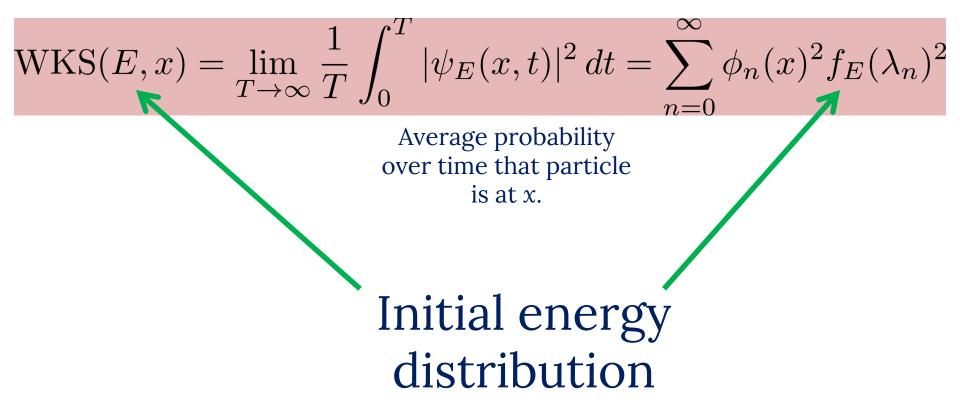
Good properties:

- Isometry-invariant
- Multiscale
- Not subject to switching
- Easy to compute
- Related to curvature at small scales

$$k_t(x,x) = \sum_{n=0}^{\infty} e^{-\lambda_i t} \phi_n(x)^2$$

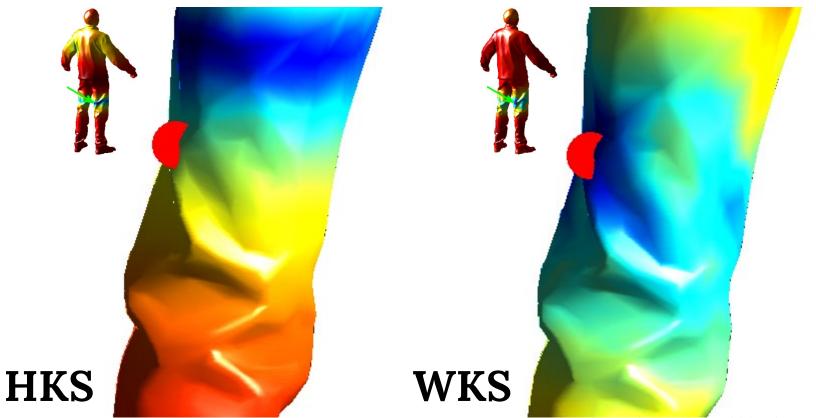
Bad properties:

- Issues remain with repeated eigenvalues
- Theoretical guarantees require (near-)isometry



"The Wave Kernel Signature: A Quantum Mechanical Approach to Shape Analysis" Aubry, Schlickewei, and Cremers; ICCV Workshops 2012

WKS
$$(E, x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\psi_E(x, t)|^2 dt = \sum_{n=0}^\infty \phi_n(x)^2 f_E(\lambda_n)^2$$



vision.in.tum.de/_media/spezial/bib/aubry-et-al-4dmod11.pdf

WKS
$$(E, x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\psi_E(x, t)|^2 dt = \sum_{n=0}^\infty \phi_n(x)^2 f_E(\lambda_n)^2$$

Good properties:

- [Similar to HKS]
- Localized in frequency
- Stable under some non-isometric deformation
- Some multi-scale properties

WKS
$$(E, x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\psi_E(x, t)|^2 dt = \sum_{n=0}^\infty \phi_n(x)^2 f_E(\lambda_n)^2$$

Bad properties:

- [Similar to HKS]
- Can filter out large-scale features

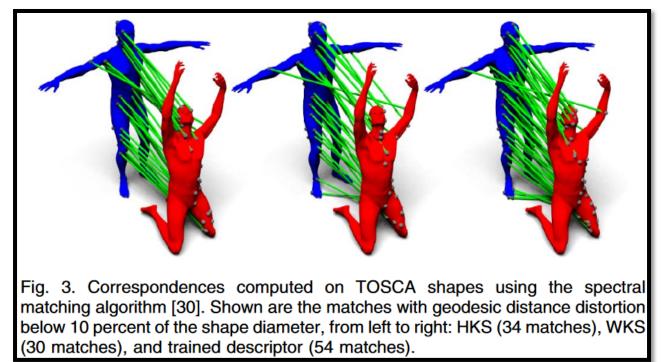
Many Others

Lots of spectral descriptors in terms of Laplacian eigenstructure.

Combination with Machine Learning

$$p(x) = \sum_{k} f(\lambda_k) \phi_k^2(x)$$

Learn f rather than defining it



Learning Spectral Descriptors for Deformable Shape Correspondence Litman and Bronstein; PAMI 2014

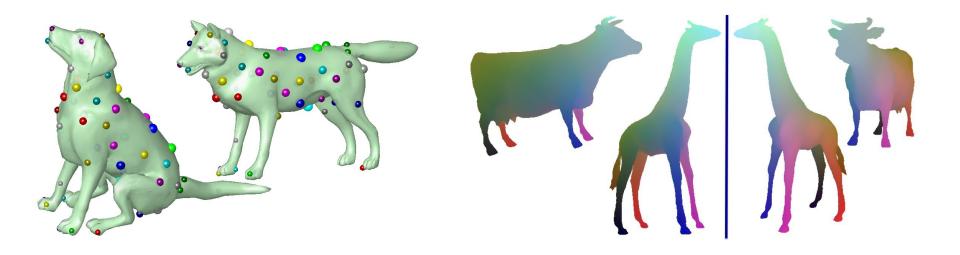
Application: Feature Extraction

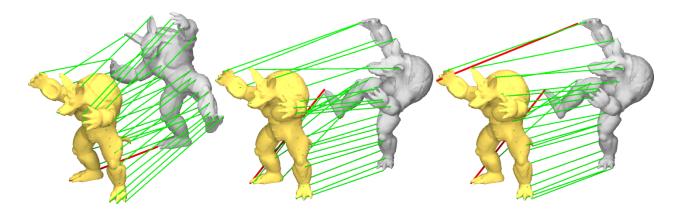
Maxima of $k_t(x,x)$ over x for large t.

A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion Sun, Ovsjanikov, and Guibas; SGP 2009

Feature points

Preview: Correspondence



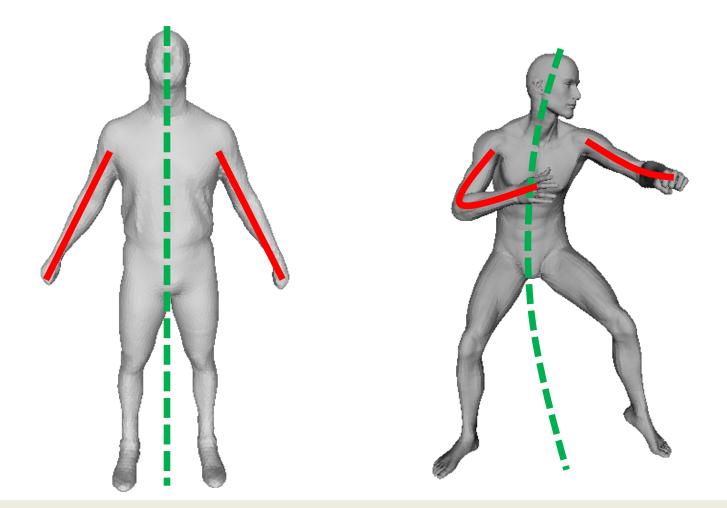


http://graphics.stanford.edu/projects/lgl/papers/ommg-opimhk-10/ommg-opimhk-10.pdf http://www.cs.princeton.edu/~funk/sig11.pdf

Descriptor Matching

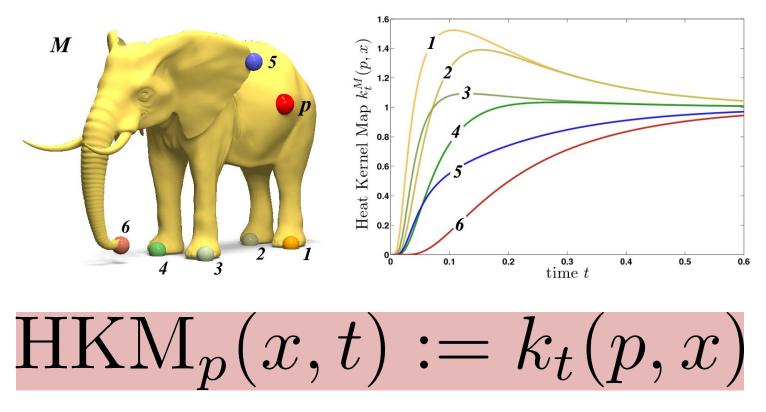
Simply match closest points in descriptor space.

Descriptor Matching Problem



Symmetry

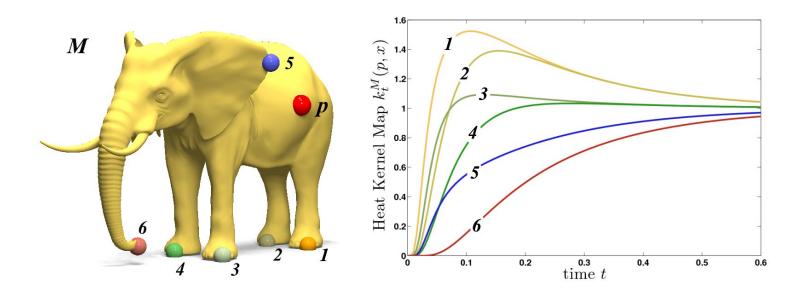
Heat Kernel Map



How much heat diffuses from *p* to *x* in time *t*?

One Point Isometric Matching with the Heat Kernel Ovsjanikov et al. 2010

Heat Kernel Map

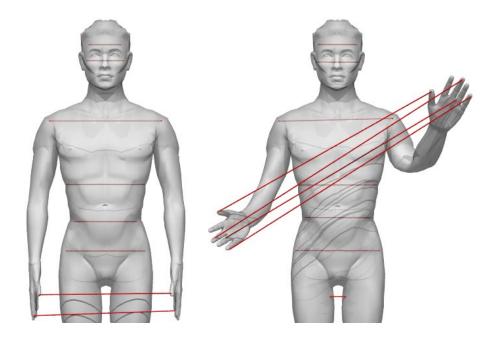


$\operatorname{HKM}_p(x,t) := k_t(p,x)$

Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel Ovsjanikov et al. 2010

Self-Map: Symmetry



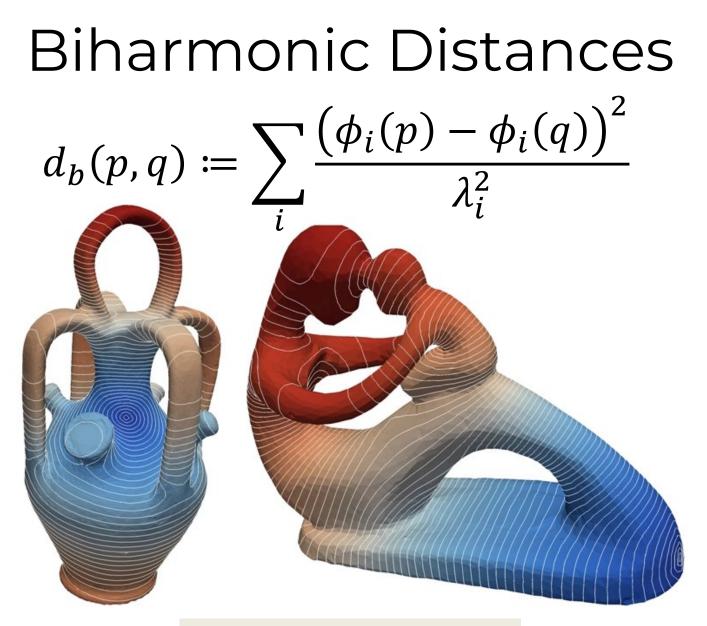
Intrinsic symmetries become extrinsic in GPS space!

Global Intrinsic Symmetries of Shapes Ovsjanikov, Sun, and Guibas 2008

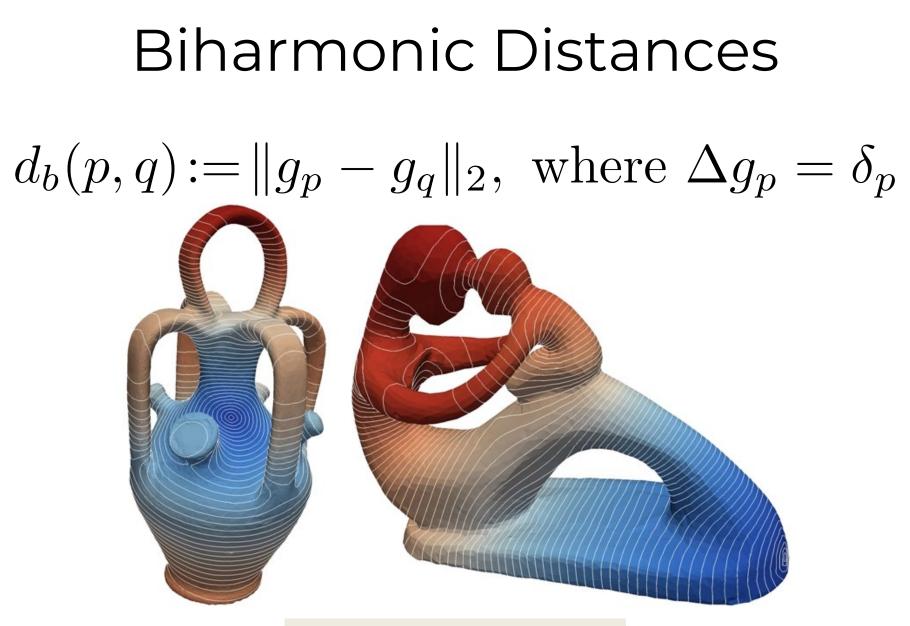
"Discrete intrinsic" symmetries

All Over the Place

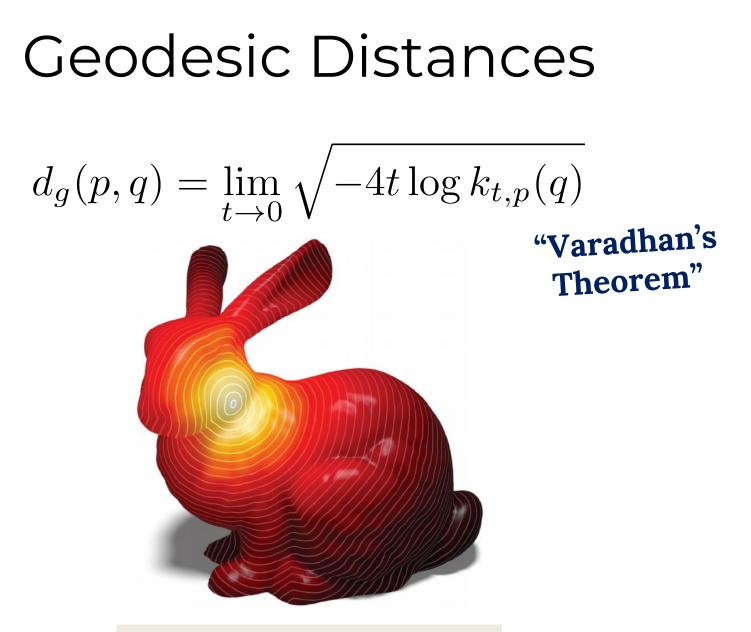
Laplacians appear everywhere in shape analysis and geometry processing.



"Biharmonic distance" Lipman, Rustamov & Funkhouser, 2010



"Biharmonic distance" Lipman, Rustamov & Funkhouser, 2010

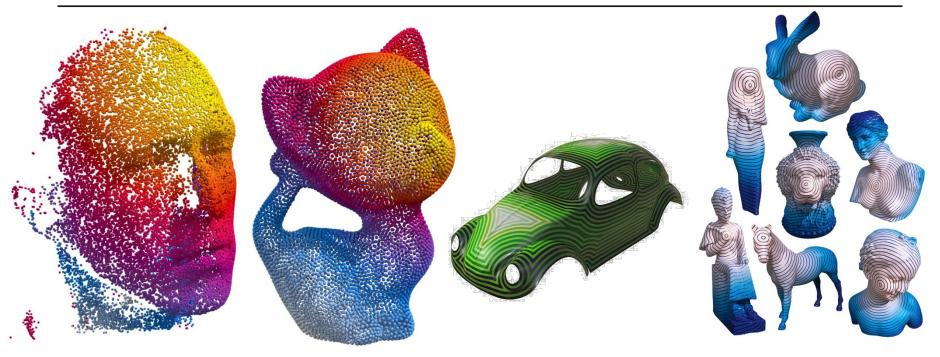


"Geodesics in heat" Crane, Weischedel, and Wardetzky; TOG 2013

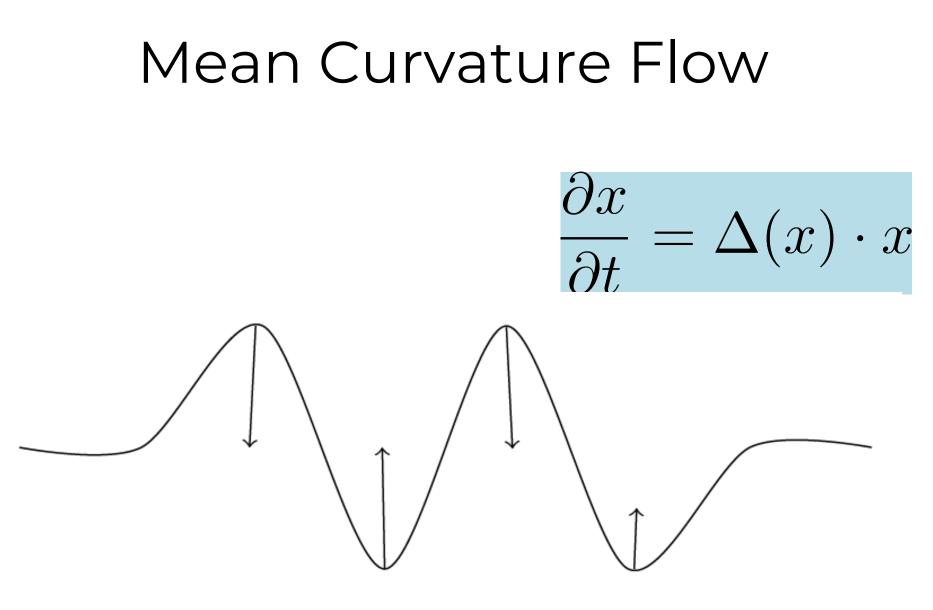
Finding geodesics

Algorithm 1 The Heat Method

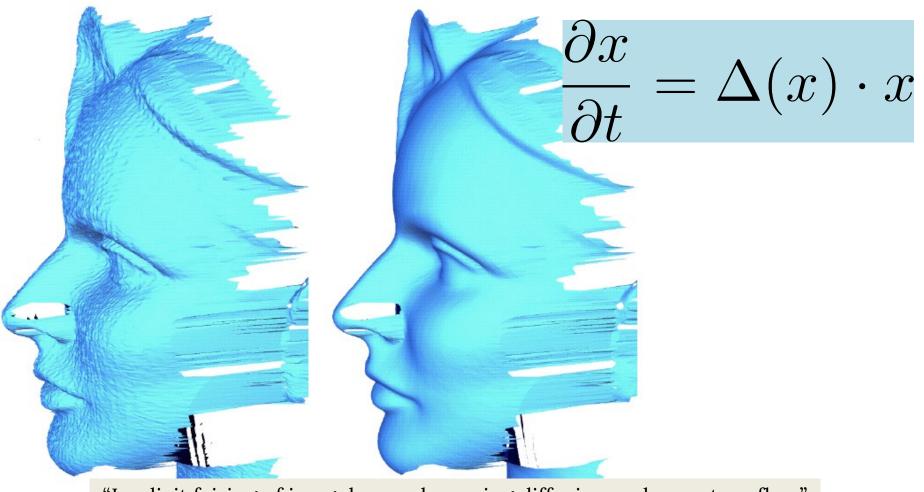
- I. Integrate the heat flow $\dot{u} = \Delta u$ for time t.
- II. Evaluate the vector field $X = -\nabla u / |\nabla u|$.
- III. Solve the Poisson equation $\Delta \phi = \nabla \cdot X$.



Crane, Weischedel, and Wardetzky. "Geodesics in Heat." TOG, 2013.

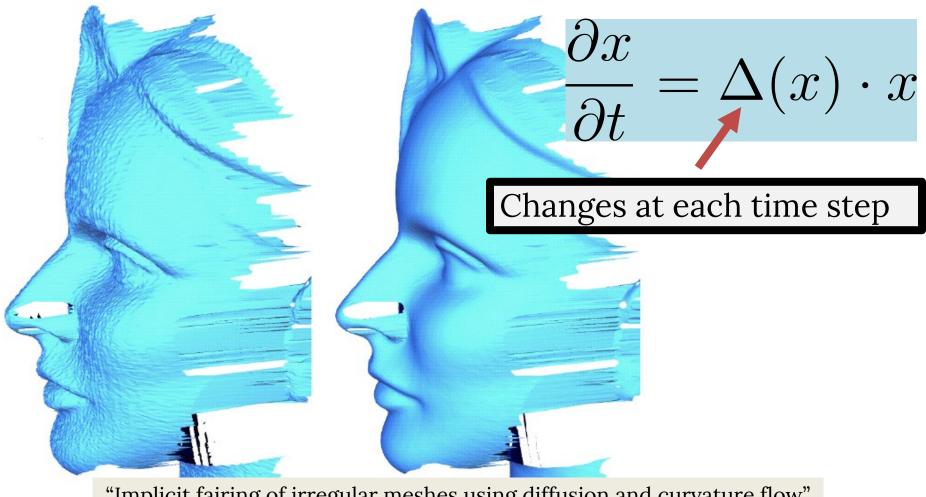


Mean Curvature Flow



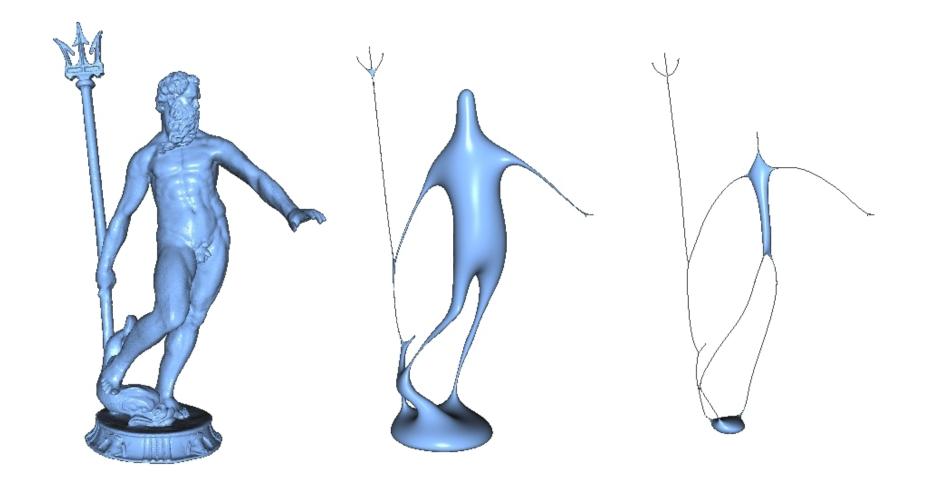
"Implicit fairing of irregular meshes using diffusion and curvature flow" Desbrun et al., 1999

Mean Curvature Flow



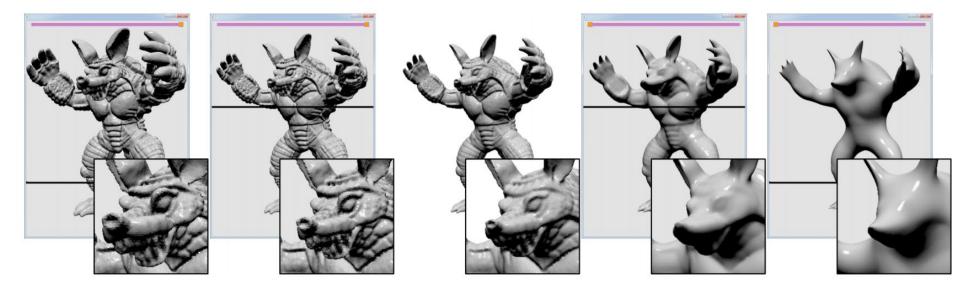
"Implicit fairing of irregular meshes using diffusion and curvature flow" Desbrun et al., 1999

Recall:



Another fairing

Screened Poisson Equation $E(G) = \alpha^2 \|G - F\|^2 + \|\nabla_M G - \beta \nabla_M F\|^2$



Useful Technique

$$\frac{\partial f}{\partial t} = -\Delta f \text{ (heat equation)}$$

$$\rightarrow M \frac{\partial f}{\partial t} = Lf \text{ after discretization in space}$$

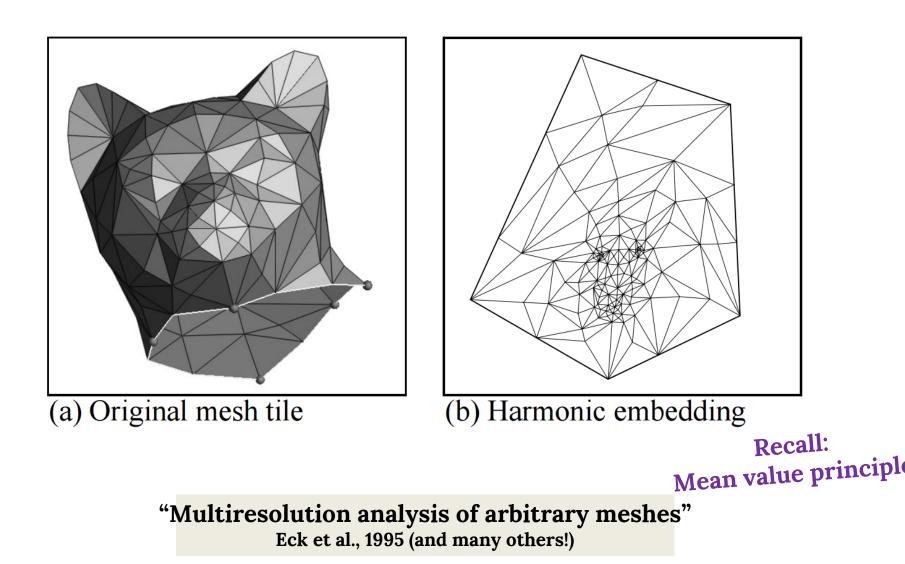
$$\rightarrow M \frac{f_T - f_0}{T} = Lf_T \text{ after time discretization}$$
Choice: Further time T

Unconditionally stable, but not necessarily accurate for large T

Evaluate at time 1

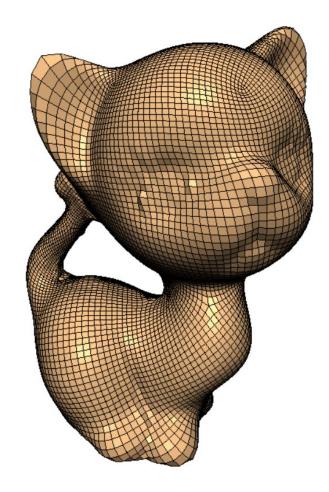
Implicit time stepping

Parameterization: Harmonic Map



Others

- Shape retrieval from Laplacian eigenvalues "Shape DNA" [Reuter et al., 2006]
- Quadrangulation Nodal domains [Dong et al., 2006]
- Surface deformation "As-rigid-as-possible" [Sorkine & Alexa, 2007]



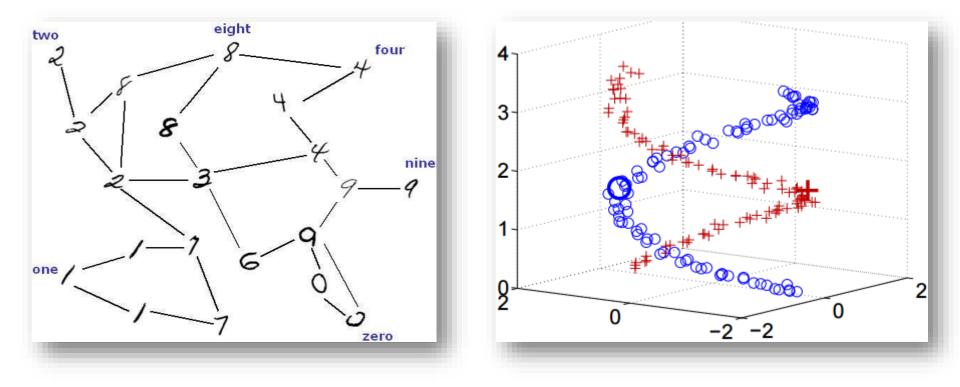
How can we use L?

• (useful properties of the Laplacian)

 In Computer Graphics and Geometry Modeling/Processing

• In Machine Learning

Semi-Supervised Learning



"Semi-supervised learning using Gaussian fields and harmonic functions" Zhu, Ghahramani, & Lafferty 2003

Semi-Supervised Technique

Given: ℓ labeled points $(x_1, y_1), \dots, (x_{\ell}, y_{\ell}); y_i \in \{0, 1\}$ u unlabeled points $x_{\ell+1}, \dots, x_{\ell+u}; \ell \ll u$

Related Method

- **Step 1:** Build *k*-NN graph
- **Step 2:** Compute *p* smallest Laplacian eigenvectors
- Step 3:

Solve semi-supervised problem in subspace

"Using Manifold Structure for Partially Labelled Classification" Belkin and Niyogi; NIPS 2002

Manifold Regularization

Regularized learning:
$$\arg\min_{f\in\mathcal{H}}\frac{1}{\ell}\sum_{i=1}^{\ell}V(f(x_i), y_i) + \gamma \|f\|^2$$

Loss function
 $||f||_I^2 := \int \|\nabla f(x)\|^2 dx \approx f^\top Lf$

"Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples" Belkin, Niyogi, and Sindhwani; JMLR 2006

Examples of Manifold Regularization

Laplacian-regularized least squares (LapRLS)

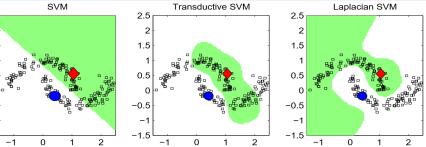
$$\arg\min_{f\in\mathcal{H}}\frac{1}{\ell}\sum_{i=1}^{\ell}(f(x_i)-y_i)^2+\gamma\|f\|_I^2+\text{Other}[f]$$

• Laplacian support vector machine (LapSVM) $\arg\min_{f\in\mathcal{H}}\frac{1}{\ell}\sum_{i=1}^{\ell}\max(0,1-y_if(x_i))+\gamma \|f\|_I^2 + \text{Other}[f]$

2.5

0.5

"On Manifold Regularization" Belkin, Niyogi, Sindhwani; AISTATS 2005



Diffusion Maps

Embedding from first k eigenvalues/vectors:

$$\Psi_t(x) := \left(\lambda_1^t \psi_1(x), \lambda_2^t \psi_2(x), \dots, \lambda_k^t \psi_k(x)\right)$$

Roughly:

 $|\Psi_t(x) - \Psi_t(y)|$ is probability that x, y diffuse to the same point in time t.

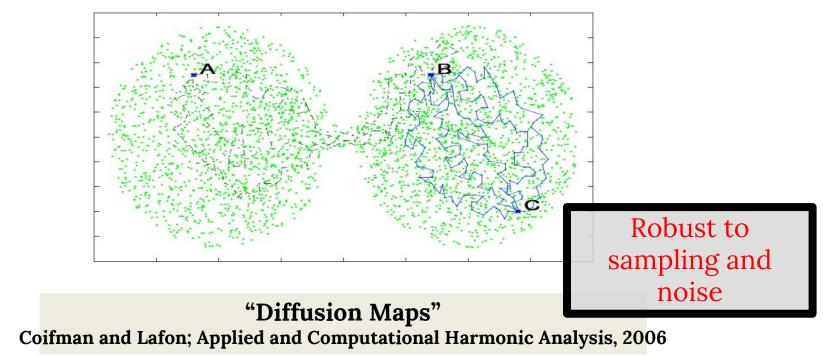


Image from http://users.math.yale.edu/users/gw289/CpSc-445-545/Slides/CPSC445%20-%20Topic%2010%20-