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BACKGROUND: LINEAR ALGEBRA
AND OPTIMIZATION

http://tiny.cc/ift6113

Mikhail Bessmeltsev



MOTIVATION

Numerical problems are everywhere
in geometric modeling!

Quick summary!

Mostly for common ground: You may already know this material.
First half is important; remainder summarizes interesting recent tools.



OUR BIAS

Patterns, algorithms, & examples
common in geometry.
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Numerical analysis is a huge field.
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EXAMPLES

How to flatten a mesh?
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Object space (3D) Texture space (2D)

“Mesh Parameterization: Theory and Practice” by Kai Hormann, Bruno Lévy, Alla Sheffer









EXAMPLES

How to flatten a mesh?

min _ [ (Uq, V1, ., Uy, Un)

U;,v;ER?

Fit a target
2D shape?

Triangle
distortion?

More sharp
corners?




mil.limal.area
distortion

'target shape

Sharp 25 .

uniformization

cone
singularities

direct editing

“Boundary First Flattening” by Rohan Sawhney and Keenan Crane



EXAMPLES

How to animate a character?

rest pose

LBS with our method
[Jacobson et al. 2011]

“Linear Subspace Design for Real-Time Shape Deformation” by Yu Wang, Alec Jacobson, Jernej Barbi¢, Ladislav Kavan



EXAMPLES

How to animate a character?

min f(x1;)71; ---;anYn)
Xi,yi€ER?

, —
S.T. x] — x] — ieJ
P Known positions
Yi = Vi =
Triangle Some

distortion? smoothness?




min f(x)

xeRM
s.t.g(x) =0
h(x) =0




(Energy)
min [ (x)

x€ERMN
s.t.g(x) =0
h(x) =0



)
s.t. g(x) =0
h(x) =0




min f(x)
s.t.g(x) =0
h(x) =0

[nequality
constraints




Ax

EXAMPLES

min ||Ax — bl|2
xEIRnH |5



EXAMPLES

min || Ax||5
Ax = Ax XER™

S.t. l|x||—1=0



ROUGH PLAN

Matrices and Eigenvalues
 Linear problems
» Unconstrained optimization
» Equality-constrained optimization

» Variational problems



ROUGH PLAN
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MATRICES

How are those matrices special?

1 1 -1 0 0 -1 -2
( —2 > (—1 2 0) (1 0 4 )
5 0 0 5 2 =4 0

cos(0.4) —sin(0.4) 0
sin(0.4) cos(04) O
0 0 1



MATRICES

How are those matrices special?

1 1 -1 0 0 -1 -2
( —2 > -1 2 0 (1 0 4 )
5 0 0 5 2 -4 0

Diagonal Symmetric Skew-symmetric

A=AT AT = -4
cos(0.4) —sin(0.4) 0
sin(0.4) cos(04) O

1 0 3
(0 1 4)
0 0 1 1

Orthogonal Um something?
A—l — AT



MATRICES

What is the geometric meaning of those?

(=)

Diagonal
cos(0.4) —sin(0.4) O 1 0 3
sin(0.4) cos(04) O ( 0 1 4)
0 0 1 1
Orthogonal Um something?

A = AT



INTRO TO INTRO

What is the geometric meaning of those?

[ =)

Non-uniform scaling

cos(0.4) —sin(0.4) 0
sin(0.4) cos(04) O

1 0 3
0 1 4)
0 0 1 1

Rotation Translation in 2D*



DIAGONAL MATRICES

Those are the eigenvalues!
Scaling along coordinate axes
O(n) space to store (just » of course)
O(n) time to invert

(=)

Diagonal



SYMMETRIC MATRICES

» All eigenvalues are real
» All eigenvectors are orthogonal

Can be diagonalized by an orthogonal matrix:
D =QTAQ

1 -1 0
(—1 2 O)
0 0 5

Symmetric
A=AT



ORTHOGONAL MATRICES

AAT =1
Columns have zero dot product

Doesn’t change length of vectors or angles
between them (isometry)

Determinant is +1

cos(0.4) —sin(0.4) 0
sin(0.4) cos(04) O
0 0 1

Orthogonal
ATl =47



NO IDEA WHAT THOSE ARE?

3 r COMPUTER
\ GRAPHICS

Steven J. Gortler

®@w O@

https:/ /umontreal.on.worldcat.org /oclc /829434522
Free online at UdeM library
Chapters 1.3, 1.4



https://umontreal.on.worldcat.org/oclc/829434522

MATRICES

Eigenvalues and eigenvectors

Ax = Ax discrete

or

L[f(X)] — Af(X) continuous



MATRICES

« Geometric transformations
» Linear operators on (discrete) functions



EIGENVECTORS/VALUES

Geometric meaning?

Vectors which only scale




MATRIX IS POSITIVE DEFINITE
AZ=0
&
All eigenvalues are nonnegative



min f(x)

xeRM
s.t.g(x) =0
h(x) =0




ROUGH PLAN

» Linear problems
» Unconstrained optimization
» Equality-constrained optimization

» Variational problems



VECTOR SPACES AND
LINEAR OPERATORS

LT+ y] = L|Z]+ Ly
Llct| = cL|T]



ABSTRACT EXAMPLE

C*(R)
LIf) = /e

Eigenvectors?




IN FINITE DIMENSIONS

A T
S S~

matrix vector

r— Axr
R,_/

linear operator



LINEAR SYSTEM OF
EQUATIONS

|
Sl

A T

Simple “inverse problem”



COMMON STRATEGIES

e Gaussian elimination
— O(n?) time to solve Ax=b or to invert

« But: Inversion is unstable and slower!

« Never ever compute A if you can avoid it.



SIMPLE EXAMPLE

d2

= . f(0) = f(1) = 0
1
-2 1 fi
1 -2 1 fs

1 -2 1 .

g1
g2

n



STRUCTURE?



LINEAR SOLVER
CONSIDERATIONS

- Never construct A1 explicitly
(if you can avoid it)

« Added structure helps
Sparsity, symmetry, positive definiteness,
bandedness

inv(A)*b < (A’*A)\ (A’xb) < A\Db



LINEAR SYSTEMS: SOLVERS

» Direct (explicit matrix)
— Dense: Gaussian elimination /LU, QR for least-
squares

— Sparse: Reordering (SuiteSparse, Eigen)

- Iterative (apply matrix repeatedly)
— Positive definite: Conjugate gradients
— Symmetric: MINRES, GMRES
— Generic: LSQR



GENERIC ADVICE

Generic tools are often not too effective!



GENERIC ADVICE

Try the
simplest solver first.



VERY COMMON: SPARSITY

Induced by the connectivity of
the triangle mesh.

Z;E
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Iteration of CG has local effect
= Precondition!




FOR IFT 6113

« No need to implement a linear solver

- If a matrix is sparse, your code shoul

store it as a sparse matrix!
E Eigen 33.5

Overview

Sparse matrix manipulations

Sparse linear algebra

Getting started
Chapters
Dense matrix and array manipulation

Dense linear problems and decompositig| - Manipulating and solving sparse problems involves various modules which are summarized below:
Sparse linear algebra

Sparse matrix manipulations. Module Header file Contents

Solving Sparse Linear Systems

SparseCore #include <Eigen/SparseCore> SparseMatrix and SparseVector classes, matrix assembly, basic sparse linear algebra (including sparse triangular
Matrix-free solvers
solvers)
Reference
Quick reference guide for sparse matr| | SParseCholesky #include <Eigen/SparseCholesky> Direct sparse LLT and LDLT Cholesky factorization to solve sparse self-adjoint positive definite problems
Geometry SparseLU #include<Eigen/SparselU> Sparse LU factorization to solve general square sparse systems
Extending/Customizing Eigen L B .
- - SparseQR #include<Eigen/SparseQR> Sparse QR factorization for solving sparse linear least-squares problems
eneral topics
Class List IterativeLinearSolvers #include <Eigen/IterativelinearSolvers> lterative solvers to solve large general linear square problems (including self-adjoint positive definite problems)
Sparse #include <Eigen/Sparse| Includes all the above modules

Sparse matrix format

In many applications (e.g., finite element methods) it is common to deal with very large matrices where only a few coefficients are

c . different from zero. In such cases, memory consumption can be reduced and performance increased by using a specialized
parse matrix format

First example representation storing only the nonzero coefficients. Such a matrix is called a sparse matrix.

Table of contents

The SparseMatrix class )
. The SparseMatrix class
Filling a sparse matrix

Supported operators and functions . ) ) . .
o i The class SparseMatrix is the main sparse matrix representation of Eigen's sparse module; it offers high performance and low

A memory usage. It implements a more versatile variant of the widely-used Compressed Column (or Row) Storage scheme. It consists of
Block operations four compact arrays:

Basic operations

Triangular and selfadjoint views -

Generated on Mon Aug 27 2018 06:59:39 for Eigen by (m)x’y‘ &) 1813

https:/ /eigen.tuxfamily.org /dox /group__ TutorialSparse.html

o Unlaar s etaras tha caafficiant vnliae of tha nan zarae



ROUGH PLAN

» Unconstrained optimization
» Equality-constrained optimization

» Variational problems



UNCONSTRAINED
OPTIMIZATION

min f(x)

x€ERMN

Trivial when f(x) is linear

Easy when f(x) is quadratic

' Hard in case of generic non-linear.



UNCONSTRAINED
OPTIMIZATION

min f(x)

xXERN
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NOTIONS FROM CALCULUS

f(X,y) — 3x2 —Yy
af o0
v/ = (aiai) = (6%, —1)

Geometric meaning?

Gradient



NOTIONS FROM CALCULUS
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NOTIONS FROM CALCULUS

f:R"—>R
([ O0f Of of
= VI = (3%1’81172"'.’(9113”)

https:/ /en.wikipedia.org /?title=Gradient

Gradient



NOTIONS FROM CALCULUS
f:R" —R"™

Jacobian



NOTIONS FROM CALCULUS

f(x)
http: / /math.etsu.edu/multicalc /prealpha/Chap2 /Chap2-5 /10-3a-t3.gif

Hessian



OPTIMIZATION TO ROOT-
FINDING

Viiz)=0

(unconstrained

addle point

Local max

| Local min
£T

Critical point



CONVEX FUNCTIONS

f(x) >0

tf (z1) + (1 —t)f (w2)

ftey + (1 —=t)rs) >

T try + (1 —t)xy T2

https: / /en.wikipedia.org /wiki /Convex_function



CONVEX FUNCTIONS
H(x)=0

https: / /en.wikipedia.org /wiki /Convex_function



SPECIAL CASE: LEAST-
SQUARES

1
min 5 | Az — b||5

1
— min §CETATA£B —b" Ax + ||b]|5

— A" Az =A"b

Normal equations
(better solvers for this case!)



USEFUL DOCUMENT

The Matrix Cookbook

Petersen and Pedersen

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf



UNCONSTRAINED
OPTIMIZATION

min f(x
Xz T

Unstructured.



BASIC ALGORITHMS

J(HD‘HI} o

}

L+l — LTk — Oéka(a?k)
Gradient descent



BASIC ALGORITHMS

1 1 — A
Ao =0, = 5(1+ \/1+4>\§_1),% =

;vf(ws)

Ls4+1 = (1 — 78)ys—l—1 T VsYs

Quadratic convergence on convex problems!
(Nesterov 1983)

A very cool intro: https: / /distill.pub /2017 /momentum /

Accelerated gradient descent

Ys+1 L g



https://distill.pub/2017/momentum/

BASIC ALGORITHMS

Tiy1 = o — [Hf(x)] 7V (xg)

Newton’s Method



BASIC ALGORITHMS

L+l — Lk — M,;1Vf(aj‘k)

» (Often sparse) approximation from
previous samples and gradients

 Inverse in closed form!

Quasi-Newton: BFGS and friends



EXAMPLE: SHAPE
INTERPOLATION

Figure 6: Interpolation of an adaptively meshed and strongly twisted helix with blending weights 0, 0.25, 0.5, 0.75, 1.0.

Frohlich and Botsch. “"Example-Driven Deformations Based on Discrete Shells.” CGF 2011.



INTERPOLATION PIPELINE

Roughly:
1. Linearly interpolate edge lengths and dihedral angles.

0 = (1 —t)0° + te}
9* = (1 —1)6° + t6)

2. Nonlinear optimization for vertex positions.




SOFTWARE

« Matlab: fminunc or minfunc
 C++. 1ibLBFGS, dlib, others

Typically provide functions for function
and gradient (and optionally, Hessian).

Try several!



SOME TRICKS

Lots of small elements: ||z||5 =Y. x7
Lots of zeros: ||z|1 = )_, |z
Uniform norm: ||z||se = max; |x;
Low rank: || X ||« = ). 0;
Mostly zero columns: || X|[21 =), \/ D i T3,
Smooth: [ ||V f]3

Piecewise constant: f \YARID
777 Early stopping

Regularization



SOME TRICKS

Original Blurred

Multiscale /graduated optimization



ROUGH PLAN

» Equality-constrained optimization

» Variational problems



LAGRANGE MULTIPLIERS: IDEA

(2 \mmx f( )
St g(x) =0




LAGRANGE MULTIPLIERS: IDEA

_vg

- ~min, f(x)

St g(x) =

U

- se f. —Vf

Vlt constraint: +Vg




LAGRANGE MULTIPLIERS: IDEA

- ~umin,  f(x)
s.t. g(x) =0

A




USE OF LAGRANGE
MULTIPLIERS

Turns constrained optimization into

unconstrained root-finding.

Vi(z) = AVyg(z)
g(xz) =0



quadratic

min f(x)

xX€ERN

S.t. g(x) =0

linear



QUADRATIC WITH LINEAR
EQUALITY

min,, %CETASIZ —b'x+c

s.t. Mx=wv

(assume A is symmetric and positive definite)



QUADRATIC WITH LINEAR
EQUALITY

min,, %CETASIZ —b'x+c

s.t. Mx=wv

(assume A is symmetric and positive definite)

|

(4 (5)-(



nonlinear

min f(x)

xX€ERN

S.t. g(x) =0

nonlinear



MANY OPTIONS

* Reparameterization

Eliminate constraints to reduce to unconstrained case

* Newton’s method

Approximation: quadratic function with linear constraint

» Penalty method

Augment objective with barrier term, e.g. f(x) + p|g(x)]



EXAMPLE: SYMMETRIC
EIGENVECTORS

flz)=z' Az = Vf(z) =24z
g(x) = ||zl = Vg(z) =2z
— Ax = A\x



EXAMPLE: MESH
EMBEDDING

<V
= raVAVAY) vy,
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G. Peyré, mesh processing course slides




LINEAR SOLVE FOR
EMBEDDING

XiERZ

s.t. =z, fixed Vv € V]

- w;; = 1. Tutte embedding
° w;; from mesh: Harmonic embedding

Assumption: w symmetric.



.....

> i per Wijllws — 23
x, fixed Yv € Vj

What if
Vo = {}?




NONTRIVIALITY CONSTRAINT

e e L AT

S.t. LIZ’HQ =1

Prevents trivial solution x = 0.

Extract the smallest eigenvalue.



Mullen et al. “Spectral Conformal Parameterization.” SGP 2008.

mgn w' Lou  +——  L.u = \Bu

uw' Be=0+— Easy fix
uw' Bu=1



BASIC IDEA OF
EIGENALGORITHMS

Av = C1 Afl 4 C-n.Af'n,
— i\ L1+ -+ A\, &, since AZ; = \; 7

n
— )\1 (’lTl + —CQTQ T+t ~  Cnlp
)\1 )\1

2 2
A% 2 A2 = An 7
V= )\1 C1 T1 + )\ Coro + - + )\— Cnln
1 1



TRUST REGION METHODS

Q ming,, §5xTH5az +w' x
b‘e s.t. ||0z|]5 < A
<

Example: Levenberg-Marquardt



EXAMPLE: POLYCUBE MAPS

miny ) ;.

S.t. Zbi A(bz, X

Note: Final method includes more
terms!




Aside:
Convex Optimization Tools

versus

Sometines work, foﬁ HON—-CORVEN /mi/m& e

Try lightweight options



ITERATIVELY REWEIGHTED
LEAST SQUARES

: T _ 1 p. MINyg; 4. Zz yi(a}Tai + bi)Q
ma}nz ¢(x " a;+0b;) H{ S.t. 1y = gb(a:Taq;—l-bi)(:UTai + bz’)_2

: — mi uille — p:l12
min Yz - pills = {x ming 2 ; Yl = pillz
T yi < [lz — pillz

Repeatedly solve linear systems



ALTERNATING PROJECTION

Po mpin d(p7p0)

st.peCiNCaN---NCy




AUGMENTED LAGRANGIANS

Add constraint to objective



ALTERNATING DIRECTION
METHOD OF MULTIPLIERS

(ADMM)
min, , f(z)+ g(2)
s.t. Ax + Bz =c

Ap(w,2:A) = f(2) + g(z) + AT (Az + Bz — ) + L] Az + Bz — ||
T < argmin A ,(x, z, \)
X
z «—argmin A,(z, 2, \)
Z

A< A+ p(Axz + Bz — ¢)

https:/ /web.stanford.edu/~boyd /papers/pdf /admm _slides.pdf



FRANK-WOLFE </asile™

To minimize f(x) s.t. x € D:

: T
argming s' Vf(xy)
AN { s.t. s€D

2
k + 2
Th41 < Tk T ’Y(Sk — ZBk)

Y 4

https:/ /en.wikipedia.org /wiki /Frank%E2%80%93Wolfe__algorithm

Linearize objective, preserve constraints



ROUGH PLAN

» Variational problems



VARIATIONAL CALCULUS:
BIG IDEA

Sometimes your unknowns

are not numbers!

Can we use calculus to optimize anyway?



ON THE BOARD

min | [i@) = V() [} d2



GATEAUX DERIVATIVE

d
dF |u; ] = o Flu + h)]|n=o

Vanishes for all y at a critical point!

S

Analog of derivative at u in ¢ direction
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