IFT 6113 DISCRETE LAPLACIAN

http://tiny.cc/ift6113

Mikhail Bessmeltsev

IFT 6113 DISCRETE LAPLACIAN

http://tiny.cc/ift6113

Mikhail Bessmeltsev

Recall: **Planar Region**

Discretizing the Laplacian

Today's Approach

First-order Galerkin Finite element method (FEM)

http://www.stressebook.com/wp-content/uploads/2014/08/Airbus_A320_k.jpg

Integration by Parts to the Rescue

Slightly Easier?

 $g = \Delta f$

$$g = \Delta f \qquad \Rightarrow \langle g, \psi \rangle = \langle \Delta f, \psi \rangle$$

For any **test** function ψ

$$g = \Delta f$$
$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA$$

For any **test** function ψ

function ψ

$$g = \Delta f$$

$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA = -\int (\nabla \psi \cdot \nabla f) \, dA$$
For any **test**

$$g = \Delta f$$

$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA = -\int (\nabla \psi \cdot \nabla f) \, dA$$

Approximate
$$f \approx \sum_{i} a_{i}\psi_{i}$$
 and $g \approx \sum_{i} b_{i}\psi_{i}$
 \Rightarrow Linear system $\sum_{i} b_{i}\langle\psi_{i},\psi_{j}\rangle = -\sum_{i} a_{i}\langle\nabla\psi_{i},\nabla\psi_{j}\rangle$

$$g = \Delta f$$
$$\implies \int \psi g \, dA = \int \psi \Delta f \, dA = -\int (\nabla \psi \cdot \nabla f) \, dA$$

Approximate
$$f \approx \sum_{i} a_i \psi_i$$
 and $g \approx \sum_{i} b_i \psi_i$
 \Rightarrow Linear system $\sum_{i} b_i \langle \psi_i, \psi_j \rangle = -\sum_{i} a_i \langle \nabla \psi_i, \nabla \psi_j \rangle$

Mass matrix: $M_{ij} := \langle \psi_i, \psi_j \rangle$ Stiffness matrix: $L_{ij} := \langle \nabla \psi_i, \nabla \psi_j \rangle$ $\implies Mb = La$

Which basis?

Important to Note

Not the only way

to approximate the Laplacian operator.

- Divided differences
- Higher-order elements
- Boundary element methods
- Discrete exterior calculus

• .

L^2 Dual of a Function Function $f: M \to \mathbb{R}$ **Operator** $\mathcal{L}_f: L^2(M) \to \mathbb{R}$ $\mathcal{L}_f[g] := \int_M f(x)g(x) \, dA$ Test function

Observation

Can recover function from dual

Dual of Laplacian

Space of test functions (no boundary!): $\{g \in L^{\infty}(M) : g|_{\partial M} \equiv 0\}$

$$\mathcal{L}_{\Delta f}[g] = \int_{M} g \Delta f \, dA$$
$$= -\int_{M} \nabla g \cdot \nabla f \, dA$$

Use Laplacian without evaluating it!

Galerkin's Approach

Choose one of each:

Function space

Test functions

Often the same!

One Derivative is Enough

 $\mathcal{L}_{\Delta f}[g] = -\int_{\mathcal{M}} \nabla g \cdot \nabla f \, dA$

First Order Finite Elements

Image courtesy K. Crane, CMU

One "hat function" per vertex

Representing Functions

Recall: Single Triangle: Complete

 $\vec{p} = p_n \vec{n} + p_e \vec{e} + p_\perp \vec{e}_\perp$ $A = \frac{1}{2}b\sqrt{p_n^2 + p_\perp^2}$ $\nabla_{\vec{p}}A = \frac{1}{2}b\vec{e}_{\perp}$

Similar expression

Recall: Single Triangle: Complete

Similar expression

What We Actually Need
$$\mathcal{L}_{\Delta f}[g] = -\int_{M} \nabla g \cdot \nabla f \, dA$$

What We Actually Need

$$\mathcal{L}_{\Delta f}[g] = -\int_{M} \nabla g \cdot \nabla f \, dA$$

Case 2: Different vertices

$$\begin{split} \langle \nabla f_{\alpha}, \nabla f_{\beta} \rangle \, dA &= A \langle \nabla f_{\alpha}, \nabla f_{\beta} \rangle \\ &= \frac{1}{4A} \langle e_{31}^{\perp}, e_{12}^{\perp} \rangle = -\frac{\ell_1 \ell_2 \cos \theta}{4A} \\ &= \frac{-h^2 \cos \theta}{4A \sin \alpha \sin \beta} = \frac{-h \cos \theta}{2b \sin \alpha \sin \beta} \\ &= -\frac{\cos \theta}{2 \sin(\alpha + \beta)} = -\frac{1}{2} \cot \theta \end{split}$$

Summing Around a Vertex

$$p \qquad \beta_i \\ \alpha_i \\ \langle \nabla h_p, \nabla h_p \rangle = \frac{1}{2} \sum_i (\cot \alpha_i + \cot \beta_i)$$

$$\begin{array}{c} \theta_1 \\ \theta_2 \\ q \end{array} \left\langle \nabla h_p, \nabla h_q \right\rangle = -\frac{1}{2} (\cot \theta_1 + \cot \theta_2) \end{array}$$

Recall: Summing Around a Vertex

$$\nabla_{\vec{p}}A = \frac{1}{2}\sum_{j} (\cot\alpha_j + \cot\beta_j)(\vec{p} - \vec{q}_j)$$

$$\nabla_{\vec{p}}A = \frac{1}{2}((\vec{p} - \vec{r})\cot\alpha + (\vec{p} - \vec{q})\cot\beta)$$

Same weights up to sign!

THE COTANGENT LAPLACIAN

$$L_{ij} = \begin{cases} \frac{1}{2} \sum_{i \sim k} (\cot \alpha_{ik} + \cot \beta_{ik}) & \text{if } i = j \\ -\frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij}) & \text{if } i \sim j \\ 0 & \text{otherwise} \end{cases}$$

ב

Poisson Equation

 $\Delta f = q$

http://nylander.wordpress.com/2006/05/24/finite-element-method-fem-solution-to-poisson%E2%80%99s-equation-on-

Weak Solutions

FEM Hat Weak Solutions

 $\int_{M} h_i \Delta f \, dA = \int_{M} h_i g \, dA \,\,\forall \text{ hat functions } h_i$

$$\int_{M} h_{i} \Delta f \, dA = -\int_{M} \nabla h_{i} \cdot \nabla f \, dA$$
$$= -\int_{M} \nabla h_{i} \cdot \nabla \sum_{j} a_{j} h_{j} \, dA$$
$$= -\sum_{j} a_{j} \int_{M} \nabla h_{i} \cdot \nabla h_{j} \, dA$$
$$= \sum_{j} L_{ij} a_{j}$$

Stacking Integrated Products

 $\begin{pmatrix} \int_{M} h_{1} \Delta f \, dA \\ \int_{M} h_{2} \Delta f \, dA \\ \vdots \\ \int_{M} h_{|V|} \Delta f \, dA \end{pmatrix} = \begin{pmatrix} \sum_{j} L_{1j} a_{j} \\ \sum_{j} L_{2j} a_{j} \\ \vdots \\ \sum_{j} L_{|V|j} a_{j} \end{pmatrix} = L\vec{a}$

Multiply by Laplacian matrix!

Problematic Right-Hand Side

$$\int_{M} h_i \Delta f \, dA = \int_{M} h_i g \, dA \,\,\forall \text{ hat functions } h_i$$

Product of hats is quadratic

A Few Ways Out

Just do the integral

"Consistent" approach

- Approximate some more
- Redefine g

A Few Ways Out

Just do the integral

"Consistent" approach

 Approximate some more

• Redefine g

The Mass Matrix

 $A_{ij} := \int_{M} h_i h_j \, dA$

- Diagonal elements:
 Norm of h_i
- Off-diagonal elements:
 Overlap between h_i and h_j

Consistent Mass Matrix

Non-Diagonal Mass Matrix

Properties of Mass Matrix

- Rows sum to one ring area / 3
- Involves only vertex and its neighbors
- Partitions surface area

Issue: Not trivial to invert!

Use for Integration

 $\int_{M} f = \int_{M} \sum_{i} a_{j} h_{j}(\cdot 1)$ $= \int_{M} \sum_{i} a_{j} h_{j} \sum_{i} h_{i}$ $=\sum A_{ij}a_j$ $= \mathbf{1}^{\top} A \vec{a}$

Lumped Mass Matrix

 $\tilde{a}_{ii} := \operatorname{Area}(\operatorname{cell} i)$

Won't make big difference for smooth functions

http://users.led-inc.eu/~phk/mesh-dualmesh.html

Approximate with diagonal matrix

Simplest: Barycentric Lumped Mass

http://www.alecjacobson.com/weblog/?p=1146

Area/3 to each vertex

Ingredients

- Cotangent Laplacian L Per-vertex function to integral of its Laplacian against each hat
- Area weights A Integrals of pairwise products of hats (or approximation thereof)

Solving the Poisson Equation

Helmholtz Equation $\Delta f = \lambda f$ $\int \Delta f \cdot \psi = -\int \nabla f \cdot \nabla \psi = \int \lambda f \cdot \psi$ \Rightarrow *La* = λ *Ma*

Generalized **Eigenvalue** Problem

Important Detail: Boundary Conditions

$$\Delta f(x) = g(x) \ \forall x \in \Omega$$
$$f(x) = u(x) \ \forall x \in \Gamma_D$$
$$\nabla f \cdot n = v(x) \ \forall x \in \Gamma_N$$

$$\int_{\Omega} \nabla f \cdot \nabla \phi = \int_{\Gamma_N} v(x)\phi(x) \, d\Gamma - \int_{\Omega} f(x)\phi(x) \, d\Omega$$
$$f(x) = u(x) \, \forall x \in \Gamma_D$$
Weak form

Eigenhomers

Higher-Order Elements

https://www.femtable.org/

Point Cloud Laplace: Easiest Option

"Laplacian Eigenmaps for Dimensionality Reduction and Data Representation" Belkin & Niyogi 2003