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What is Parameterization?

surface

world

parameter domain

atlas

ℝ3

ℝ2

parameterization

(u,v)(x,y,z)



Problem Definition
Given: surface 𝑆𝑆 ⊆ ℝ3

domain 𝐷𝐷 ⊂ ℝ2

Find a bijective 𝑓𝑓: 𝑆𝑆 → 𝐷𝐷



Tangent Space



Typical domains:

⊆ 𝑅𝑅2

boundary
Sphere (no boundary)



Cross-Parameterization
/Inter-surface Mapping 
• all (closed) models
• usually utilize common base

Typical domains:

Base Mesh



Why Do We Need It?



Why Do We Need It?



Texture Mapping
• Define color for each point on object surface

• Map 2D texture to model surface:
– Texture pattern defined over 2D domain (𝑢𝑢, 𝑣𝑣)
– Assign (𝑢𝑢, 𝑣𝑣) coordinates to each point on surface

u

v



Normal/Bump mapping



Morphing/Properties Transfer
Require cross-parameterization

Morphing

Deformation Transfer



Remeshing & Surface Fitting



THEORY/BACKGROUND



Mesh Parameterization

𝑓𝑓:Ω → 𝑆𝑆, s. t.
– f is piecewise linear

• 𝑓𝑓|𝑡𝑡 is linear
– f is bijective

• at least locally

Surface 𝑆𝑆 ⊂ ℝ3
Parameter domain Ω ⊆ ℝ2

𝑓𝑓 �
𝑡𝑡

𝑓𝑓

𝑓𝑓−1



Earth maps!
• Distortion is inevitable
• But we can preserve some properties exactly

orthographic
∼ 500 B.C.

stereographic
∼ 150 B.C.

Mercator
1569

Lambert
1772

conformal
(angle-preserving)

equiareal
(area-preserving)



Intrinsic Descriptor

http://www.sciencedirect.com/science/article/pii/S0010448510001983

Theorema Egregium
(“Totally Awesome 

Theorem”):
Gaussian curvature is 

intrinsic.



What is Distortion?

• Distortion (at x): How different is f(D) from D
– How to measure?

f(D)

Small disk around x

𝑥𝑥 = 𝑢𝑢, 𝑣𝑣 ∈ Ω

Ω 𝑆𝑆
𝑓𝑓

𝐷𝐷

Image of that disk



𝑓𝑓 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝑖𝑖

𝑦𝑦 − 𝑥𝑥 + 𝑂𝑂 𝑦𝑦 − 𝑥𝑥 2

How to quantify distortion? 
Study differential/Jacobian.

𝑓𝑓(𝑦𝑦)linearization

𝑓𝑓(𝑦𝑦)
𝑟𝑟

Semiaxes: 𝑟𝑟𝜎𝜎1, 𝑟𝑟𝜎𝜎2
𝑢𝑢

𝑣𝑣

𝑇𝑇𝑝𝑝



Linear Map Surgery
• Singular Value Decomposition (SVD) of 𝐽𝐽𝑓𝑓

with rotations 𝑈𝑈 ∈ ℝ3×3, 𝑉𝑉 ∈ ℝ2×2

and scale factors (singular values) 𝜎𝜎1,𝜎𝜎2 ≥ 0

𝐽𝐽𝑓𝑓 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 = 𝑈𝑈
𝜎𝜎1 0
0 𝜎𝜎2
0 0

𝑉𝑉𝑇𝑇

Ω
𝑉𝑉𝑇𝑇 Σ 𝑈𝑈

𝑇𝑇𝑝𝑝



𝐼𝐼 = 𝑓𝑓𝑢𝑢 ⋅ 𝑓𝑓𝑢𝑢 𝑓𝑓𝑢𝑢 ⋅ 𝑓𝑓𝑣𝑣
𝑓𝑓𝑢𝑢 ⋅ 𝑓𝑓𝑣𝑣 𝑓𝑓𝑣𝑣 ⋅ 𝑓𝑓𝑣𝑣

How to quantify distortion? 
Study Metric Tensor = 1st fundamental form.



𝐼𝐼 = 𝑓𝑓𝑢𝑢 ⋅ 𝑓𝑓𝑢𝑢 𝑓𝑓𝑢𝑢 ⋅ 𝑓𝑓𝑣𝑣
𝑓𝑓𝑢𝑢 ⋅ 𝑓𝑓𝑣𝑣 𝑓𝑓𝑣𝑣 ⋅ 𝑓𝑓𝑣𝑣

= 𝐽𝐽𝑓𝑓𝑇𝑇𝐽𝐽𝑓𝑓

How to quantify distortion? 
Study Metric Tensor = 1st fundamental form.

“Gram Matrix”



𝐼𝐼 = 𝑓𝑓𝑢𝑢 ⋅ 𝑓𝑓𝑢𝑢 𝑓𝑓𝑢𝑢 ⋅ 𝑓𝑓𝑣𝑣
𝑓𝑓𝑢𝑢 ⋅ 𝑓𝑓𝑣𝑣 𝑓𝑓𝑣𝑣 ⋅ 𝑓𝑓𝑣𝑣

= 𝐽𝐽𝑓𝑓𝑇𝑇𝐽𝐽𝑓𝑓

= 𝑈𝑈Σ𝑉𝑉𝑇𝑇 𝑇𝑇 𝑈𝑈Σ𝑉𝑉𝑇𝑇 = 𝑉𝑉
𝜎𝜎12 0
0 𝜎𝜎22

𝑉𝑉𝑇𝑇

Eigenvalues of 𝐼𝐼

How to quantify distortion? 
Study Metric Tensor = 1st fundamental form.



Pointwise distortion
Isometric

𝝈𝝈𝟏𝟏 = 𝝈𝝈𝟐𝟐 = 𝟏𝟏
Conformal or angle-preserving

𝝈𝝈𝟏𝟏 = 𝝈𝝈𝟐𝟐
Equiareal or area-preserving

𝝈𝝈𝟏𝟏 ⋅ 𝝈𝝈𝟐𝟐 = 𝟏𝟏

Defined pointwise on Ω

Ω

Ω

Ω

𝑓𝑓(𝑦𝑦)

𝑓𝑓(𝑦𝑦)

𝑓𝑓(𝑦𝑦) 𝑇𝑇𝑝𝑝

𝑇𝑇𝑝𝑝

𝑇𝑇𝑝𝑝



Measuring Distortion
• Local distortion measure function of 𝜎𝜎1 and 𝜎𝜎2

• Overall distortion

• On mesh  constant per triangle



CONFORMAL MAPS





Stereographic Projection

Image from Wikipedia



⇒ conformal

Stereographic Projection

𝜎𝜎1 = 𝜎𝜎2 = 2𝑑𝑑

(𝑢𝑢, 𝑣𝑣)

Ω
(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝑓𝑓

𝑆𝑆



Stereographic Projection

Image from Wikipedia



Stereographic Projection



Does conformal map exist?

Uniformization theorem

“Every simply connected Riemann surface 
is conformally equivalent to one of three 
Riemann surfaces: 

1. open unit disk 
2. complex plane
3. Riemann sphere”



Parameterization:
Practice



MESH PARAMETERIZATION METHODS

Fixed Boundary
Bijectivity: easy

Distortion: may be large

Free boundary
Bijectivity: hard

Distortion: minimum



MESH PARAMETERIZATION METHODS

Fixed Boundary
Bijectivity: easy

Distortion: may be large

Free boundary
Bijectivity: hard

Distortion: minimum



Spring Model

• Fix boundary vertices on a convex polygon
• Edges → springs

• Let go of the springs
– “Relaxation”



Hooke’s Law: 
Energy of spring between 𝑝𝑝𝑖𝑖 and 𝑝𝑝𝑗𝑗

𝐸𝐸𝑖𝑖𝑗𝑗 = 0.5 𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗 2
2

Total energy

𝐸𝐸 = �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

1
2
𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗

2

Spring Model



Hooke’s Law: 
Energy of spring between 𝑝𝑝𝑖𝑖 and 𝑝𝑝𝑗𝑗

𝐸𝐸𝑖𝑖𝑗𝑗 = 0.5 𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗 2
2

Total energy

𝐸𝐸 = �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

1
2
𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗

2

Spring Model

Will this provide a 
bijective 

parameterization?



𝐸𝐸 = �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

1
2
𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗

2
=

1
2
�
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗∈𝑁𝑁𝑖𝑖

1
2
𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗

2

Spring Model



𝐸𝐸 =
1
2
�
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗∈𝑁𝑁𝑖𝑖

1
2
𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗

2

Spring Model

Stable state ⇔ minimum of total energy



𝐸𝐸 =
1
2
�
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗∈𝑁𝑁𝑖𝑖

1
2
𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗

2

𝜕𝜕𝐸𝐸
𝜕𝜕𝑢𝑢𝑖𝑖

= �
𝑗𝑗∈𝑁𝑁𝑖𝑖

𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗 = 0

Spring Model

Stable state ⇔ minimum of total energy



𝐸𝐸 =
1
2
�
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗∈𝑁𝑁𝑖𝑖

1
2
𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗

2

�
𝑗𝑗∈𝑁𝑁𝑖𝑖

𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗 = 0

Rewrite:

Spring Model

𝑢𝑢𝑖𝑖 = �
𝑗𝑗∈𝑁𝑁𝑖𝑖

𝜆𝜆𝑖𝑖𝑗𝑗𝑢𝑢𝑗𝑗 𝜆𝜆𝑖𝑖𝑗𝑗 = 𝐷𝐷𝑖𝑖𝑗𝑗/ �
𝑘𝑘∈𝑁𝑁𝑖𝑖

𝐷𝐷𝑖𝑖𝑘𝑘



𝐸𝐸 =
1
2
�
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗∈𝑁𝑁𝑖𝑖

1
2
𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗

2

�
𝑗𝑗∈𝑁𝑁𝑖𝑖

𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗 = 0

Rewrite:

Spring Model

𝑢𝑢𝑖𝑖 = �
𝑗𝑗∈𝑁𝑁𝑖𝑖

𝜆𝜆𝑖𝑖𝑗𝑗𝑢𝑢𝑗𝑗 𝜆𝜆𝑖𝑖𝑗𝑗 = 𝐷𝐷𝑖𝑖𝑗𝑗/ �
𝑘𝑘∈𝑁𝑁𝑖𝑖

𝐷𝐷𝑖𝑖𝑘𝑘

A generalization of 
barycentric coordinates



Linear System
• Let’s rearrange the variables:

𝑢𝑢𝑖𝑖 − �
𝑗𝑗∈𝑁𝑁𝑖𝑖,𝑗𝑗≤𝑛𝑛

𝜆𝜆𝑖𝑖𝑗𝑗𝑢𝑢𝑗𝑗 = �
𝑗𝑗∈𝑁𝑁𝑖𝑖,𝑗𝑗>𝑛𝑛

𝜆𝜆𝑖𝑖𝑗𝑗𝑢𝑢𝑗𝑗 = �𝑢𝑢𝑖𝑖

• Linear system
𝐴𝐴𝑈𝑈 = �𝑈𝑈,

𝐴𝐴 = �
1, 𝑖𝑖 = 𝑗𝑗

−𝜆𝜆𝑖𝑖𝑗𝑗, 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖
0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

– Solve separately for u and v

𝜆𝜆𝑖𝑖𝑗𝑗 = 𝐷𝐷𝑖𝑖𝑗𝑗/ �
𝑘𝑘∈𝑁𝑁𝑖𝑖

𝐷𝐷𝑖𝑖𝑘𝑘

unknown parameter points            fixed



Linear System
• Let’s rearrange the variables:

𝑢𝑢𝑖𝑖 − �
𝑗𝑗∈𝑁𝑁𝑖𝑖,𝑗𝑗≤𝑛𝑛

𝜆𝜆𝑖𝑖𝑗𝑗𝑢𝑢𝑗𝑗 = �
𝑗𝑗∈𝑁𝑁𝑖𝑖,𝑗𝑗>𝑛𝑛

𝜆𝜆𝑖𝑖𝑗𝑗𝑢𝑢𝑗𝑗 = �𝑢𝑢𝑖𝑖

• Linear system
𝐴𝐴𝑈𝑈 = �𝑈𝑈,

𝐴𝐴 = �
1, 𝑖𝑖 = 𝑗𝑗

−𝜆𝜆𝑖𝑖𝑗𝑗, 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖
0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

– Solve separately for u and v

𝜆𝜆𝑖𝑖𝑗𝑗 = 𝐷𝐷𝑖𝑖𝑗𝑗/ �
𝑘𝑘∈𝑁𝑁𝑖𝑖

𝐷𝐷𝑖𝑖𝑘𝑘

unknown parameter points            fixed

What does the matrix 
remind you of?



Theorem [Tutte’63,Floater’01,Maxwel’1864]:

If 𝐺𝐺 is a 3-connected planar graph 
(triangular mesh) then any convex 
combination embedding (𝜆𝜆𝑖𝑖𝑗𝑗 > 0) provides 
bijective parameterization 



Choice of Weights: Uniform (Tutte)

No shape preservation –equilateral triangles

Graph Laplacian! 

𝐷𝐷𝑖𝑖𝑗𝑗 = 1 𝜆𝜆𝑖𝑖𝑗𝑗 =
1

#𝑁𝑁𝑖𝑖



Choice of Weights: Uniform (Tutte)

No shape preservation –equilateral triangles

Graph Laplacian! 

𝐷𝐷𝑖𝑖𝑗𝑗 = 1 𝜆𝜆𝑖𝑖𝑗𝑗 =
1

#𝑁𝑁𝑖𝑖

𝐸𝐸 = ∑ 𝑖𝑖,𝑗𝑗 ∈𝐸𝐸
1
2
𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗

2 is 
Dirichlet energy discretized on a graph!



Choice of Weights: Barycentric
Harmonic/Conformal/FEM Laplacian

𝜔𝜔𝑖𝑖𝑗𝑗 = cot𝛾𝛾𝑖𝑖𝑗𝑗 + cot𝛾𝛾𝑗𝑗𝑖𝑖
𝜆𝜆𝑖𝑖𝑗𝑗 = 𝜔𝜔𝑖𝑖𝑗𝑗/�

𝑘𝑘

𝜔𝜔𝑖𝑖𝑘𝑘

𝐸𝐸 = ∑ 𝑖𝑖,𝑗𝑗 ∈𝐸𝐸
1
2
𝐷𝐷𝑖𝑖𝑗𝑗 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗

2 is 
Dirichlet energy discretized on a mesh!



Issue

Point is inside, but the coordinate can be <0



Issue

Point is inside, but the coordinate can be <0
⇒ ∃𝜆𝜆𝑖𝑖𝑗𝑗 < 0



Issue

Point is inside, but the coordinate can be <0
⇒ ∃𝜆𝜆𝑖𝑖𝑗𝑗 < 0

Local non-bijectivity



Harmonic Functions

Images made by E. Vouga



Choice of Weights: Mean Value

𝜔𝜔𝑖𝑖𝑗𝑗 =
tan

𝛼𝛼𝑖𝑖𝑗𝑗
2 + tan

𝛽𝛽𝑗𝑗𝑖𝑖
2

𝑟𝑟𝑖𝑖𝑗𝑗

𝜆𝜆𝑖𝑖𝑗𝑗 =
𝜔𝜔𝑖𝑖𝑗𝑗

∑𝑘𝑘∈𝑁𝑁𝑖𝑖 𝜔𝜔𝑖𝑖𝑘𝑘



Choice of Weights: Mean Value

𝜔𝜔𝑖𝑖𝑗𝑗 =
tan

𝛼𝛼𝑖𝑖𝑗𝑗
2 + tan

𝛽𝛽𝑗𝑗𝑖𝑖
2

𝑟𝑟𝑖𝑖𝑗𝑗

𝜆𝜆𝑖𝑖𝑗𝑗 =
𝜔𝜔𝑖𝑖𝑗𝑗

∑𝑘𝑘∈𝑁𝑁𝑖𝑖 𝜔𝜔𝑖𝑖𝑘𝑘
Always non-

negative



Harmonic/Mean-Value Mappings

• Quasi-Conformal

• Linear precision
– Reproduce planar inputs (same boundary) 



• Can have fold-overs for negative coordinates
• Mean-value coordinates guaranteed to be positive

Bijectivity (fold-overs)

harmonic mean value



Boundary Mapping

Chordal parameterization around convex shape
• circle
• rectangle
• triangle
• Choice often application specific

– Reconstruction – rectangle
– Mapping to base mesh– triangle



Examples



Parameterization:
Free Boundary



Free Boundary Methods

• Direct energy minimization
– Example: Least Squares Conformal Map (LSCM)....

• Indirect
– Example: Angle Based Flattening (ABF)....

Free vs Fixed



We’re minimizing conformal energy

Geometric Interpretation:
– Use triangle similarity
– Given angles α1, α2, α3 of a triangle P1P2P3 in 

2D we have

LSCM – Geometric Interpretation

𝑃𝑃3 − 𝑃𝑃1 =
sin𝛼𝛼2
sin𝛼𝛼3

𝑅𝑅𝛼𝛼1(𝑃𝑃2 − 𝑃𝑃1),

𝑅𝑅𝛼𝛼 = cos𝛼𝛼 sin𝛼𝛼
− sin𝛼𝛼 cos𝛼𝛼

α1 α2

α3

P1

P2

P3

𝐸𝐸𝐶𝐶 = 𝜎𝜎1 − 𝜎𝜎2 2/2



LSCM
• In map from 3D to 2D might be impossible to keep 

angles exactly
– Use least-squares

min�
𝑖𝑖

(𝑃𝑃3𝑖𝑖 − 𝑃𝑃𝑖𝑖1 −
sin𝛼𝛼𝑖𝑖2
sin𝛼𝛼𝑖𝑖3

𝑅𝑅𝛼𝛼𝑖𝑖1(𝑃𝑃𝑖𝑖2 − 𝑃𝑃1𝑖𝑖))2

• To solve need to fix two vertices
– Obtain linear system
– Choice of vertices affects solution

• Can have flips 



Examples



ABF: Angle Based Flattening

• Triangular 2D mesh is defined by its angles
• Formulate parameterization as problem in 

angle space
• Angle based formulation:

– Distortion as function of angles (conformality)
– Validity: set of angle constraints
– Convert solution to UV



ABF Formulation 

• Distortion:
– 2D/3D angle difference

�
𝑡𝑡∈𝑇𝑇,𝑗𝑗=1…3

𝑤𝑤𝑗𝑗𝑡𝑡 𝛼𝛼𝑗𝑗𝑡𝑡 − 𝛽𝛽𝑗𝑗𝑡𝑡
2 ,𝑤𝑤𝑗𝑗𝑡𝑡 = 1/𝛽𝛽𝑗𝑗𝑡𝑡

2

Tetrahedron (3D) Flattened (2D)



ABF Formulation

• Distortion:
• Constraints:

– Triangle validity:

– Planarity:

– Reconstruction

– Positivity
𝛼𝛼𝑗𝑗𝑡𝑡 > 0

�
𝑡𝑡∈𝑇𝑇,𝑗𝑗=1…3

𝑤𝑤𝑗𝑗𝑡𝑡 𝛼𝛼𝑗𝑗𝑡𝑡 − 𝛽𝛽𝑗𝑗𝑡𝑡
2

,𝑤𝑤𝑗𝑗𝑡𝑡 = 1/𝛽𝛽𝑗𝑗𝑡𝑡
2



Angle to UV Conversion

• Use computed angles as input to LSCM 
(it is a reproducing method..)



Examples



Examples



Cone Singularities [Kharevych:06]

• What separates boundary from interior in 
angle space? 

• Answer: Sum of angles at vertex 
• Formulation specific

– ABF/ABF++
• Planarity & Reconstruction

• But… reconstruction can be enforced on boundaries



Cone Singularities

• Idea: Reduce boundary to small set of 
vertices

• Implementation:
– Enforce “interior” constraints at all other 

vertices
• To unfold choose any sequence of edges 

connecting “boundary” vertices



Circle Patterns + Cone 
Singularities 



ABF + Cone Singularities



General Framework

• Choose an energy



Gradient of a Hat Function

Length of e23 cancels
“base” in A



Parameterization Jacobian



Parameterization Jacobian



Conformal Energies
• Conformal energy

𝐸𝐸𝐶𝐶 = 𝜎𝜎1 − 𝜎𝜎2 2/2

• MIPS energy

𝐸𝐸𝑀𝑀 = 𝜅𝜅𝐹𝐹 𝐽𝐽𝑓𝑓 = 𝐽𝐽𝑓𝑓 𝐹𝐹
𝐽𝐽𝑓𝑓−1 𝐹𝐹

= 𝜎𝜎1
𝜎𝜎2

+ 𝜎𝜎2
𝜎𝜎1

• Riemann theorem: any C1 continuous surface in R3 can be 
mapped conformally to fixed domain in R2 

– Nearly true for meshes

[Pinkall & Polthier 1993]
[Lévy et al. 2002]

[Desbrun et al. 2002]

[Hormann & Greiner 2000]



Detailed Example

Singular values: 0.5( 𝑎𝑎 + 𝑐𝑐 ± 𝑎𝑎 − 𝑐𝑐 2 + 4𝑏𝑏2



General Framework

• Choose an energy
• Start with an initial bijective parameterization

– E.g. Tutte



General Framework

• Choose an energy
• Start with an initial bijective parameterization

– E.g. Tutte
• Use nonlinear optimization tools to 

minimize
– Gradient descent
– Quasi-Newton methods
– …



General Framework

• Choose an energy
• Start with an initial bijective parameterization

– E.g. Tutte
• Use nonlinear optimization tools to 

minimize
– Gradient descent
– Quasi-Newton methods
– …

• How to preserve bijectivity?



What is gradient of E w/r to 
positions?



What is gradient of E w/r to 
positions?

A vector field!



Scaling vector field

• Find a scale parameter, s.t. nothing flips 
if we add the vector field

• Limit line search step to this value



Issues

• Only local injectivity



Issues

• Only local injectivity
• Sometimes the step size 

is too small
– One almost inverted 

triangle is enough

Image from “Blended Cured Quasi-Newton for Distortion Optimization” 
by Yufeng Zhu, Robert Bridson, and Danny M. Kaufman. SIGGRAPH 2018
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